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Unravelling a formula!

S§=1{(1,1),(0,-1),(-1,0)}.

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere
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Unravelling a formula!
A

S§=1{(1,1),(0,-1),(-1,0)}.

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere

How many such excursions are there?
2-colouring 4-colouring

Equivalence classes! s = {(1,2),(1,-1)} Ternary trees
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A brief history of Kreweras walks

1986
Gessel

(lattice path interpretation, algebraicity)

1983 2007
Niederhausen Bernardi
(simpler proof) (bijection!)
| ‘ | ‘ |
1965 1981 2005
PhD Thesis Kreweras and Bousquet-Mélou
Kreweras Niederhausen (multivariable kernel method)
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(simplified proof)
1984
Flatto and Hahn

(gen. function of stationary distr. algebraic)
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A brief history of Kreweras-waltks walks in the quarter plane

1986

Gessel
(lattice path interpretation, algebraicity)
1983
Niederhausen

(simpler proof)

L

1999

Random

Walks in the 2007 2013

Quarter Plane

Bernardi
g (bijection!)

| 1

1965
PhD Thesis
Kreweras
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1981
Kreweras and
Niederhausen

(simplified proof)
I

1984
Flatto and Hahn

(gen. function of stationary distr. algebraic)

\
2005 ‘
Bousquet-Mélou

(multivariable kernel method)

2010
Bousquet-Mélou and
Mishna

(general classification — “small steps”)
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Combinatorial structures where patterns are commonly

o H_IHHIIIIIII

AN
/ \ / \ 00[L0/111A0L00
I /\/\/ \ [0O10AfII0101

ﬁ /\/\/\/\ 00011 110710
/\/\/\/\/\ 001011110111

(links with sorting algorithms, logic, number theory, bioinformatics, ...)

Typical questions:
@ What is number of structures of size n with j occurrences of the pattern?
@ Is there a nice formula for the generating function?
@ Asymptotic behaviour, limit laws?
@ Generation of these objects?
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Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6
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Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6 avoiding the pattern <—<—.

X W
KE N7 B AD

1, 2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”
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Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6 avoiding the pattern <—<—.

X W
KE N7 B AD

1, 2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”

Gessel excursions of length 4.

/
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Patterns in walks in the quarter plane: A humble start

‘Shortcut’ bijection (Asinowski, Banderier, S.):
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What about other patterns?

Kreweras excursions of length 6

o
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What about other patterns?

Kreweras excursions of length 6 avoiding the pattern 4

1, 2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”
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What about other patterns?

Kreweras excursions of length 6 avoiding the pattern 4

da s

1,2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”

XX

Kreweras excursions of length 6 avoiding the pattern <—<—.
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

‘k ~+andl 2" = Y +~+and k L.

@ Mark each « followed by a + (local indices ay, ..., ax).

o Mark each ,” preceded by a < (local indices by, ..., by).

4
4
4
4
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

‘k ~+andl 2" = Y +~+and k L.

@ Mark each « followed by a + (local indices ay, ..., ax).
o Mark each ,” preceded by a < (local indices by, ..., by).
3 S (1,4,5)
7 2
/| (3, 6)
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

‘k ~+andl " = Y +~+and k L.

1. Fori=1...k, remove the < step with index a; and insert it
immediately before the / step with index a; + 1.

4
4
4
4
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

‘k ~+andl " = Y +~+and k L.

1. Fori=1...k, remove the < step with index a; and insert it
immediately before the / step with index a; + 1.
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(5) ()

move (4) before 5

move (1) before 2

move (5) before 6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

‘k ~—andl "= "t <+ and k .

2. For j=/{...1, remove the < step before the ,” step with index b;
and insert it immediately before the < step with index b;.
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

‘k ~+—andl " = "t <+ and k .

Mark each < followed by a « (local indices ay, ..., ax).

Mark each ,” preceded by a < (local indices by, ..., by).

@ For i =1...k, remove the < step with index a; and insert it
immediately before the / step with index a; + 1.

For j=¢...1, remove the + step before the / step with index b;
and insert it immediately before the < step with index b;.
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Kreweras excursions avoiding patterns of length 2

Kreweras | Gessel Pdl

ya Diagonal

Pattern p | 7 LKreweras excursions | e o | e on with
of length 3n avoiding p}

—— 1, 2, 11, 85, 782, 8004, ... A135404 | Gessel excursions
4 1, 2, 11, 85, 782, 8004, ... A135404 | Gessel excursions
7 1,1, 5, 37,332, 3343, ... None | Gessel excursions

ending with |
/

/ 1, 2, 10, 70, 588, 5544, ... A005568 | Pdlya excursions

J 1,1, 4, 25, 196, 1764, ... A001246 | Diagonal excursions

Coincidence?

Sarah J. Selkirk
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Nature of generating functions? (Simplified)

Rational ., -
p(x) Fibonacci

a(x)  p, q polynomials

Algebraic c(x) -1+ xC(x)’

Catalan

P(x,y) non-zero 1—vI—dx

polynomial: € =—7
P(x.G(x))=0

Transcendental B(x) - Beroullinumbers
Not D-finite

Sarah J. Selkirk University of Klagenfurt
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Nature of generating functions in specific cases

Pattern p # {Kreweras ext:u.rsmns OEIS Nature of

of length 3n avoiding p} gen. func.

—— 1, 2, 11, 85, 782, 8004, ... A135404 Algebraic
4 1, 2, 11, 85, 782, 8004, ... A135404 Algebraic
/ 1,1, 5, 37, 332, 3343, . . None Algebraic
/ 1, 2,10, 70, 588, 5544, ... | A005568 D-finite
<—l 1,1, 4, 25,196, 1764, ... A001246 D-finite

First three models: Algebraic
(using [Kauers—Koutschan—Zeilberger 2009] and [Bostan—Kauers 2009])
but not context-free [Banderier-Drmota 2015]: 4"n—2/3 asymptotics.
Last two models: D-finite, but not algebraic.

Pdlya walks: C,Cpi1 ~ 47%"3. Such asymptotics involving a n~3 factor
are not compatible with the rather constrained asymptotics of algebraic

function coefficients.
Sarah J. Selkirk University of Klagenfurt 14
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Generating functions: walks avoiding a pattern

Sarah J. Selkirk

For walks in Z? avoiding a
pattern, generating function
is rational.

complement of regular expression

For walks in N x Z avoiding
a pattern, generating function
is algebraic.

pushdown automaton with single stack

For directed walks in N?
avoiding a pattern, generating
function is algebraic.

vectorial kernel method [Asinowski, Bacher, Banderier,
Gittenberger, Roitner]

For non-directed walks in N°
avoiding a pattern, gen. func-
tion is not necessarily algebraic.

Classification needed!

University of Klagenfurt
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Generating functions: walks avoiding a pattern

For non-directed walks in N? avoiding a pattern, the gener-
ating function is not necessarily algebraic (or D-finite!).

1 2 1

Kauers—Yatchak's model, 2015 e VA ,
(steps are with multiplicity) I\

1 1

Mishna—Rechnitzer's model, 2009

Forbidding some steps in the top (algebraic) model leads to the bottom
(differentially transcendental) model.

Sarah J. Selkirk University of Klagenfurt
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Conclusion

Open Problem

Find a “Proof from The Book” for the Kreweras enumeration!

Perhaps by following some patterns. ..
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Conclusion

Open Problem

Find a “Proof from The Book” for the Kreweras enumeration!

Perhaps by following some patterns. ..

Open Problem

Given a stepset and a pattern, determine the nature of the generating
function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction. . . (small
steps?)

Open Problem

Find an example of a walk in N?> and a pattern for which some adapted
kernel method would work.

A highly symmetric walk? Thank yOU!

Sarah J. Selkirk University of Klagenfurt



The kernel method: Dyck paths [Knuth 1968]

Let F(z,u) be the generating function for Dyck paths with length
marked by z and height marked by u, and f,(u) be defined as

F(z,u) = Zf u)z".

n>0

The allowed steps are (1,1) and (1, —1), and so at each time step, the
evolution of the height is encoded by a multiplication by the (Laurent)
polynomial P(u) = u~! + u.

for1(u) = fo(u)P(u) — {u=} o (u)P(u) = f,(u)P(u) — u1£,(0).

Sarah J. Selkirk University of Klagenfurt
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Summing over all n,

Z for1(u)z" = Z fo(u)P(u)z" — Z ut,(0)2" !

n>0 n>0 n>0
Simplifying,
F(z,u) — fo(u) = P(u)zF(z,u) — zu"*F(z,0)
~~ functional equation:
(1—zP(u))F(z,u) =1—z/uF(z,0)
The kernel 1 — zP(u) has two roots

1-vV1-42 1++v1—4z

n(z)=——m——, m(z) = ———.
2z 2z

n(z) - 0as z—0, ux(z) = oo as z — 0.

Plugging u = u;, we get

u(2)

F(z,0) = .

Sarah J. Selkirk University of Klagenfurt 19



The kernel method: general paths [Banderier-Flajolet 2002]

Ending anywhere Ending at y =0
Walk Bridge
[\ [\ A\
3 I\ / [\ A\
£ / / / / JARR'
2 \ LA \l/ \
2 \ \[ \ \
) \ \ \
=)
1 . ul(2)
W(z,u) = T2 B(z) = ZZ ()
Meander Excur;on
g‘ / \ \
N SN JiA [
- \ / /
£ \ N
S
u=c < (_l)c—l <
M(z,u) = ﬁp(u)ﬂ(”_“"(z)) E(Z)=7H”i(z)
i=1 i=1

ui= small roots (i.e. uj(z) ~ 0 for z ~ 0) of the kernel K(z,u) =1 — zP(u)
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Enumeration of directed lattice paths (marking m

patterns) [Asinowski—Bacher—Banderier-Gittenberger—Roitner]

Ending anywhere Endingat y =0
Walk Bridge
[\ | i\
- N / / imA\
£ / | / / JARR
e \ A \/ \
2 \ \] \ \
] \ \ \
5
Az, ul Az, u
W(z,u,va,... Vm) = % B(z,w,..., Vm) = 7;%52!5?2711),)
Meander Excursion
% f \ \
N N/ \ / /
£ \ / [\
€ _1)e+l ¢
M(z,u,vi,. . V) = ueA/EEzflt)J) g(u —ui(2)) | E(z,vi,... Vvm) = % 11 ui(z)
uj= small roots of the kernel K(z, u) = det(/ — zA) “=1—zP(u)".

A(z, u) is the determinant of the mutual correlation matrix.
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