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=

Def. Planar map = connected graph embedded on the sphere

Easier to draw in the plane (choosing root-face to be the outer face)

⇒

Planar maps

=

Rooted map
= map with marked corner
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Universality properties for planar maps

Nicolas Curienc

• Nice counting formulas for many natural families [Tutte’60s]

• More generally, generating functions are algebraic
[Bousquet-Mélou-Jehanne’06]

# rooted maps n edges =
2 · 3n

n!(n+ 2)!
e.g.

• Bijective proofs in many cases

& universal asymptotic behaviour for counting coefficients

• Universal scaling limit (Brownian map)

c γnn−5/2

[Cori-Vauquelin’81, Schaeffer’97, Bouttier,Di Francesco,Guitter’04,...]

(rescaling distances by n1/4)

[Chassaing,Schaeffer’04]
[Le Gall’13, Miermont’13]

for random planar maps

# rooted maps n edges =
2 · 3n

n!(n+ 2)!
=

2

n+ 2
3nCatn
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Decorated planar maps
Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,
spanning tree, spanning forest, specific orientations,...)

• new bijections & counting behaviours compared to “pure” planar maps

• Some of these structures give nice geometric representations of maps

4-regular map
+ Eulerian orientation

vR

vBvG

A

A = 4
9vR + 2

9vB + 3
9vG

vR

vBvG

• Universality class “indicated” by asymptotic estimates cγnn−α

[Mullin’67, Bernardi-Bonichon’09, F-Poulalhon-Schaeffer’09, Albenque-Poulalhon’15,
Sheffield’11, Kenyon-Miller-Sheffield-Wilson’15, Bousquet-Mélou-Elvey-Price’18]

link to “central charge”

conjectural scaling limits & bounds on magnitude of typical distances

Schnyder
wood

[Watabiki’93, Ding-Gwynne’18, Ding-Goswami’18, Ang’19, Gwynne-Pfeffer’19, Barkley-Budd’19]
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This talk
We consider two types of geometric representations

rectangulations

• Link to decorated planar maps & bijections to walks

• Exact enumeration

• Asymptotic enumeration

z

x
y

corner polyhedra
(missed talk at FPSAC’22)



Rectangulations

(bicolored contact-systems)



Rectangulations

Rectangulation = tiling of a rectangle by rectangles

Called “generic” if no

Generic Not generic

used in “cartogram” representations



Two types of equivalences

Strong
'

Weak

(order of contacts along each maximal segment is preserved)

'

(order of contacts on each side of maximal segments is preserved)

'
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Two types of equivalences

Strong
'

Weak

(order of contacts along each maximal segment is preserved)

'

(order of contacts on each side of maximal segments is preserved)

'

'

sn = # strong equivalence classes with n regions

wn = # weak equivalence classes with n regions



Weak equivalence class: shelling order

Contract top-left region:
two cases

. . . . . .

n n

⇒ shelling order on regions 7 6

5
4

3

2

1

[Ackerman, Barequet, Pinter’06]



Diagonal representation

0 1 0 0 1 1

7 6

5
4

3

2

1

7

6

5

4

3

2

1

common
canopy

twin pair of binary trees



Encoding by a triple of walks

0 1 0 0 1 1
0 0 1 0 1 1

0 1 1 0 0 1

upper

middle (canopy)
lower

0

1

[Dulucq,Guibert’98]
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Baxter numbers and Baxter families

Baxter families are families counted by Baxter numbers

Gessel-Viennot ⇒ wn =
2

n(n+ 1)2

n−1∑
r=0

(n+ 1

r

)(n+ 1

r + 1

)(n+ 1

r + 2

) Baxter
numbers

Various bijections relating these families (common generating tree)

among which Baxter permutations, plane bipolar orientations, ...

wn ∼ 25

π
√
3
8nn−4

Link to weak order on permutations:

mapping Sn →Rn
grouping permutations by rectangulation gives a lattice congruence

[Reading’04,12]

[Viennot’81, Dulucq-Guibert’98, Ackerman-Barequet-Pinter’06, Felsner-F-Orden-Noy’11,...]



Plane bipolar orientations

s

t

Plane bipolar orientations ⇔ local conditions

s

t

v f

Acyclic orientation on planar map

with single min and single max

both incident to the outer face



Bijective link with weak rectangulations



Bijective link with weak rectangulations

problem “squaring the square”
Correspondence used in

[Brooks, Smith, Stone, Tutte’40]



Another walk-encoding: KMSW bijection

Plane bipolar orientations “Tandem walks” in the quadrant

. . .
a+1 b+1

step-set

. . .

SE ∪ {(−i, j), i, j ≥ 0}

a

b

n edges length n− 1

[Kenyon, Miller, Sheffield, Wilson’15]



Another walk-encoding: KMSW bijection

Plane bipolar orientations “Tandem walks” in the quadrant

. . .
a+1 b+1

step-set

. . .

SE ∪ {(−i, j), i, j ≥ 0}

a

b

n edges length n− 1

face face-step (−i, j)

non-pole vertex SE step

i+1 j+1

[Kenyon, Miller, Sheffield, Wilson’15]



Another walk-encoding: KMSW bijection
Orientation is built step by step from the walk,

. . .

a+1

orientation

add (1,−1)

add (−i, j)

currently built

y

(face-step)

x

marked
edge

. . .

+
i

j



Another walk-encoding: KMSW bijection
Orientation is built step by step from the walk,

. . .

a+1

orientation

add (1,−1)

add (−i, j)

currently built

y

(face-step)

x

Starts with
a

Ends with

marked
edge

. . .

a+1
b

+
i

j



Another walk-encoding: KMSW bijection

1
2

3
4

5
Example: build orientation associated to

1
2

3
4

5
1

2

3
4

1
2

3

1
21



Link with non-intersecting triples of walks

. . .

. . .

non-intersecting triple tandem walk

y+1

x+1

1 2

3

4 5 1

2

3
4

5

. . .

. . .

x

y

[Bousquet-Mélou,F,Raschel’20]



Summary of bijections so far

1
2

3
4

5



Summary of bijections so far

1
2

3
4

5

black box
to treat

other models



Strong rectangulations
[He’93]

Pair of transversal
plane bipolar orientations

Local conditions

. . .

Model of decorated maps via duality
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red bipolar poset
+ transversal edges

weight
(i+j−2
i−1

)
for each
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n+ 4 vertices
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Encoding by (weighted) tandem walks

Transversal structure

red bipolar poset
+ transversal edges

weight
(i+j−2
i−1

)
for each

i+1 j+1

n+ 4 vertices

weight
(i+j−2
i−1

)
for

each step (−i, j)

weighted tandem walk
with n SE steps

1
1

[F-Narmanli-Schaeffer’21]



Encoding by tandem walks with small steps

face-step

⇔

⇒ sn = # quadrant walks with steps in {SE,N,W,NW}

steps SE can not be followed by N or W

from (0, 1) to (1, 0), with n−2 SE steps

weight(
i+j−2
i−1

)j

i

small-step portion

[F-Narmanli-Schaeffer’21]



Encoding by tandem walks with small steps

face-step

⇔

⇒ sn = # quadrant walks with steps in {SE,N,W,NW}

steps SE can not be followed by N or W

from (0, 1) to (1, 0), with n−2 SE steps

weight(
i+j−2
i−1

)j

i

small-step portion

⇒ explicit recurrence

other recurrence (& small step walks) [Inoue, Takahashi, Fujimaki’09]

[F-Narmanli-Schaeffer’21]

1, 2, 6, 24, 116, 642, 3938, 26194, 186042 (A342141 in OEIS)



Asymptotic enumeration
[Denisov-Wachtel’11, Bostan-Raschel-Salvy’14]

Each of the counting sequences wn, sn

c γn n−α

1 + π
θ

4

cos(θ)

α

1/2 7/8

≈ 7.21 /∈ Q

weak strong

γ 8 27/2

has asymptotics of the form

P(τ > n) ∼ c n− π
2θ

θ
exit time τ

relies on

[F-Narmanli-Schaeffer’21]

P(τ > n & excursion)
∼ c′ n−1−π

θ
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Asymptotic enumeration
[Denisov-Wachtel’11, Bostan-Raschel-Salvy’14]

Each of the counting sequences wn, sn

c γn n−α

1 + π
θ

4

cos(θ)

α

1/2 7/8

≈ 7.21 /∈ Q

weak strong

γ 8 27/2

has asymptotics of the form

P(τ > n) ∼ c n− π
2θ

θ
exit time τ

not D-finite

optimal encoding
[Takahashi, Fujimaki, Inoue’09]

sn ≤
(
3n
n

)
2n

relies on

[F-Narmanli-Schaeffer’21]

P(τ > n & excursion)
∼ c′ n−1−π

θ
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=
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Illustration on tandem walks with small steps
Step-set

N W SE

(triangulated bipolar orientations)

Random walk P(each step) = 1
3

Cov =

(
E(X2) E(XY )
E(XY ) E(Y 2)

)
=

(
2
3 − 1

3
− 1

3
2
3

)

π/2

sheer

π/3

Cov =

(
1 0
0 1

)

⇒ # quadrant excursions length 3n ∼ c · 27nn−4
(α = 4 universal for plane bipolar orientations)



Corner polyhedra

(tricolored contact-systems)



Tricolored contact-systems

Rk: Very rigid (regions are equilateral triangles)

Not generic

[Gonçalves’19]

generic



Relaxed tricolored contact-systems

Contact-system
of curves

s′n = # strong equivalence classes with 2n regions

w′n = # weak equivalence classes with 2n regions

'
strong

'
weak



Relaxed tricolored contact-systems

Contact-system
of curves

s′n = # strong equivalence classes with 2n regions

w′n = # weak equivalence classes with 2n regions

'
strong

'
weak

Rk: For bicolored systems, same equivalence classes in the relaxed version



Rectilinear representation: corner polyhedra

z

x
y

z

x y

⇒

Bijection to weak
contact-systems:

3d-shape whose boundary is made of axis-orthogonal “flats”

size = # flats - 3

at most 3 flats meet at any point, 3 of them point backward
z

x
y

'

[Eppstein-Mumford’09]



Decorated map and bipolar orientation
z

x
y

polyhedral orientation

encoded by left-to-right bipolar orientation

[Eppstein-Mumford’09]

[F,Narmanli,Schaeffer’22]



Characterization of the bipolar orientation

forbidden
'

[F,Narmanli,Schaeffer’22]



Characterization of the bipolar orientation

forbidden
'

Corresponding quadrant tandem walks (bimodal effect)

start end

visits only points with x+ y even

no horizontal step starting from

no vertical step starting from

[F,Narmanli,Schaeffer’22]

starts at 0, ends on x-axis



quadrangulation of hexagon
strong contact-system

+ edge-tricoloration

satisfying

Strong tricolored systems



bipartite bipolar orientation
+ transversal edges

quadrangulation of hexagon
strong contact-system

+ edge-tricoloration

satisfying

Strong tricolored systems

tandem walks have a bimodal condition + binomial weights

source

sink



c γn n−α

1 + π
θ

4

cos(θ)

α

1/2 7/8

≈ 7.21 /∈ Q

weak strong

γ 8 27/2

weak strong

9/2 16/3

Asymptotic enumeration (updated)
Asymptotic estimate

22/27 (*)
9/16

(*)

(*) up to extending [Denisov-Wachtel] to bimodal setting

≈ 4.23 /∈ Q ≈ 6.08 /∈ Q

bipolar
orientations

transversal
structures

polyhedral
orientations

(3c) Schnyder
labelings



Extension to models with degeneracies

weight v per

weight v per

also counted in [Conant,Michaels’12]



Extension to models with degeneracies

weight v per

weight v per

also counted in [Conant,Michaels’12]

Asymptotic exponent α(v) computable α(v)→∞ as v →∞
regular grid
behaviour


