## On the A<sub>2</sub> Andrews–Schilling–Warnaar

Identities

### Shashank Kanade

University of Denver

Based on joint work with Matthew C. Russell



# Cast and the Characters

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{1}{(q, q^4; q^5)_{\infty}}$$
$$\sum_{n\geq 0} \frac{q^{n^2+n}}{(q)_n} = \frac{1}{(q^2, q^3; q^5)_{\infty}}$$

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{1}{(q,q^4;q^5)_{\infty}}$$
$$\sum_{n\geq 0} \frac{q^{n^2+n}}{(q)_n} = \frac{1}{(q^2,q^3;q^5)_{\infty}}$$

VOAs, affine Lie algebras, and related structures

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{1}{(q,q^4;q^5)_{\infty}}$$
$$\sum_{n\geq 0} \frac{q^{n^2+n}}{(q)_n} = \frac{1}{(q^2,q^3;q^5)_{\infty}}$$

VOAs, affine Lie algebras, and related structures

**Knot Theory** 

#### A<sub>2</sub> Andrews–Schilling–Warnaar identities





# Setup

 $\lambda = c_0 \Lambda_0 + c_1 \Lambda_1 + c_2 \Lambda_2 \ (c_i \in \mathbb{Z}_{\geq 0})$ 

$$\begin{split} \lambda &= c_0 \Lambda_0 + c_1 \Lambda_1 + c_2 \Lambda_2 \; (c_i \in \mathbb{Z}_{\geq 0}) \\ \text{Level} &= \ell = c_0 + c_1 + c_2 \end{split}$$

 $\lambda = c_0 \Lambda_0 + c_1 \Lambda_1 + c_2 \Lambda_2 \ (c_i \in \mathbb{Z}_{\geq 0})$ Level =  $\ell = c_0 + c_1 + c_2$ 

Modulus =  $m = \ell + 3 = c_0 + c_1 + c_2 + 3$ 

 $\lambda = c_0 \Lambda_0 + c_1 \Lambda_1 + c_2 \Lambda_2 \ (c_i \in \mathbb{Z}_{\geq 0})$ 

Level =  $l = c_0 + c_1 + c_2$ 

Modulus =  $m = \ell + 3 = c_0 + c_1 + c_2 + 3$ 

Principally specialized character:

 $\chi(L(\lambda)) = \left(e^{-\lambda} \operatorname{ch}(L(\lambda))\right)|_{e^{-\alpha_i} \mapsto q}$ 

$$\lambda = c_0 \Lambda_0 + c_1 \Lambda_1 + c_2 \Lambda_2 \ (c_i \in \mathbb{Z}_{\geq 0})$$

Level =  $\ell = c_0 + c_1 + c_2$ 

Modulus =  $m = \ell + 3 = c_0 + c_1 + c_2 + 3$ 

Principally specialized character:

 $\chi(L(\lambda)) = \left(e^{-\lambda} \operatorname{ch}(L(\lambda))\right)|_{e^{-\alpha_i} \mapsto q}$ 

#### Principal character

 $\chi(\Omega(\lambda)) = \frac{\chi(L(\lambda))}{\chi(L(\Lambda_0))}$ 

$$\lambda = c_0 \Lambda_0 + c_1 \Lambda_1 + c_2 \Lambda_2 \ (c_i \in \mathbb{Z}_{\geq 0})$$

Level =  $\ell = c_0 + c_1 + c_2$ 

Modulus =  $m = \ell + 3 = c_0 + c_1 + c_2 + 3$ 

Principally specialized character:

 $\chi(L(\lambda)) = \left(e^{-\lambda} \operatorname{ch}(L(\lambda))\right)|_{e^{-\alpha_i} \mapsto q}$ 

#### Principal character

$$\begin{split} \chi(\Omega(\lambda)) &= \frac{\chi(L(\lambda))}{\chi(L(\Lambda_0))} \\ &= \frac{(q^m; q^m)_{\infty}^2}{(q)_{\infty}^2} (q^{1+c_0}, q^{m-1-c_0}, q^{1+c_1}, q^{m-1-c_1}, q^{1+c_2}, q^{m-1-c_2}; q^m)_{\infty} \end{split}$$

## Arrangement of Modules

## Arrangement of Modules

#### Level 11

## Arrangement of Modules

#### Level 11

| 11,0,0   |         |         |       |
|----------|---------|---------|-------|
| 10, 1, 0 | 9,1,1   |         |       |
| 9,2,0    | 8, 2, 1 | 7, 2, 2 |       |
| 8,3,0    | 7,3,1   | 6,3,2   | 5,3,3 |
| 7,4,0    | 6,4,1   | 5,4,2   | 4,4,3 |
| 6,5,0    | 5, 5, 1 |         |       |

#### Level 7 (Andrews–Schilling–Warnaar)

$$\sum_{\substack{r_1 \ge r_2 \ge 0\\ s_1 \ge s_2 \ge 0}} \frac{q^{(r_1^2 - r_1 s_1 + s_1^2) + (r_2^2 - r_2 s_2 + s_2^2) + r_1 + r_2 + s_1 + s_2}}{(q)_{r_1 - r_2}(q)_{s_1 - s_2}(q)_{r_2}(q)_{s_2}(q)_{r_2 + s_2 + 1}}$$
  
=  $\frac{1}{(q)_{\infty}} \chi(\Omega(7\Lambda_0 + 0\Lambda_1 + 0\Lambda_2))$   
=  $\frac{(q^{10}; q^{10})_{\infty}^2}{(q)_{\infty}^3} (q, q, q^2, q^8, q^9, q^9; q^{10})_{\infty}$ 

#### Level 5 (Andrews–Schilling–Warnaar)

$$\sum_{\substack{r_1 \ge r_2 \ge 0\\ s_1 \ge s_2 \ge 0}} \frac{q^{(r_1^2 - r_1 s_1 + s_1^2) + (r_2^2 + r_2 s_2 + s_2^2) + r_1 + r_2 + s_1 + s_2}}{(q)_{r_1 - r_2}(q)_{s_1 - s_2}(q)_{r_2}(q)_{s_2}(q)_{r_2 + s_2 + 1}}$$
  
=  $\frac{1}{(q)_{\infty}} \chi(\Omega(5\Lambda_0 + 0\Lambda_1 + 0\Lambda_2))$   
=  $\frac{(q^8; q^8)_{\infty}^2}{(q)_{\infty}^3} (q, q, q^2, q^6, q^7, q^7; q^8)_{\infty}$ 

#### Level 6 (Andrews–Schilling–Warnaar)

$$\sum_{\substack{r_1 \ge r_2 \ge 0\\ s_1 \ge s_2 \ge 0}} \frac{q^{(r_1^2 - r_1 s_1 + s_1^2) + (r_2^2 - r_2 s_2 + s_2^2) + r_1 + r_2 + s_1 + s_2}}{(q)_{r_1 - r_2}(q)_{s_1 - s_2}(q)_{r_2 + s_2}(q)_{r_2 + s_2 + 1}} \begin{bmatrix} r_2 + s_2 \\ r_2 \end{bmatrix}_{q^3}$$
$$= \frac{1}{(q)_{\infty}} \chi(\Omega(6\Lambda_0 + 0\Lambda_1 + 0\Lambda_2))$$
$$= \frac{(q^9; q^9)_{\infty}^2}{(q)_{\infty}^3} (q, q, q^2, q^7, q^8, q^8; q^9)_{\infty}$$

## The main question

#### The main question

#### Question

Find and prove ASW identities for the remaining principal characters of  $\widehat{\mathfrak{sl}}_{\mathfrak{g}}.$ 



#### A plane partition

#### A plane partition

| 7 | 4 | 3 | 2 | 2 |
|---|---|---|---|---|
| 5 | 4 | 1 |   |   |
| 2 |   |   |   |   |

#### A plane partition

| 7 | 4 | 3 | 2 | 2 |
|---|---|---|---|---|
| 5 | 4 | 1 |   |   |
| 2 |   |   |   |   |

#### Numbers in boxes as heights

#### A plane partition

| 7 | 4 | 3 | 2 | 2 |
|---|---|---|---|---|
| 5 | 4 | 1 |   |   |
| 2 |   |   |   |   |

Numbers in boxes as heights  $\rightarrow$  3-dimensional shape

#### A plane partition

| 7 | 4 | 3 | 2 | 2 |
|---|---|---|---|---|
| 5 | 4 | 1 |   |   |
| 2 |   |   |   |   |

Numbers in boxes as heights  $\rightarrow$  3-dimensional shape

Cylindric partition of profile c = (3, 1, 2)

Cylindric partition of profile c = (3, 1, 2)

Connected to  $\chi(\Omega(3\Lambda_0 + 1\Lambda_1 + 2\Lambda_2))$  for  $\widehat{\mathfrak{sl}}_3 = A_2^{(1)}$ 

Cylindric partition of profile c = (3, 1, 2)

Connected to  $\chi(\Omega(3\Lambda_0 + 1\Lambda_1 + 2\Lambda_2))$  for  $\widehat{\mathfrak{sl}}_3 = A_2^{(1)}$ 



Cylindric partition of profile c = (3, 1, 2)

Connected to  $\chi(\Omega(3\Lambda_0 + 1\Lambda_1 + 2\Lambda_2))$  for  $\widehat{\mathfrak{sl}}_3 = A_2^{(1)}$ 



Total "skew-ness" = |eve| = 3 + 1 + 2 = 6Weight = 5 + 5 + 4 + 3 + 6 + 5 + 3 + 7 + 6 + 2Max-part = 7
c: Profile

c: Profile

 $\mathscr{C}_c$ : Set of cylindric partitions of profile c

c: Profile

 $\mathscr{C}_c$ : Set of cylindric partitions of profile c $F_c(z,q) = \sum_{\pi \in \mathscr{C}_c} z^{\max(\pi)} q^{\operatorname{weight}(\pi)}$ 

c: Profile

 $\mathscr{C}_c$ : Set of cylindric partitions of profile c $F_c(z,q) = \sum_{\pi \in \mathscr{C}_c} z^{\max(\pi)} q^{\operatorname{weight}(\pi)}$ 

$$H_c(z,q) = \frac{(zq;q)_{\infty}}{(q)_{\infty}}F_c(z,q)$$



# Key Points

## Products (Borodin / Gessel-Krattenthaler)

$$H_c(1,q) = F_c(1,q) = \frac{1}{(q)_{\infty}} \chi(\Omega(c_0 \Lambda_0 + \dots + c_r \Lambda_r))$$

# **Key Points**

## Products (Borodin / Gessel-Krattenthaler)

$$H_c(1,q) = F_c(1,q) = \frac{1}{(q)_{\infty}} \chi(\Omega(c_0 \Lambda_0 + \dots + c_r \Lambda_r))$$

# Symmetries

$$H_{c_0,c_1,\cdots,c_r}(z,q) = H_{c_1,c_2,\cdots,c_r,c_0}(z,q), \quad H_{c_0,c_1,\cdots,c_r}(1,q) = H_{c_r,c_{r-1},\cdots,c_1,c_0}(1,q)$$

### **Key Points**

#### Products (Borodin / Gessel-Krattenthaler)

$$H_c(1,q) = F_c(1,q) = \frac{1}{(q)_{\infty}} \chi(\Omega(c_0 \Lambda_0 + \dots + c_r \Lambda_r))$$

#### Symmetries

$$H_{c_0,c_1,\cdots,c_r}(z,q) = H_{c_1,c_2,\cdots,c_r,c_0}(z,q), \quad H_{c_0,c_1,\cdots,c_r}(1,q) = H_{c_r,c_{r-1},\cdots,c_1,c_0}(1,q)$$

#### Recurrences (Corteel-Welsh)

H functions for all profiles of a fixed rank and level are unique solutions to the Corteel–Welsh system of z, q difference equations.

# With only cyclic symmetry...

# With only cyclic symmetry...

# Level 11

## With only cyclic symmetry...

Level 11

 11,0,0

 10,1,0/10,0,1
 9,1,1

 9,2,0/9,0,2
 8,2,1/8,1,2
 7,2,2

 8,3,0/8,0,3
 7,3,1/7,1,3
 6,3,2/6,2,3
 5,3,3

 7,4,0/7,0,4
 6,4,1/6,4,1
 5,4,2/5,2,4
 4,4,3

 6,5,0/6,0,5
 5,5,1
 5
 5



# Completing the ASW lds

#### Conjecture (K.-Russell 2022)

We have explicit (conjectural) z, q Andrews–Schilling–Warnaar sum expressions for all  $H_c(z,q)$  functions where c is a (length 3) composition "above the line".

#### Conjecture (K.-Russell 2022)

We have explicit (conjectural) z, q Andrews–Schilling–Warnaar sum expressions for all  $H_c(z,q)$  functions where c is a (length 3) composition "above the line".

#### Theorem (K.-Russell 2022)

The functions  $H_c(z,q)$  where *c* is a length 3 composition "below the line" are completely determined by the  $H_c(z,q)$  functions that lie "above the line".

#### Conjecture (K.-Russell 2022)

We have explicit (conjectural) z, q Andrews–Schilling–Warnaar sum expressions for all  $H_c(z,q)$  functions where c is a (length 3) composition "above the line".

#### Theorem (K.-Russell 2022)

The functions  $H_c(z,q)$  where *c* is a length 3 composition "below the line" are completely determined by the  $H_c(z,q)$  functions that lie "above the line".

#### Corollary

If you prove the conjecture, setting z = 1 leads to  $\sum = \prod$  identities for principal characters of standard  $\widehat{\mathfrak{sl}}_3$  modules.

$$H_{c}(z,q) = \sum_{\substack{r_1 \ge r_2 \ge 0\\ s_1 \ge s_2 \ge 0}} \frac{\boldsymbol{z}^{r_1} q^{(r_1^2 - r_1 s_1 + s_1^2) + (r_2^2 - r_2 s_2 + s_2^2)}}{(q)_{r_1 - r_2}(q)_{s_1 - s_2}(q)_{r_2}(q)_{s_2}(q)_{r_2 + s_2 + 1}} \boldsymbol{f}_{c}$$

$$H_{c}(z,q) = \sum_{\substack{r_{1} \ge r_{2} \ge 0\\ s_{1} \ge s_{2} \ge 0}} \frac{z^{r_{1}}q^{(r_{1}^{2} - r_{1}s_{1} + s_{1}^{2}) + (r_{2}^{2} - r_{2}s_{2} + s_{2}^{2})}}{(q)_{r_{1} - r_{2}}(q)_{s_{1} - s_{2}}(q)_{r_{2}}(q)_{s_{2}}(q)_{s_{2}}(q)_{r_{2} + s_{2} + 1}} f_{c}$$

| С       | f <sub>c</sub>                      |
|---------|-------------------------------------|
| 7,0,0   | $q^{r_1+r_2+s_1+s_2}$               |
| 6,1,0   | $q^{r_2+s_1+s_2}$                   |
| 5,2,0   | $q^{s_1+s_2}$                       |
| 5,1,1   | $q^{r_2+s_2}-q^{1+r_1+r_2+s_1+s_2}$ |
| 4, 2, 1 | $q^{s_2} - q^{1 + r_2 + s_1 + s_2}$ |
| 3, 2, 2 | $1-q^{1+r_2+s_2}$                   |

$$H_{c}(z,q) = \sum_{\substack{r_{1} \ge r_{2} \ge 0\\ s_{1} \ge s_{2} \ge 0}} \frac{z^{r_{1}}q^{(r_{1}^{2} - r_{1}s_{1} + s_{1}^{2}) + (r_{2}^{2} - r_{2}s_{2} + s_{2}^{2})}}{(q)_{r_{1} - r_{2}}(q)_{s_{1} - s_{2}}(q)_{r_{2}}(q)_{s_{2}}(q)_{r_{2} + s_{2} + 1}} f_{c}$$

| С     | f <sub>c</sub>                |
|-------|-------------------------------|
| 6,0,1 | $q^{r_1+r_2+s_2}$             |
|       | $-q(1-z)q^{2r_1+r_2+s_1+s_2}$ |
| 5,0,2 | $q^{r_1+r_2}$                 |
|       | $-q(1-z)q^{2r_1+r_2+s_2}$     |
| 4,1,2 | $q^{r_1} - q^{1+r_1+r_2+s_2}$ |

$$H_{\boldsymbol{c}}(z,q) = \sum_{\substack{r_1 \ge r_2 \ge 0\\ s_1 \ge s_2 \ge 0}} \frac{\boldsymbol{z}^{\boldsymbol{r}_1} q^{(r_1^2 - r_1 s_1 + s_1^2) + (r_2^2 - r_2 s_2 + s_2^2)}}{(q)_{r_1 - r_2}(q)_{s_1 - s_2}(q)_{r_2}(q)_{s_2}(q)_{r_2 + s_2 + 1}} \boldsymbol{f_c}$$

$$\begin{array}{c|c} c & f_c \\ \hline 4,3,0 & q^{-r_1+s_1+s_2}-q^{r_2+s_2} \\ & +(1-z)q^{r_1+s_2} \\ & +zq^{1+r_1+r_2+s_1+s_2} \\ 4,0,3 & q^{s_2}-q^{1+r_2+s_1+s_2} \\ & -zq^{1+r_1+s_1+s_2}-q^{r_1+r_2} \\ & (1-qz)q^{r_2}+zq^{2+2r_1+r_2+s_2} \\ & zq^{1+2r_1+r_2} \end{array}$$

$$H_{c}(z,q) = \sum_{\substack{r_{1} \ge r_{2} \ge 0\\ s_{1} \ge s_{2} \ge 0}} \frac{z^{r_{1}}q^{(r_{1}^{2} - r_{1}s_{1} + s_{1}^{2}) + (r_{2}^{2} - r_{2}s_{2} + s_{2}^{2})}}{(q)_{r_{1} - r_{2}}(q)_{s_{1} - s_{2}}(q)_{r_{2}}(q)_{s_{2}}(q)_{r_{2} + s_{2} + 1}} f_{c}$$

$$\begin{array}{c|c} & & & J_c \\ \hline 3,3,1 & q^{-r_1+s_2} + (1-z)q^{r_1} \\ & -q^{r_2} + zq^{1+r_1+r_2+s_2} \\ & -q^{1-r_1+r_2+s_1+s_2} - zq^{s_1+s_2} \end{array}$$

### Theorem (K.-Russell 2022)

### Our conjectures hold when $c_0 + c_1 + c_2 = \text{level} \in \{2, 3, 4, 5, 7\}$ .

#### Theorem (K.-Russell 2022)

Our conjectures hold when  $c_0 + c_1 + c_2 = \text{level} \in \{2, 3, 4, 5, 7\}$ .

Proof: Show explicitly and computationally that our conjectures satisfy the required Corteel–Welsh recursions at these levels.

### Theorem (K.-Russell 2022)

Our conjectures hold when  $c_0 + c_1 + c_2 = \text{level} \in \{2, 3, 4, 5, 7\}$ .

Proof: Show explicitly and computationally that our conjectures satisfy the required Corteel–Welsh recursions at these levels.

#### Note

Smallest unproved level is 6. (Levels divisible by 3 are funny).

# Recent Results

#### **Recent Results**

## Theorem (Warnaar 2023)

The  $\sum = \prod$  conjectures obtained by setting  $z \mapsto 1$  hold for all levels for compositions that are above the line.

#### **Recent Results**

#### Theorem (Warnaar 2023)

The  $\sum = \prod$  conjectures obtained by setting  $z \mapsto 1$  hold for all levels for compositions that are above the line.

#### Note

Our bivariate conjectures are widely open in general (smallest unproved level is 6).



# **Torus Knots**



# Torus Knots (3, p)

Consider the Torus Knots T(3,p) with  $3 \nmid p$ .<sup>*a*</sup>

Colour with irreducible module  $L_3(n\Lambda_1)$  of  $\mathfrak{sl}_3$ .

Consider the coloured Jones invariants:

р

 $J_{T(3,p)}(L_3(n\Lambda_1)).$ 

<sup>a</sup>remember that thing about levels divisible by 3 being funny?

# Limits of coloured invariants

# Limits of coloured invariants

## Theorem (K. 2023)

We have the following limit for p > 3,  $3 \nmid p$ :

$$\lim_{\mathbf{n}\to\infty} J_{T(3,p)}(L_3(\mathbf{n}\Lambda_1)) = \frac{(q)_{\infty}^2}{(1-q)^2(1-q^2)} \chi(\Omega((p-3)\Lambda_0)).$$

#### Limits of coloured invariants

#### Theorem (K. 2023)

We have the following limit for p > 3,  $3 \nmid p$ :

$$\lim_{n\to\infty} J_{T(3,p)}(L_3(\mathbf{n}\Lambda_1)) = \frac{(q)_{\infty}^2}{(1-q)^2(1-q^2)} \chi(\Omega((p-3)\Lambda_0)).$$

#### Note

The theorem is valid much more generally for characters of all minimal model principal  $\mathscr{W}$  algebras of type  $A_r$ :  $\mathscr{W}_r(p, p')$ .


## Question

## Question

What can knot-theoretic methods say about the

Andrews–Schilling–Warnaar sums

or cylindric partitions?

## Thank you!