Introduction	Characterization	Bijection	Conclusion
00000000	000	000	O

Bijections between planar maps and planar linear normal λ -terms with connectivity condition

Wenjie Fang LIGM, Université Gustave Eiffel arXiv:2202.03542

21 July 2023, FPSAC 2023, UC Davis

Introduction	Characterization	Bijection 000	Conclusion O
What is a planar	map?		

Planar map: drawings of graphs on a plane without extra crossing

Planar maps are rooted, *i.e.*, with a marked corner on outer face.

Introduction	
00000000	

Bijection

A crash course on λ -calculus

A λ -term is:

- Atom: variables x, y, z, \ldots ;
- Application t u: apply t (as a function) to u;
- Abstraction $\lambda x.t$: build a function of x from t.

 $\lambda\text{-}calculus,$ which is Turing complete, consists of:

- α-renaming: variable names not important;
- β -reduction: $(\lambda x.t) \ u \rightarrow_{\beta} t[x \leftarrow u].$

Example: $\Omega = (\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} (\lambda x. x x)(\lambda x. x x) = \Omega.$

 β -reduction has a unique normal form if there is one.

Example: $(\lambda x.y) \ \Omega \to_{\beta} (\lambda x.y) \ \Omega \to_{\beta} \cdots \to_{\beta} (\lambda x.y) \ \Omega \to_{\beta} y.$

Introduction

Characterization

Bijection

Conclusion

λ -terms, according to a combinatorialist

 λ -term: unary-binary tree (skeleton) + variable-abstraction map A variable is bound by an ancestral abstraction.

Linear λ -term: the variable-abstraction map being bijective

(RL-)planar term: counter-clockwise variable-abstraction map Linear planar : unique choice, so just unary-binary tree!

Introduction
00000000

Characterizatio

Bijection

Conclusion

Curry–Howard correspondence

Typed programs are mathematical proofs.

Computational side	Logical side
Typed λ -calculi	Logic systems
Types	Provable formulas
λ -terms	Proofs

- Typed λ -calculi avoids infinite computation (such as Ω).
- Linear λ -calculus \Leftrightarrow " λ -fragment" of intuitionistic linear logic
- Variable as resource, abstraction as consumption

How exactly?

Introduction	
00000000	

Characterization

Bijection

Conclusion

Known enumeration of various families of λ -terms

- unitless: each sub-term has at least one free variable
- normal: no possible β -reduction (so computed result)

λ -terms	Maps	OEIS
linear	general cubic	A062980
planar	planar cubic	A002005
unitless	bridgeless cubic	A267827
unitless planar	bridgeless planar cubic	A000309
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	bridgeless planar	A000260

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018

A lot of people and work: Bodini, Courtiel, Gardy, Giorgetti, Jacquot, Yeats, Zeilberger, ...

Introduction	Characterization	Bijection	Conclusion O
C	and the second		

Connectivity condition

Motivated (mysteriously) by type theory...

Noam Zeilberger and Jason Reed (Workshop CLA 2019)

How about connectivity of the diagram on planar linear normal terms?

k-connected: breaking k-1 edges does not split the graph

- 1-connected: all (connected by their skeleton)
- 2-connected: unitless (bridge ⇔ sub-term without free variable)
- 3-connected: ??? (characterized by type theory for general k)

Conjecture (Zeilberger-Reed, 2019)

The number of 3-connected planar linear normal $\lambda\text{-terms}$ with n+2 variables is

$$\frac{2^n}{(n+1)(n+2)}\binom{2n+1}{n},$$

which also counts bipartite planar maps with n edges (A000257).

Bijection

Our contribution (1)

Katarzyna Grygiel and Guan-Ru Yu (Workshop CLA 2020): combinatorial characterization of 3-connected terms, partial bijective results

Theorem (F. 2023)

There is a direct bijection between 3-connected planar linear normal λ -terms with n + 2 variables and bipartite planar maps with n edges.

What we do using bijections:

- Transfer of statistics
- Generating functions and probabilistic results also for free!

Proposition (F. 2023, from known results on maps by Liskovet)

Let $X_n = \#$ initial abstractions of a uniformly random 3-connected planar linear normal λ -term. When $n \to \infty$,

$$\mathbb{P}[X_n = k] \to \frac{k-1}{3} \binom{2k-2}{k-1} \left(\frac{3}{16}\right)^{k-1}$$

Introduction	Characterization	Bijection 000	Conclusion O
Our contribution	(2)		

Theorem (F. 2023)

There is a direct bijection from planar linear normal λ -terms to planar maps, with its restriction to unitless terms giving loopless planar maps.

λ -terms	Maps	OEIS
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	loopless planar	A000260

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via LR-planar terms (clockwise, not stable by β -reduction...)

Introduction	
00000000	

From λ -terms to unary-binary trees

Linear planar λ -terms \Leftrightarrow unary-binary trees (with conditions)

Three statistics for a unary-binary tree S:

- unary(S): # unary nodes (abstractions)
- leaf(S): # leaves (variables)
- excess(S): leaf(S) unary(S) (free variables, *i.e.*, not yet bound)
- $S_u: \mathsf{sub-tree} \text{ of } S \text{ induced by } u$
 - Linear \Leftrightarrow excess(S) = 0
 - 1-connected (well-scoped) \Leftrightarrow excess $(S_u) \ge 0$ for all u
 - 2-connected (or unitless) $\Leftrightarrow excess(S_u) > 0$ for all u non-root

Introduction	Characterization	Bijection	Conclusion
00000000	O●O	000	O
Characterization of	of 3-connectedness (1)	

Proposition (Grygiel and Yu, CLA 2020)

In the skeleton of a 3-connected planar linear λ -term, the left child of the first binary node is a leaf.

Reduced skeleton: the right sub-tree of the first binary node

Characterization

Bijection

Conclusion

Characterization of 3-connectedness (2)

Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal λ -term iff

- (Normality) The left child of a binary node in S is never unary;
- (3-connectedness) For every binary node u with v its right child, # consecutive unary nodes above $u < excess(S_v)$.

Clearly necessary, but also sufficient!

Introduction	Characterization	Bijection	Conclusion
00000000		●OO	O

Degree trees

Degree tree: a plane tree T with a labeling ℓ on nodes with

- u is a leaf $\Rightarrow \ell(u) = 0$;
- u has children $v_1, \ldots v_k \Rightarrow s(u) \ell(v_1) \le \ell(u) \le s(u)$, where $s(u) = k + \sum_{i=1}^k \ell(v_i)$.

Contribution of each child : 1 (itself) + $\ell(v_i)$ (its label)

Except for the first child: from 1 to its due contribution.

Edge labeling ℓ_{Λ} : the retained contribution (interchangeable with ℓ !)

Intr	oduction	
00	000000	

Bijection (1/2): 3-connected terms \Leftrightarrow degree trees

• Contribution of u to parent $(1 + \ell(u)) =$ excess of its right sub-tree

● Unary nodes on right child ⇔ retainment by left child

Introduction

Characterization

Bijection 00●

Bijection (2/2): degree trees \Leftrightarrow bipartite planar maps

Existing direct bijection (F., 2021), as an exploration process

Also in bijection with Chapoton's new intervals in the Tamari lattice Some statistics correspondences:

- Unary chains of length $k \Leftrightarrow$ edge label $k \Leftrightarrow$ inner faces of degree 2k
- Initial unary chain \Leftrightarrow root label \Leftrightarrow degree of root face

Introduction	Characterization	Bijection	Conclusion
೧೧೧೧೧೧೧		000	
Conclusion			

The second bijection has a similar flavor.

λ -terms	Maps	OEIS
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	loopless planar	A000260
β -normal 3-connected planar	bipartite planar	A000257

Higher connectivity? Other enumeration consequences?

And (principal) types (1, 2, 9, 52, 344, 2482, 19028, 152570, ...) ?

Introduction	Characterization	Bijection	Conclusion
೧೧೧೧೧೧೧		000	
Conclusion			

The second bijection has a similar flavor.

λ -terms	Maps	OEIS
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	loopless planar	A000260
β -normal 3-connected planar	bipartite planar	A000257

Higher connectivity? Other enumeration consequences?

And (principal) types (1, 2, 9, 52, 344, 2482, 19028, 152570, ...) ?

Thank you for listening!

Curry–Howard correspondence

Simply typed λ -calculus

 $Context/Premise \vdash inferred \ type \ of \ term$

$$\frac{\Gamma, x: \alpha \vdash x: \alpha}{\Gamma \vdash \lambda x.t: \alpha \to \beta} (Ax) \quad \frac{\Gamma, x: \alpha \vdash t: \beta}{\Gamma \vdash \lambda x.t: \alpha \to \beta} (\to_I) \quad \frac{\Gamma \vdash t: \alpha \to \beta \quad \Delta \vdash u: \alpha}{\Gamma, \Delta \vdash t \; u: \beta} (\to_E)$$

$$\frac{\Gamma, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} (\text{weakening}) \quad \frac{\Gamma, t: \beta, t: \beta, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} (\text{contraction})$$

$$\frac{\Gamma, t: \beta, s: \gamma, \Delta \vdash u: \alpha}{\Gamma, s: \gamma, t: \beta, \Delta \vdash u: \alpha} (\text{exchange})$$

Curry–Howard correspondence

Simply typed λ -calculus \Leftrightarrow Intuitionistic implicational natural deduction Context/Premise \vdash deduced formula

$$\frac{\Gamma, x: \alpha \vdash x: \beta}{\Gamma \vdash \lambda x.t: \alpha \to \beta} (Ax) \quad \frac{\Gamma, x: \alpha \vdash t: \beta}{\Gamma \vdash \lambda x.t: \alpha \to \beta} (\to_I) \quad \frac{\Gamma \vdash t: \alpha \to \beta \quad \Delta \vdash u: \alpha}{\Gamma, \Delta \vdash tu: \beta} (\to_E)$$

$$\frac{\Gamma, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} (\text{weakening}) \quad \frac{\Gamma, t: \beta, t: \beta, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} (\text{contraction})$$

$$\frac{\Gamma, t: \beta, s: \gamma, \Delta \vdash u: \alpha}{\Gamma, s: \gamma, t: \beta, \Delta \vdash u: \alpha} (\text{exchange})$$

Curry–Howard correspondence

Constrained λ -calculus \Leftrightarrow Substructural intuitionistic logic Context/Premise \vdash inferred type of term deduced formula

$$\frac{\Gamma, x : \alpha \vdash t : \beta}{\Gamma \vdash \lambda x.t : \alpha \rightarrow \beta} (\rightarrow_{I}) \quad \frac{\Gamma \vdash t : \alpha \rightarrow \beta \quad \Delta \vdash u : \alpha}{\Gamma, \Delta \vdash t \; u : \beta} (\rightarrow_{E})$$

$$\frac{\Gamma, \Delta \vdash u : \alpha}{\Gamma, t : \beta, \Delta \vdash u : \alpha} (\text{weakening}) \quad \frac{\Gamma, t : \beta, t : \beta, \Delta \vdash u : \alpha}{\Gamma, t : \beta, \Delta \vdash u : \alpha} (\text{contraction})$$

$$\frac{\Gamma, t : \beta, s : \gamma, \Delta \vdash u : \alpha}{\Gamma, s : \gamma, t : \beta, \Delta \vdash u : \alpha} (\text{exchange})$$

(weakening), (contraction) \Rightarrow linear, (exchange) \Rightarrow planar

" λ -fragment" of linear logic, related to some programming languages

 $> \mathsf{Back} <$