# Enumeration of rectangulations and corner polyhedra

Éric Fusy (LIGM, Univ. Gustave Eiffel) Joint work with Erkan Narmanli and Gilles Schaeffer

FPSAC'23, UC Davis

### **Planar maps**

**Def.** Planar map = connected graph embedded on the sphere



### **Planar maps**

**Def.** Planar map = connected graph embedded on the sphere



= map with marked corner

### **Planar maps**

**Def.** Planar map = connected graph embedded on the sphere



Easier to draw in the plane (choosing root-face to be the outer face)





- Nice counting formulas for many natural families [Tutte'60s] e.g. # rooted maps n edges =  $\frac{2 \cdot 3^n}{n!(n+2)!} = \frac{2}{n+2} 3^n \operatorname{Cat}_n$
- More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

& universal asymptotic behaviour for counting coefficients  $c \gamma^n n^{-5/2}$ 

- Nice counting formulas for many natural families [Tutte'60s] e.g. # rooted maps n edges =  $\frac{2 \cdot 3^n}{n!(n+2)!} = \frac{2}{n+2} 3^n \operatorname{Cat}_n$
- More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

& universal asymptotic behaviour for counting coefficients  $\ c \ \gamma^n n^{-5/2}$ 

• Bijective proofs in many cases [Cori-Vauquelin'81, Schaeffer'97, Bouttier,Di Francesco,Guitter'04,...]

- Nice counting formulas for many natural families [Tutte'60s] e.g. # rooted maps n edges =  $\frac{2 \cdot 3^n}{n!(n+2)!} = \frac{2}{n+2} 3^n \operatorname{Cat}_n$
- More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

& universal asymptotic behaviour for counting coefficients  $c \ \gamma^n n^{-5/2}$ 

- Bijective proofs in many cases [Cori-Vauquelin'81, Schaeffer'97, Bouttier,Di Francesco,Guitter'04,...]
- Universal scaling limit (Brownian map) for random planar maps (rescaling distances by  $n^{1/4}$ )

[Chassaing,Schaeffer'04] [Le Gall'13, Miermont'13]



© Nicolas Curien

Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,

spanning tree, spanning forest, specific orientations,...)

4-regular map

+ Eulerian orientation

Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,



4-regular map + Eulerian orientation

spanning tree, spanning forest, specific orientations,...)

new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,



4-regular map + Eulerian orientation

spanning tree, spanning forest, specific orientations,...)

• new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates  $c\gamma^n n^{-\alpha}$ link to "central charge"

Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,



4-regular map + Eulerian orientation

spanning tree, spanning forest, specific orientations,...)

• new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates  $c\gamma^n n^{-\alpha}$ link to "central charge"

conjectural scaling limits & bounds on magnitude of typical distances [Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

 $v_R$ 

Schnyder

wood

Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,



4-regular map + Eulerian orientation

spanning tree, spanning forest, specific orientations,...)

 $A = \frac{4}{9}v_R + \frac{2}{9}v_B + \frac{3}{9}v_G$ 

 $v_B$ 

• new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates  $c\gamma^n n^{-\alpha}$ link to "central charge"

conjectural scaling limits & bounds on magnitude of typical distances [Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

• Some of these structures give nice geometric representations of maps

 $v_R$ 

### This talk

We consider two types of geometric representations



rectangulations



corner polyhedra

- Link to decorated planar maps & bijections to walks
- Exact enumeration
- Asymptotic enumeration

### This talk

We consider two types of geometric representations



- Link to decorated planar maps & bijections to walks
- Exact enumeration
- Asymptotic enumeration

## Rectangulations (bicolored contact-systems)

### Rectangulations

Rectangulation = tiling of a rectangle by rectangles  $\frac{1}{2}$ 

Called "generic" if no -----





Generic

Not generic

used in "cartogram" representations



### **Two types of equivalences**

Strong



(order of contacts along each maximal segment is preserved)



(order of contacts on each side of maximal segments is preserved)

### **Two types of equivalences**

Strong



(order of contacts along each maximal segment is preserved)



(order of contacts on each side of maximal segments is preserved)

$$w_n = \#$$
 weak equivalence classes with  $n$  regions  
 $s_n = \#$  strong equivalence classes with  $n$  regions

### Weak equivalence class: shelling order

[Ackerman, Barequet, Pinter'06]

Contract top-left region: two cases





 $\Rightarrow$  shelling order on regions



### **Diagonal representation**



### Encoding by a triple of walks

#### [Dulucq,Guibert'98]





Gessel-Viennot 
$$\Rightarrow \left[ w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2} \right]$$
Baxter numbers

 $w_n \sim \frac{1}{\pi\sqrt{3}} \delta^m n^{-1}$ Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...



Gessel-Viennot 
$$\Rightarrow \begin{bmatrix} w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2} \end{bmatrix}$$
Baxter numbers  $w_n \sim \frac{2^5}{\pi\sqrt{3}} 8^n n^{-4}$ Baxter families are families counted by Baxter numbers

among which Baxter permutations, plane bipolar orientations ...



Gessel-Viennot 
$$\Rightarrow$$
  $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$  Baxter numbers

 $w_n \sim \frac{1}{\pi\sqrt{3}} \delta^{-n}$ Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations ...

Various bijections relating these families (common generating tree) [Viennot'81, Dulucq-Guibert'98, Ackerman-Barequet-Pinter'06, Felsner-F-Orden-Noy'11,...]



Gessel-Viennot 
$$\Rightarrow$$
  $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$  Baxter numbers

 $w_n \sim \frac{2}{\pi\sqrt{3}} 8^n n^{-4}$ Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations ...

Various bijections relating these families (common generating tree) [Viennot'81, Dulucq-Guibert'98, Ackerman-Barequet-Pinter'06, Felsner-F-Orden-Noy'11,...]

Link to weak order on permutations: [Reading'04,12]

mapping  $\mathfrak{S}_n \to \mathcal{R}_n$ 

grouping permutations by rectangulation gives a lattice congruence

### **Plane bipolar orientations**



Acyclic orientation on planar map with single min and single max both incident to the outer face

Plane bipolar orientations  $\Leftrightarrow$  local conditions



### **Bijective link with weak rectangulations**







### **Bijective link with weak rectangulations**







Correspondence used in problem "squaring the square"

[Brooks, Smith, Stone, Tutte'40]



(www.squaring.net/history\_theory/gfx/figure73.jpg)

#### Another walk-encoding: KMSW bijection [Kenyon, Miller, Sheffield, Wilson'15]





#### Another walk-encoding: KMSW bijection [Kenyon, Miller, Sheffield, Wilson'15]

Plane bipolar orientations  $\leftarrow$  "Tandem walks" in the quadrant a+1 b+1  $a \downarrow b$  b+1 b+1  $b \in \{(-i,j), i, j \ge 0\}$ 



### Another walk-encoding: KMSW bijection

Orientation is built step by step from the walk,



### Another walk-encoding: KMSW bijection

Orientation is built step by step from the walk,



### Another walk-encoding: KMSW bijection

Example: build orientation associated to





### Link with non-intersecting triples of walks

[Bousquet-Mélou, F, Raschel'20]



#### non-intersecting triple

tandem walk

### Summary of bijections so far



### Summary of bijections so far



### **Strong rectangulations**

Model of decorated maps via duality [He'93]







Pair of transversal plane bipolar orientations



### **Encoding by (weighted) tandem walks**



Transversal structure n+4 vertices

#### Encoding by (weighted) tandem walks [F-Narmanli-Schaeffer'21]



Transversal structure n+4 vertices



red bipolar poset + transversal edges

### Encoding by (weighted) tandem walks



### **Encoding by tandem walks with small steps** [F-Narmanli-Schaeffer'21] face-step small-step portion weight j $\Leftrightarrow$ $\binom{i+j-2}{i}$ 2

 $\Rightarrow s_n = \# \text{ quadrant walks with steps in } \{SE, N, W, NW\}$ from (0, 1) to (1, 0), with n-2 SE steps steps SE can not be followed by N or W

### **Encoding by tandem walks with small steps** [F-Narmanli-Schaeffer'21] face-step small-step portion weight $\binom{i+j-2}{i}$ j $\Leftrightarrow$

 $\Rightarrow s_n = \# \text{ quadrant walks with steps in } \{SE, N, W, NW\}$ from (0, 1) to (1, 0), with n-2 SE steps steps SE can not be followed by N or W

 $\Rightarrow$  explicit recurrence

1, 2, 6, 24, 116, 642, 3938, 26194, 186042 (A342141 in OEIS) other recurrence (& small step walks) [Inoue, Takahashi, Fujimaki'09]

### **Asymptotic enumeration**

#### [F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences  $w_n, s_n$ has asymptotics of the form

$$c \gamma^n n^{-\alpha}$$

$$1 + \frac{\pi}{\theta}$$

|                | weak | strong                           |  |
|----------------|------|----------------------------------|--|
| $\gamma$       | 8    | 27/2                             |  |
| $\cos(\theta)$ | 1/2  | 7/8                              |  |
| lpha           | 4    | $\approx 7.21 \notin \mathbb{Q}$ |  |



### **Asymptotic enumeration**

#### [F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences  $w_n, s_n$ has asymptotics of the form

$$c \gamma^n n^{-\alpha}$$

$$1 + \frac{\pi}{\theta}$$

|                | weak | strong                           | $\mathbb{P}(\tau > \tau)$ |
|----------------|------|----------------------------------|---------------------------|
| $\gamma$       | 8    | 27/2                             | $\mathbb{P}(	au > 	au)$   |
| $\cos(\theta)$ | 1/2  | 7/8                              |                           |
| $\alpha$       | 4    | $\approx 7.21 \notin \mathbb{Q}$ |                           |
|                | I    |                                  | not D-finite              |



### **Asymptotic enumeration**

#### [F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

strong

27/2

7/8

 $\approx 7.21 \notin$ 

Each of the counting sequences  $w_n, s_n$ has asymptotics of the form

 $c \gamma^n n^{-\alpha}$   $1 + \frac{\pi}{\alpha}$ 

weak

8

1/2

4

 $\cos(\theta)$ 

 $\alpha$ 



optimal encoding [Takahashi, Fujimaki, Inoue'09]  $s_n \leq {3n \choose n} 2^n$ 

not D-finite

### Illustration on tandem walks with small steps

(triangulated bipolar orientations)



Step-set 🕇 🖛 🔪

N W SE

### Illustration on tandem walks with small steps

Step-set † ← \ (triangulated b N W SE

(triangulated bipolar orientations)



### Illustration on tandem walks with small steps





 $\Rightarrow \# \text{ quadrant excursions length } 3n \sim c \cdot 27^n n^{-4}$ (\alpha = 4 universal for plane bipolar orientations) Corner polyhedra (tricolored contact-systems)

### **Tricolored contact-systems**





Not generic [Gonçalves'19]

**Rk:** Very rigid (regions are equilateral triangles)

#### **Relaxed tricolored contact-systems**



 $w'_n = \#$  weak equivalence classes with 2n regions  $s'_n = \#$  strong equivalence classes with 2n regions

#### **Relaxed tricolored contact-systems**



$$w'_n = \#$$
 weak equivalence classes with  $2n$  regions  $s'_n = \#$  strong equivalence classes with  $2n$  regions

Rk: For bicolored systems, same equivalence classes in the relaxed version

#### Rectilinear representation: corner polyhedra [Eppstein-Mumford'09]

3d-shape whose boundary is made of axis-orthogonal "flats" at most 3 flats meet at any point, 3 of them point backward



size = # flats - 3

Bijection to weak contact-systems:





#### **Decorated map and bipolar orientation** [Eppstein-Mumford'09]







polyhedral orientation





encoded by left-to-right bipolar orientation

[F,Narmanli,Schaeffer'22]

#### Characterization of the bipolar orientation [F,Narmanli,Schaeffer'22]







#### Characterization of the bipolar orientation [F,Narmanli,Schaeffer'22]







Corresponding quadrant tandem walks (bimodal effect)



starts at 0, ends on x-axis visits only points with x + y even no horizontal step starting from • no vertical step starting from o

### **Strong tricolored systems**



strong contact-system





 $\begin{array}{l} \mathsf{quadrangulation} \ \mathsf{of} \ \mathsf{hexagon} \\ + \ \mathsf{edge-tricoloration} \end{array}$ 





### **Strong tricolored systems**



strong contact-system



quadrangulation of hexagon + edge-tricoloration













bipartite bipolar orientation + transversal edges

tandem walks have a bimodal condition + binomial weights

### Asymptotic enumeration (updated)



(\*) up to extending [Denisov-Wachtel] to bimodal setting

#### Extension to models with degeneracies







also counted in [Conant, Michaels'12]



#### Extension to models with degeneracies







also counted in [Conant, Michaels'12]



Asymptotic exponent  $\alpha(v)$  computable  $\alpha(v) \to \infty$  as  $v \to \infty$ regular grid behaviour