Bijections between planar maps and planar linear normal λ-terms with connectivity condition

Wenjie Fang
LIGM, Université Gustave Eiffel arXiv:2202.03542

21 July 2023, FPSAC 2023, UC Davis

What is a planar map?

Planar map: drawings of graphs on a plane without extra crossing

planar

bipartite planar

Planar maps are rooted, i.e., with a marked corner on outer face.

A crash course on λ-calculus

A λ-term is:

- Atom: variables x, y, z, \ldots;
- Application $t u$: apply t (as a function) to u;
- Abstraction λx.t: build a function of x from t.
λ-calculus, which is Turing complete, consists of:
- α-renaming: variable names not important;
- β-reduction: $(\lambda x . t) u \rightarrow_{\beta} t[x \leftarrow u]$.

Example: $\Omega=(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta}(\lambda x . x x)(\lambda x . x x)=\Omega$.
β-reduction has a unique normal form if there is one.
Example: $(\lambda x . y) \Omega \rightarrow_{\beta}(\lambda x . y) \Omega \rightarrow_{\beta} \cdots \rightarrow_{\beta}(\lambda x . y) \Omega \rightarrow_{\beta} y$.

λ-terms, according to a combinatorialist

λ-term: unary-binary tree (skeleton) + variable-abstraction map A variable is bound by an ancestral abstraction.

Linear λ-term: the variable-abstraction map being bijective

$$
t=\lambda u \cdot \lambda v \cdot u(\lambda w \cdot \lambda x \cdot \lambda z \cdot v(w(x(\lambda y \cdot y))) z(\lambda k \cdot k))
$$

(RL-)planar term: counter-clockwise variable-abstraction map Linear planar : unique choice, so just unary-binary tree!

Curry-Howard correspondence

Typed programs are mathematical proofs.

Computational side	Logical side
Typed λ-calculi	Logic systems
Types	Provable formulas
λ-terms	Proofs

- Typed λ-calculi avoids infinite computation (such as Ω).
- Linear λ-calculus \Leftrightarrow " λ-fragment" of intuitionistic linear logic
- Variable as resource, abstraction as consumption

How exactly?

Known enumeration of various families of λ-terms

- unitless: each sub-term has at least one free variable
- normal: no possible β-reduction (so computed result)

λ-terms	Maps	OEIS
linear	general cubic	A062980
planar	planar cubic	A002005
unitless	bridgeless cubic	A267827
unitless planar	bridgeless planar cubic	A000309
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	bridgeless planar	A000260

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018
A lot of people and work: Bodini, Courtiel, Gardy, Giorgetti, Jacquot, Yeats, Zeilberger, ...

Connectivity condition

Motivated (mysteriously) by type theory...

Noam Zeilberger and Jason Reed (Workshop CLA 2019)

How about connectivity of the diagram on planar linear normal terms?
k-connected: breaking $k-1$ edges does not split the graph

- 1-connected: all (connected by their skeleton)
- 2-connected: unitless (bridge \Leftrightarrow sub-term without free variable)
- 3-connected: ??? (characterized by type theory for general k)

Conjecture (Zeilberger-Reed, 2019)

The number of 3-connected planar linear normal λ-terms with $n+2$ variables is

$$
\frac{2^{n}}{(n+1)(n+2)}\binom{2 n+1}{n}
$$

which also counts bipartite planar maps with n edges (A000257).

Our contribution (1)

Katarzyna Grygiel and Guan-Ru Yu (Workshop CLA 2020): combinatorial characterization of 3 -connected terms, partial bijective results

Theorem (F. 2023)

There is a direct bijection between 3-connected planar linear normal λ-terms with $n+2$ variables and bipartite planar maps with n edges.

What we do using bijections:

- Transfer of statistics
- Generating functions and probabilistic results also for free!

Proposition (F. 2023, from known results on maps by Liskovet)

Let $X_{n}=\#$ initial abstractions of a uniformly random 3-connected planar linear normal λ-term. When $n \rightarrow \infty$,

$$
\mathbb{P}\left[X_{n}=k\right] \rightarrow \frac{k-1}{3}\binom{2 k-2}{k-1}\left(\frac{3}{16}\right)^{k-1} .
$$

Our contribution (2)

Theorem (F. 2023)

There is a direct bijection from planar linear normal λ-terms to planar maps, with its restriction to unitless terms giving loopless planar maps.

λ-terms	Maps	OEIS
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via LR-planar terms (clockwise, not stable by β-reduction...)

From λ-terms to unary-binary trees

Linear planar λ-terms \Leftrightarrow unary-binary trees (with conditions)
Three statistics for a unary-binary tree S :

- unary (S) : \# unary nodes (abstractions)
- leaf(S): \# leaves (variables)
- $\operatorname{excess}(S)$: leaf $(S)-\operatorname{unary}(S)$ (free variables, i.e., not yet bound)
S_{u} : sub-tree of S induced by u
- Linear $\Leftrightarrow \operatorname{excess}(S)=0$
- 1-connected (well-scoped) $\Leftrightarrow \operatorname{excess}\left(S_{u}\right) \geq 0$ for all u
- 2-connected (or unitless) $\Leftrightarrow \operatorname{excess}\left(S_{u}\right)>0$ for all u non-root

Characterization of 3 -connectedness (1)

Proposition (Grygiel and Yu, CLA 2020)

In the skeleton of a 3-connected planar linear λ-term, the left child of the first binary node is a leaf.

Reduced skeleton: the right sub-tree of the first binary node

Characterization of 3-connectedness (2)

Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal λ-term iff

- (Normality) The left child of a binary node in S is never unary;
- (3-connectedness) For every binary node u with v its right child, \# consecutive unary nodes above $u<\operatorname{excess}\left(S_{v}\right)$.

Clearly necessary, but also sufficient!

Degree trees

Degree tree: a plane tree T with a labeling ℓ on nodes with

- u is a leaf $\Rightarrow \ell(u)=0$;
- u has children $v_{1}, \ldots v_{k} \Rightarrow s(u)-\ell\left(v_{1}\right) \leq \ell(u) \leq s(u)$, where $s(u)=k+\sum_{i=1}^{k} \ell\left(v_{i}\right)$.

Contribution of each child : 1 (itself) $+\ell\left(v_{i}\right)$ (its label)
Except for the first child: from 1 to its due contribution.

Edge labeling ℓ_{Λ} : the retained contribution (interchangeable with ℓ !)

Bijection (1/2): 3-connected terms \Leftrightarrow degree trees

- Contribution of u to parent $(1+\ell(u))=$ excess of its right sub-tree
- Unary nodes on right child \Leftrightarrow retainment by left child

Bijection (2/2): degree trees \Leftrightarrow bipartite planar maps

Existing direct bijection (F., 2021), as an exploration process
Also in bijection with Chapoton's new intervals in the Tamari lattice
Some statistics correspondences:

- Unary chains of length $k \Leftrightarrow$ edge label $k \Leftrightarrow$ inner faces of degree $2 k$
- Initial unary chain \Leftrightarrow root label \Leftrightarrow degree of root face

Conclusion

The second bijection has a similar flavor.

λ-terms	Maps	OEIS
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260
β-normal 3-connected planar	bipartite planar	A000257

Higher connectivity? Other enumeration consequences?
And (principal) types (1, 2, 9, 52, 344, 2482, 19028, 152570, ...) ?

Conclusion

The second bijection has a similar flavor.

λ-terms	Maps	OEIS
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260
β-normal 3-connected planar	bipartite planar	A000257

Higher connectivity? Other enumeration consequences?
And (principal) types (1, 2, 9, 52, 344, 2482, 19028, 152570, ...) ?
Thank you for listening!

Curry-Howard correspondence

Simply typed λ-calculus
Context/Premise \vdash inferred type of term

$$
\begin{aligned}
& \overline{x: \alpha \vdash x: \alpha}(\mathrm{Ax}) \quad \frac{\Gamma, x: \alpha \vdash t: \beta}{\Gamma \vdash \lambda x \cdot t: \alpha \rightarrow \beta}\left(\rightarrow_{I}\right) \quad \frac{\Gamma \vdash t: \alpha \rightarrow \beta \quad \Delta \vdash u: \alpha}{\Gamma, \Delta \vdash t u: \beta}\left(\rightarrow_{E}\right) \\
& \frac{\Gamma, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} \text { (weakening) } \frac{\Gamma, t: \beta, t: \beta, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} \text { (contraction) } \\
& \frac{\Gamma, t: \beta, s: \gamma, \Delta \vdash u: \alpha}{\Gamma, s: \gamma, t: \beta, \Delta \vdash u: \alpha} \text { (exchange) }
\end{aligned}
$$

Curry-Howard correspondence

Simply typed λ-calculus \Leftrightarrow Intuitionistic implicational natural deduction
Context/Premise \vdash deduced formula

$$
\begin{gathered}
\frac{\Gamma \vdash \alpha: \alpha}{x: \alpha x)} \frac{\Gamma, \alpha \vdash t: \beta}{\Gamma \vdash \lambda x: \alpha \rightarrow \beta}\left(\rightarrow_{I}\right) \quad \frac{\Gamma \vdash t: \alpha \rightarrow \beta \quad \Delta \vdash u: \alpha}{\Gamma, \Delta \vdash t u: \beta}\left(\rightarrow_{E}\right) \\
\frac{\Gamma, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} \text { (weakening) } \frac{\Gamma, t: \beta, t: \beta, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} \text { (contraction) } \\
\frac{\Gamma, t: \beta, s: \gamma, \Delta \vdash u: \alpha}{\Gamma, s: \gamma, \beta, \Delta \vdash u: \alpha} \text { (exchange) }
\end{gathered}
$$

Curry-Howard correspondence

Constrained λ-calculus \Leftrightarrow Substructural intuitionistic logic
Context/Premise \vdash inferred type of term deduced formula

$$
\begin{gathered}
\frac{\Gamma: \alpha \vdash x: \alpha}{x: A x)} \frac{\Gamma, x: \alpha \vdash t: \beta}{\Gamma \vdash \lambda x \cdot t: \alpha \rightarrow \beta}\left(\rightarrow_{I}\right) \quad \frac{\Gamma \vdash t: \alpha \rightarrow \beta \quad \Delta \vdash u: \alpha}{\Gamma, \Delta \vdash t u: \beta}\left(\rightarrow_{E}\right) \\
\frac{\Gamma, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} \text { (weakening) } \frac{\Gamma, t: \beta, t: \beta, \Delta \vdash u: \alpha}{\Gamma, t: \beta, \Delta \vdash u: \alpha} \text { (contraction) } \\
\frac{\Gamma, t: \beta, s: \gamma, \Delta \vdash u: \alpha}{\Gamma, s: \psi, t: \beta, \Delta \vdash u: \alpha} \text { (exchange) }
\end{gathered}
$$

(weakening), (contraction) \Rightarrow linear, (exchange) \Rightarrow planar
" λ-fragment" of linear logic, related to some programming languages
$>$ Back $<$

