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Planar maps
Def. Planar map = connected graph embedded on the sphere

Rooted map

= map with marked corner

Easier to draw in the plane (choosing root-face to be the outer face)
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Universality properties for planar maps

e Nice counting formulas for many natura|2fa?r)r171i|ies )

nl(n+2)!  n+2
e More generally, generating functions are algebraic

e.g. # rooted maps n edges = 3" Caty,

& universal asymptotic behaviour for counting coefficients ¢ 7”71‘5/2

e Bijective proofs in many cases

e Universal scaling limit (Brownian map)
for random planar maps

(rescaling distances by n!/4)
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Decorated planar maps
Decorated planar map = planar map + structure + Eulerian orientation

4-regular map

(Ising model, proper coloring, Potts model,
spanning tree, spanning forest, specific orientations,...)

e new bijections & counting behaviours compared to “pure” planar maps

e Universality class “indicated” by asymptotic estimates C’}/J
link to “central charge”
conjectural scaling limits & bounds on magnitude of typical distances

e Some of these structures give nice geometric representations of maps
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Rectangulations

Rectangulation = tiling of a rectangle by rectangles
Called “generic” if no +

Generic Not generic
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Two types of equivalences

Strong

2

(order of contacts along each maximal segment is preserved)
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Weak _I_I_
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(order of contacts on each side of maximal segments is preserved)
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Two types of equivalences

Strong

2

(order of contacts along each maximal segment is preserved)

Weak

¢

_I_I_
1

2

2

(order of contacts on each side of maximal segments is preserved)

wn = £ weak equivalence classes with n regions

Sn = 7 strong equivalence classes with n regions




Weak equivalence class: shelling order

n n_
t
Contract top-left region:
two cases
: . 3
= shelling order on regions 7 6
2
4
5
1




Diagonal representation

— 0 1 0 0 1 1 canopy .

twin pair of binary trees



Encoding by a triple of walks

upper O 0 1 0 1 1
middle (canopy) 0 1 0 0 1 1 —>
lower 0 1 1 0 0 1
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Baxter numbers and Baxter families

G
2 n—l n+1\Nm+1\N/m+1 Baxter
Gessel-Viennot = | Wn = ( ) ( ) ( ) b
n(n + 1)2 — r r—+ 1/ \r 4 2/ NUMDErS
~ 2° n..—4
W, 7r\/§8 n

Baxter families are families counted by Baxter numbers
among which Baxter permutations,(plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

Link to weak order on permutations:
mapping G,, — Rn,
grouping permutations by rectangulation gives a lattice congruence



Plane bipolar orientations

Acyclic orientation on planar map
with single min and single max

both incident to the outer face

S

Plane bipolar orientations < local conditions

AN K ()



Bijective link with weak rectangulations
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Bijective link with weak rectangulations

Laays

25
36

Correspondence used in
il " 1 2., 16
problem “squaring the square 517

33 28

(www.squaring.net/history _theory/gfx/figure73.jpg)



Another walk-encoding: KMSW bijection

“Tandem walks” in the quadrant

Plane bipolar orientations

4 step-set
a+1 b-+1
d
— g SE U {(—i,),i,j > 0}

n edges length n — 1



Another walk-encoding: KMSW bijection

“Tandem walks” in the quadrant

Plane bipolar orientations

A step-set
a_l_l b_|_1 o« o -
aI
— g SE U {(—i,j),,j > 0}
n edges — length n — 1

face Z-+1<<>>j+1 — face-step (—i,J)

non-pole vertex <————» SE step
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currently built



Another walk-encoding: KMSW bijection

Orientation is built step by step from the walk,

add (1, —1) —

/
add(% +O -

(face-step)

orientation
currently built

Starts with | Ends with b




Another walk-encoding: KMSW bijection

Example: build orientation associated to

> b

My
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Link with non-intersecting triples of walks

non-intersecting triple tandem walk



Summary of bijections so far




Summary of bijections so far

to treat

black box
other models




Strong rectangulations

Model of decorated maps via duality

7&\/‘—?\

Pair of transversal
plane bipolar orientations

A
N

| ocal conditions



Encoding by (weighted) tandem walks

Transversal structure
n + 4 vertices
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Encoding by (weighted) tandem walks

weight (f"tizz)

~ for each <>

Transversal structure
n + 4 vertices

~ weight ("J;iIQ) for

each step (—14,7)

1@
1
¥ _

weighted tandem walk
with n SE steps

red bipolar poset
+ transversal edges




Encoding by tandem walks with small steps

face-step small-step portion

.................

= s, = # quadrant walks with steps in {SE, N,W, NW}
from (0,1) to (1,0), with n—2 SE steps
steps SE can not be followed by N or W



Encoding by tandem walks with small steps

face-step small-step portion

.................

= s, = # quadrant walks with steps in {SE, N,W, NW}
from (0,1) to (1,0), with n—2 SE steps
steps SE can not be followed by N or W

= explicit recurrence
1, 2, 6, 24, 116, 642, 3933, 26194, 186042 (A342141 in OEIS)

other recurrence (& small step walks)



Asymptotic enumeration

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy’'14]

Each of the counting sequences w,,, S,
has asymptotics of the form

(8%

s
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exit time T

P(r >mn)~cn 20
P(7 > n & excursion)
~c n”
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0
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g 8 27 /2

cos(f)| 1/2 7/8
Qo 4 ~7.21 ¢ Q
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Asymptotic enumeration

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy’'14]

Each of the counting sequences w,,, S,
has asymptotics of the form

(8%

s

cy' n—

exit time T

P(r>n)~cn 20

P(7 > n & excursion)

~c n”

1—

7T

0

weak strong
cos(f)| 1/2 7/8 \ optimal encoding
o 4 ~721¢Q

\ not D-finite

sn < (5)2"




lllustration on tandem walks with small steps

Step-set T -~ \ (triangulated bipolar orientations)
N W SE
Random walk 1‘\_}\ P(eagh Step) — %

AN



lllustration on tandem walks with small steps
Step-set T -~ \ (triangulated bipolar orientations)
N W SE

Random walk 1,} P(each step) — %
\
N

o =(ein) w0 )= (4 1)



lllustration on tandem walks with small steps
Step-set T -~ \ (triangulated bipolar orientations)
N W SE

Random walk 1‘\_}\ P(each step) = A

AN

Cov = ( IIE?(())((;)) 1%(()1(/123) ) _ ( 2 _2% )

A
Cov = (1 (1))
sheer 0

/2 -

A . 4 _

= # quadrant excursions length 3n ~ ¢ - 27"n~4
(oo = 4 universal for plane bipolar orientations)



Corner polyhedra

(tricolored contact-systems)



Tricolored contact-systems

generic Not generic

[Goncalves'19]

Rk: Very rigid (regions are equilateral triangles)




Relaxed tricolored contact-systems

Contact-system .
of curves 7 %g\l_ 2%

Stm”g/@ - @\

= # weak equivalence classes with 2n regions

/

W,

s, = # strong equivalence classes with 2n regions




Relaxed tricolored contact-systems

Contact-system .
of curves e %g\é_ ~

Y ~J

strong weak

/

W,

= # weak equivalence classes with 2n regions

s, = # strong equivalence classes with 2n regions

Rk: For bicolored systems, same equivalence classes in the relaxed version



Rectilinear representation: corner polyhedra

3d-shape whose boundary is made of axis-orthogonal “flats”
at most 3 flats meet at any point, 3 of them point backward

> ~ size = # flats - 3

Bijection to weak
contact-systems:
—
— ‘__—/




Decorated map and bipolar orientation
[Eppstein-Mumford’'09]

W

polyhedral orientation

N

F Narmanli,Schaeffer'22]  encoded by left-to-right bipolar orientation




Characterization of the bipolar orientation
[F,Narmanli,Schaeffer'22]

N

2

forbidd /
orpli en /
\




Characterization of the bipolar orientation
[F,Narmanli,Schaeffer'22]

N

2

forbidd /
orpli en /
\

Corresponding quadrant tandem walks (bimodal effect)
! starts at 0, ends on z-axis

visits only points with = + y even

no horizontal step starting from e
no vertical step starting from o




Strong tricolored systems

NN

strong contact-system

quadrangulation of hexagon
+ edge-tricoloration

satisfying %K



Strong tricolored systems

NN

strong contact-system

quadrangulation of hexagon
+ edge-tricoloration

satisfying %K

bipartite bipolar orientation
+ transversal edges

tandem walks have a bimodal condition + binomial weights



Asymptotic enumeration (updated)

S\

Asymptotic estimate

cy" n—

s

weak strong weak strong

8 3 27/2 9/2 16/3
cos(f) || 1/2 7/8 9/16 " | 22/27 ©
o) 4 ~ 721 ¢Q ~4.23 ¢ Q ~ 6.08 ¢ Q

(*) up to extending [Denisov-Wachtel] to bimodal setting



Extension to models with degeneracies

= _

\ weight v per —|—
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also counted In
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Extension to models with degeneracies

= _

\ weight v per —|—

— 1\

also counted In

@\ /% weight v per %

Asymptotic exponent a(v) computable a(v) — 0o as v = oo

\ regular grid

behaviour




