Enumeration of rectangulations and corner polyhedra

Éric Fusy (LIGM, Univ. Gustave Eiffel)
Joint work with Erkan Narmanli and Gilles Schaeffer

FPSAC'23, UC Davis

Planar maps

Def. Planar map $=$ connected graph embedded on the sphere

Planar maps

Def. Planar map $=$ connected graph embedded on the sphere

Rooted map
$=$ map with marked corner

Planar maps

Def. Planar map = connected graph embedded on the sphere

> Rooted map
> $=$ map with marked corner

Easier to draw in the plane (choosing root-face to be the outer face)

Universality properties for planar maps

- Nice counting formulas for many natural families
e.g. $\quad \#$ rooted maps n edges $=\frac{2 \cdot 3^{n}}{n!(n+2)!}=\frac{2}{n+2} 3^{n} \mathrm{Cat}_{n}$

Universality properties for planar maps

- Nice counting formulas for many natural families
e.g. \# rooted maps n edges $=\frac{2 \cdot 3^{n}}{n!(n+2)!}=\frac{2}{n+2} 3^{n} \mathrm{Cat}_{n}$
- More generally, generating functions are algebraic
[Bousquet-Mélou-Jehanne'06]
\& universal asymptotic behaviour for counting coefficients $c \gamma^{n} n^{-5 / 2}$

Universality properties for planar maps

- Nice counting formulas for many natural families
e.g. \# rooted maps n edges $=\frac{2 \cdot 3^{n}}{n!(n+2)!}=\frac{2}{n+2} 3^{n} \mathrm{Cat}_{n}$
- More generally, generating functions are algebraic
[Bousquet-Mélou-Jehanne'06]
\& universal asymptotic behaviour for counting coefficients $c \gamma^{n} n^{-5 / 2}$
- Bijective proofs in many cases
[Cori-Vauquelin'81, Schaeffer'97, Bouttier,Di Francesco,Guitter'04,...]

Universality properties for planar maps

- Nice counting formulas for many natural families
e.g. $\quad \#$ rooted maps n edges $=\frac{2 \cdot 3^{n}}{n!(n+2)!}=\frac{2}{n+2} 3^{n} \mathrm{Cat}_{n}$
- More generally, generating functions are algebraic
[Bousquet-Mélou-Jehanne'06]
\& universal asymptotic behaviour for counting coefficients $c \gamma^{n} n^{-5 / 2}$
- Bijective proofs in many cases
[Cori-Vauquelin'81, Schaeffer'97, Bouttier,Di Francesco,Guitter'04,...]
- Universal scaling limit (Brownian map) for random planar maps (rescaling distances by $n^{1 / 4}$)
[Chassaing,Schaeffer'04]
[Le Gall'13, Miermont'13]

© Nicolas Curien

Decorated planar maps

Decorated planar map $=$ planar map + structure
(Ising model, proper coloring, Potts model,

Decorated planar maps

Decorated planar map $=$ planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest, specific orientations,...) - new bijections \& counting behaviours compared to "pure" planar maps

Decorated planar maps

Decorated planar map $=$ planar map + structure (Ising model, proper coloring, Potts model,
 spanning tree, spanning forest, specific orientations,...) - new bijections \& counting behaviours compared to "pure" planar maps
[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15,
Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

- Universality class "indicated" by asymptotic estimates $c \gamma^{n} n^{-\alpha}$
link to "central charge" \qquad

Decorated planar maps

Decorated planar map $=$ planar map + structure (Ising model, proper coloring, Potts model,

- new bijections \& counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15,
Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

- Universality class "indicated" by asymptotic estimates $c \gamma^{n} n^{-\alpha}$
link to "central charge"
conjectural scaling limits \& bounds on magnitude of typical distances
[Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

Decorated planar maps

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model,

spanning tree, spanning forest, specific orientations,...)

- new bijections \& counting behaviours compared to "pure" planar maps
[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15,
Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]
- Universality class "indicated" by asymptotic estimates $c \gamma^{n} n^{-\alpha}$
link to "central charge"
conjectural scaling limits \& bounds on magnitude of typical distances [Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]
- Some of these structures give nice geometric representations of maps

This talk

We consider two types of geometric representations

rectangulations

corner polyhedra

- Link to decorated planar maps \& bijections to walks
- Exact enumeration
- Asymptotic enumeration

This talk

We consider two types of geometric representations

rectangulations

corner polyhedra (missed talk at FPSAC'22)

- Link to decorated planar maps \& bijections to walks
- Exact enumeration
- Asymptotic enumeration

Rectangulations

(bicolored contact-systems)

Rectangulations
Rectangulation $=$ tiling of a rectangle by rectangles
Called "generic" if no +

Generic

Not generic

Two types of equivalences

Strong

(order of contacts along each maximal segment is preserved)

Weak

$$
\begin{aligned}
& \top \simeq \frac{1}{\top} \\
& -1 \simeq f
\end{aligned}
$$

(order of contacts on each side of maximal segments is preserved)

Two types of equivalences

Strong

(order of contacts along each maximal segment is preserved)

Weak

$$
\begin{aligned}
& +1 \simeq+ \\
& -1 \simeq f
\end{aligned}
$$

(order of contacts on each side of maximal segments is preserved)
$w_{n}=\#$ weak equivalence classes with n regions
$s_{n}=\#$ strong equivalence classes with n regions

Weak equivalence class: shelling order

Contract top-left region: two cases

\Rightarrow shelling order on regions

Diagonal representation

Encoding by a triple of walks
upper middle (canopy) $\begin{array}{lllllll} & 1 & 0 & 0 & 1 & 1\end{array}$
lower

Baxter numbers and Baxter families

Gessel-Viennot $\Rightarrow \begin{array}{r}w_{n}=\frac{2}{n(n+1)^{2}} \sum_{r=0}^{n-1}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}\end{array} \begin{gathered}\text { Baxter } \\ \text { numbers }\end{gathered}$
$w_{n} \sim \frac{2^{5}}{\pi \sqrt{3}} 8^{n} n^{-4}$
Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Baxter numbers and Baxter families

Gessel-Viennot \Rightarrow| $w_{n}=\frac{2}{n(n+1)^{2}} \sum_{r=0}^{n-1}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}$ |
| :---: | \(\begin{gathered}Baxter

numbers\end{gathered}\)
$w_{n} \sim \frac{2^{5}}{\pi \sqrt{3}} 8^{n} n^{-4}$
Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Baxter numbers and Baxter families

Gessel-Viennot $\Rightarrow w_{n}=\frac{2}{n(n+1)^{2}} \sum_{r=0}^{n-1}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}$
Baxter numbers

$$
w_{n} \sim \frac{2^{5}}{\pi \sqrt{3}} 8^{n} n^{-4}
$$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

Baxter numbers and Baxter families

Gessel-Viennot $\Rightarrow w_{n}=\frac{2}{n(n+1)^{2}} \sum_{r=0}^{n-1}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}$
Baxter numbers

$$
w_{n} \sim \frac{2^{5}}{\pi \sqrt{3}} 8^{n} n^{-4}
$$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree) [Viennot'81, Dulucq-Guibert'98, Ackerman-Barequet-Pinter'06, Felsner-F-Orden-Noy'11,...]

Link to weak order on permutations: [Reading'04,12]

$$
\text { mapping } \mathfrak{S}_{n} \rightarrow \mathcal{R}_{n}
$$

grouping permutations by rectangulation gives a lattice congruence

Plane bipolar orientations

Acyclic orientation on planar map with single min and single max both incident to the outer face

Plane bipolar orientations \Leftrightarrow local conditions

Bijective link with weak rectangulations

Bijective link with weak rectangulations

Correspondence used in problem "squaring the square"
[Brooks, Smith, Stone, Tutte'40]

Another walk-encoding: KMSW bijection

Plane bipolar orientations

n edges \longleftrightarrow length $n-1$

Another walk-encoding: KMSW bijection

Plane bipolar orientations

"Tandem walks" in the quadrant

$\mathrm{SE} \cup\{(-i, j), i, j \geq 0\}$
length $n-1$
face-step $(-i, j)$
non-pole vertex
$\longleftrightarrow \quad$ SE step

Another walk-encoding: KMSW bijection

Orientation is built step by step from the walk,

orientation currently built
 (face-step)

Another walk-encoding:

Orientation is built step by step from the walk,

orientation currently built
 (face-step)

Another walk-encoding: KMSW bijection

Example: build orientation associated to

1

Link with non-intersecting triples of walks

[Bousquet-Mélou,F,Raschel'20]

non-intersecting triple
tandem walk

Summary of bijections so far

!

Summary of bijections so far

4 black box to treat
\downarrow other models

Strong rectangulations

Model of decorated maps via duality [He'93]

Pair of transversal
plane bipolar orientations

Local conditions

Encoding by (weighted) tandem walks

Transversal structure $n+4$ vertices

Encoding by (weighted) tandem walks

Transversal structure $n+4$ vertices

Encoding by (weighted) tandem walks

Transversal structure $n+4$ vertices

red bipolar poset + transversal edges
weight $\binom{i+j-2}{i-1}$

weighted tandem walk with n SE steps

Encoding by tandem walks with small steps

face-step

small-step portion

$$
\begin{aligned}
& \text { weight } \\
& (i+j-2) \quad \Leftrightarrow
\end{aligned}
$$

from $(0,1)$ to $(1,0)$, with $n-2$ SE steps
steps SE can not be followed by N or W

$\Rightarrow s_{n}=\#$ quadrant walks with steps in $\{S E, N, W, N W\}$

Encoding by tandem walks with small steps [F-Narmanli-Schaeffer'21]
face-step

$$
\begin{aligned}
& \text { weight } \\
& (i+j-2) \quad \Leftrightarrow
\end{aligned}
$$ small-step portion

$\Rightarrow s_{n}=\#$ quadrant walks with steps in $\{S E, N, W, N W\}$
from $(0,1)$ to $(1,0)$, with $n-2$ SE steps
steps SE can not be followed by N or W
\Rightarrow explicit recurrence

$$
\text { 1, 2, 6, 24, 116, 642, 3938, 26194, } 186042 \text { (A342141 in OEIS) }
$$

other recurrence

Each of the counting sequences w_{n}, s_{n} has asymptotics of the form

	weak	strong
γ	8	$27 / 2$
$\cos (\theta)$	$1 / 2$	$7 / 8$
α	4	$\approx 7.21 \notin \mathbb{Q}$

$$
\begin{aligned}
& \mathbb{P}(\tau>n) \sim c n^{-\frac{\pi}{2 \theta}} \\
& \mathbb{P}(\tau>n \& \text { excursion })
\end{aligned}
$$

$$
\sim c^{\prime} n^{-1-\frac{\pi}{\theta}}
$$

Each of the counting sequences w_{n}, s_{n} has asymptotics of the form

	weak	strong
γ	8	$27 / 2$
$\cos (\theta)$	$1 / 2$	$7 / 8$
α	4	$\approx 7.21 \notin \mathbb{Q}$

not D-finite

Asymptotic enumeration

Each of the counting sequences w_{n}, s_{n} has asymptotics of the form

$$
c \gamma^{n} n_{1+\frac{\pi}{\theta}}^{-\alpha}
$$

	weak	strong
γ	8	$27 / 2$
$\cos (\theta)$	$1 / 2$	$7 / 8$
α	4	$\approx 7.21 \notin \mathbb{Q}$

$$
\mathbb{P}(\tau>n) \sim c n^{-\frac{\pi}{2 \theta}}
$$

$$
\mathbb{P}(\tau>n \& \text { excursion })
$$

$$
\sim c^{\prime} n^{-1-\frac{\pi}{\theta}}
$$

optimal encoding
[Takahashi, Fujimaki, Inoue'09]

$$
s_{n} \leq\binom{ 3 n}{n} 2^{n}
$$

$$
\mathbb{P}(\text { each step })=\frac{1}{3}
$$

$$
\mathbb{P}(\text { each step })=\frac{1}{3}
$$

$$
\operatorname{Cov}=\left(\begin{array}{cc}
\mathbb{E}\left(X^{2}\right) & \mathbb{E}(X Y) \\
\mathbb{E}(X Y) & \mathbb{E}\left(Y^{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

$\mathbb{P}($ each step $)=\frac{1}{3}$
$\operatorname{Cov}=\left(\begin{array}{cc}\mathbb{E}\left(X^{2}\right) & \mathbb{E}(X Y) \\ \mathbb{E}(X Y) & \mathbb{E}\left(Y^{2}\right)\end{array}\right)=\left(\begin{array}{cc}\frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3}^{3}\end{array}\right)$

\Rightarrow \# quadrant excursions length $3 n \sim c \cdot 27^{n} n^{-4}$
($\alpha=4$ universal for plane bipolar orientations)

Corner polyhedra

(tricolored contact-systems)

Tricolored contact-systems

Not generic
[Gonçalves'19]

Rk: Very rigid (regions are equilateral triangles)

Relaxed tricolored contact-systems

$w_{n}^{\prime}=\#$ weak equivalence classes with $2 n$ regions
$s_{n}^{\prime}=\#$ strong equivalence classes with $2 n$ regions

Relaxed tricolored contact-systems

$w_{n}^{\prime}=\#$ weak equivalence classes with $2 n$ regions
$s_{n}^{\prime}=\#$ strong equivalence classes with $2 n$ regions
Rk: For bicolored systems, same equivalence classes in the relaxed version

Rectilinear representation: corner polyhedra
[Eppstein-Mumford'09]
3d-shape whose boundary is made of axis-orthogonal "flats" at most 3 flats meet at any point, 3 of them point backward

$$
\text { size }=\# \text { flats }-3
$$

Bijection to weak contact-systems:

Decorated map and bipolar orientation

[Eppstein-Mumford'09]

polyhedral orientation

encoded by left-to-right bipolar orientation

forbidden

forbidden

Corresponding quadrant tandem walks (bimodal effect)

starts at 0 , ends on x-axis visits only points with $x+y$ even no horizontal step starting from • no vertical step starting from o

strong contact-system

quadrangulation of hexagon + edge-tricoloration
satisfying $>$

strong contact-system

bipartite bipolar orientation + transversal edges
tandem walks have a bimodal condition + binomial weights

Asymptotic enumeration (updated)

Asymptotic estimate
$c \gamma^{n} n^{-\alpha}$

$$
1+\frac{\pi}{\theta}
$$

	weak	strong	weak	strong
	cipolar	transversal	(polyhedral	(3c)Schnyder
γ	8	27/2	9/2	16/3
$\cos (\theta)$	1/2	7/8	$9 / 16^{(*)}$	22/27 ${ }^{(*)}$
α	4	$\approx 7.21 \notin \mathbb{Q}$	$\approx 4.23 \notin \mathbb{Q}$	$\approx 6.08 \notin \mathbb{Q}$

${ }^{(*)}$ up to extending [Denisov-Wachtel] to bimodal setting

Extension to models with degeneracies

weight v per 十
also counted in [Conant,Michaels'12]

weight v per \Varangle

Extension to models with degeneracies

weight v per 十
also counted in [Conant,Michaels'12]

weight v per \Varangle

Asymptotic exponent $\alpha(v)$ computable $\alpha(v) \rightarrow \infty$ as $v \rightarrow \infty$ regular grid behaviour

