

From Kreweras to Gessel: A walk through patterns in the quarter plane.
Formal Power Series and Algebraic Combinatorics 2023
Joint work with: Andrei Asinowski and Cyril Banderier

FUF

KLAGENFURT

21 July 2023

Unravelling a formula!

$$
\mathcal{S}=\{(1,1),(0,-1),(-1,0)\} .
$$

Excursion: $(0,0)$ to $(0,0)$ Meander: $(0,0)$ to anywhere

Unravelling a formula!

$$
\mathcal{S}=\{(1,1),(0,-1),(-1,0)\} .
$$

Excursion: $(0,0)$ to $(0,0)$ Meander: $(0,0)$ to anywhere

How many such excursions are there?
$\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}$

Unravelling a formula!

$$
\mathcal{S}=\{(1,1),(0,-1),(-1,0)\} .
$$

Excursion: $(0,0)$ to $(0,0)$ Meander: $(0,0)$ to anywhere

How many such excursions are there?

Unravelling a formula!

$$
\mathcal{S}=\{(1,1),(0,-1),(-1,0)\} .
$$

Excursion: $(0,0)$ to $(0,0)$ Meander: $(0,0)$ to anywhere

How many such excursions are there?

Unravelling a formula!

$$
\mathcal{S}=\{(1,1),(0,-1),(-1,0)\} .
$$

Excursion: $(0,0)$ to $(0,0)$ Meander: $(0,0)$ to anywhere

How many such excursions are there?
$\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}$

A brief history of Kreweras walks

1986
Gessel
(lattice path interpretation, algebraicity)

1983	2007
Niederhausen	Bernardi
	(bijection)
1981	2005
Kreweras and	Bousquet-Mélou
Niederhausen	(multivarable eemel method)

(simplified proof)

$$
1984
$$

Flatto and Hahn
(gen. function of stationary distr. algebraic)

A brief history of Kreweras walks walks in the quarter plane

Combinatorial structures where patterns are commonly studied:

(links with sorting algorithms, logic, number theory, bioinformatics, ...)
Typical questions:

- What is number of structures of size n with j occurrences of the pattern?
- Is there a nice formula for the generating function?
- Asymptotic behaviour, limit laws?
- Generation of these objects?

Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6

Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6 avoiding the pattern $\longleftarrow \longleftarrow$.

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6 avoiding the pattern $\longleftarrow \longleftarrow$.

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

Gessel excursions of length 4.

Patterns in walks in the quarter plane: A humble start
‘Shortcut' bijection (Asinowski, Banderier, S.):

What about other patterns?

Kreweras excursions of length 6

What about other patterns?

Kreweras excursions of length 6 avoiding the pattern \qquad

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

What about other patterns?

Kreweras excursions of length 6 avoiding the pattern \qquad

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"
 Kreweras excursions of length 6 avoiding the pattern $\longleftarrow \longleftarrow$.

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
" k \leftarrow \leftarrow \text { and } \ell \not \subset "=" \ell \leftarrow \leftarrow \text { and } k \not \subset "
$$

- Mark each \leftarrow followed by a \leftarrow (local indices $\left.a_{1}, \ldots, a_{k}\right)$.
- Mark each , ${ }^{\star}$ preceded by $\mathrm{a} \leftarrow$ (local indices b_{1}, \ldots, b_{ℓ}).

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
" k \leftarrow \leftarrow \text { and } \ell \not \subset "=" \ell \leftarrow \leftarrow \text { and } k \not \subset "
$$

- Mark each \leftarrow followed by $a \leftarrow$ (local indices $\left.a_{1}, \ldots, a_{k}\right)$.
- Mark each , ${ }^{\star}$ preceded by a \leftarrow (local indices b_{1}, \ldots, b_{ℓ}).

$(1,4,5)$
$(3,6)$

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
\text { " } k \nleftarrow \text { and } \ell \mathbb{Z} \text { " }=" \ell \longleftarrow \text { and k } \mathbb{K} " \text {. }
$$

1. For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
\text { " } k \nleftarrow \text { and } \ell \mathbb{Z} \text { " }=" \ell \longleftarrow \text { and k } \mathbb{K} " \text {. }
$$

1. For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.

move (1) before 2

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
\text { " } k \leftarrow \text { and } \ell \not \subset "=" \ell \longleftarrow \text { and } k \not \subset " \text { ". }
$$

1. For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.

move (1) before 2

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
\text { " } k \leftarrow \text { and } \ell \not \subset "=" \ell \longleftarrow \text { and } k \not \subset " \text { " }
$$

1. For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.

move (1) before 2

move (4) before 5 move (5) before 6

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
\text { " } k \nleftarrow \text { and } \ell \mathbb{Z} \text { " }=" \ell \longleftarrow \text { and k } \mathbb{K} " \text {. }
$$

1. For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.

move (1) before 2

move (4) before 5 move (5) before 6

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
\text { " } k \nleftarrow \text { and } \ell \mathbb{Z} \text { " }=" \ell \longleftarrow \text { and k } \mathbb{K} " \text {. }
$$

1. For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.

move (1) before 2

move (4) before 5 move (5) before 6

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
" k \leftarrow \text { and } \ell \nleftarrow "=" \ell \leftarrow \text { and } k \nleftarrow " \text { ". }
$$

2. For $j=\ell \ldots 1$, remove the \leftarrow step before the, π step with index b_{j} and insert it immediately before the \leftarrow step with index b_{j}.

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
" k \leftarrow \text { and } \ell \nless "=" \ell \leftarrow \text { and } k \nleftarrow \text { ". }
$$

2. For $j=\ell \ldots 1$, remove the \leftarrow step before the, π step with index b_{j} and insert it immediately before the \leftarrow step with index b_{j}.

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
" k \leftarrow \text { and } \ell \nless "=" \ell \leftarrow \text { and } k \nleftarrow \text { ". }
$$

2. For $j=\ell \ldots 1$, remove the \leftarrow step before the, π step with index b_{j} and insert it immediately before the \leftarrow step with index b_{j}.

What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length $3 n$ with

$$
" k \leftarrow \text { and } \ell \lll "=" \leftarrow \leftarrow \text { and } k \not \subset "
$$

- Mark each \leftarrow followed by $a \leftarrow$ (local indices $\left.a_{1}, \ldots, a_{k}\right)$.
- Mark each , „ preceded by a \leftarrow (local indices b_{1}, \ldots, b_{ℓ}).
- For $i=1 \ldots k$, remove the \leftarrow step with index a_{i} and insert it immediately before the \nearrow step with index $a_{i}+1$.
- For $j=\ell \ldots 1$, remove the \leftarrow step before the \nearrow step with index b_{j} and insert it immediately before the \leftarrow step with index b_{j}.

Kreweras excursions avoiding patterns of length 2

Pattern p	$\#\{$ Kreweras excursions of length $3 n$ avoiding $p\}$	OEIS	In bijection with
$\longleftarrow \leftarrow$	$1,2,11,85,782,8004, \ldots$	A135404	Gessel excursions
\nearrow	$1,2,11,85,782,8004, \ldots$	A135404	Gessel excursions
\longleftarrow	$1,1,5,37,332,3343, \ldots$	None	Gessel excursions ending with \downarrow
$\nearrow \nearrow$	$1,2,10,70,588,5544, \ldots$	A005568	Pólya excursions
\downarrow	$1,1,4,25,196,1764, \ldots$	A001246	Diagonal excursions

Coincidence?

Nature of generating functions? (Simplified)

Rational

$$
G(x)=\frac{p(x)}{q(x)}
$$

p, q polynomials
Algebraic $C(x)=1+x C(x)^{2}$
Catalan
$P(x, y)$ non-zero polynomial:

$$
P(x, G(x))=0
$$

$$
C(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Differentiably finite (D-finite)
$a_{i}(x)$ not all zero polynomials
$\sum_{i=0}^{r} a_{i}(x) G^{(i)}(x)=0$
r fixed integer

Transcendental $B(x)=\frac{x}{e^{x}-1} \quad$ Bernoulli numbers Not D-finite

$$
H(x)=\frac{1}{1-x} \log \left(\frac{1}{1-x}\right)
$$

Harmonic numbers

Nature of generating functions in specific cases

Pattern p	$\#$ KKreweras excursions of length $3 n$ avoiding $p\}$	OEIS	Nature of gen. func.
$\leftarrow \leftarrow$	$1,2,11,85,782,8004, \ldots$	A135404	Algebraic
	$1,2,11,85,782,8004, \ldots$	A135404	Algebraic
\nearrow	$1,1,5,37,332,3343, \ldots$	None	Algebraic
\nearrow	$1,2,10,70,588,5544, \ldots$	A005568	D-finite
\nearrow	$1,1,4,25,196,1764, \ldots$	A001246	D-finite

First three models: Algebraic
(using [Kauers-Koutschan-Zeilberger 2009] and [Bostan-Kauers 2009]) but not context-free [Banderier-Drmota 2015]: $4^{n} n^{-2 / 3}$ asymptotics.
Last two models: D-finite, but not algebraic.
Pólya walks: $C_{n} C_{n+1} \sim 4 \frac{16^{n}}{\pi n^{3}}$. Such asymptotics involving a n^{-3} factor are not compatible with the rather constrained asymptotics of algebraic function coefficients.

Generating functions: walks avoiding a pattern

For walks in \mathbb{Z}^{2} avoiding a
pattern, generating function
is rational.
For walks in $\mathbb{N} \times \mathbb{Z}$ avoiding
a pattern, generating function
is algebraic.

Generating functions: walks avoiding a pattern

For non-directed walks in \mathbb{N}^{2} avoiding a pattern, the generating function is not necessarily algebraic (or D-finite!).

Kauers-Yatchak's model, 2015 (steps are with multiplicity)

Mishna-Rechnitzer's model, 2009

Forbidding some steps in the top (algebraic) model leads to the bottom (differentially transcendental) model.

Conclusion

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!
Perhaps by following some patterns...

Conclusion

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!
Perhaps by following some patterns...

Open Problem

Given a stepset and a pattern, determine the nature of the generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction. . . (small steps?)

Conclusion

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!
Perhaps by following some patterns...

Open Problem

Given a stepset and a pattern, determine the nature of the generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction. . . (small steps?)

Open Problem

Find an example of a walk in \mathbb{N}^{2} and a pattern for which some adapted kernel method would work.

A highly symmetric walk?

Conclusion

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!
Perhaps by following some patterns...

Open Problem

Given a stepset and a pattern, determine the nature of the generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction. . . (small steps?)

Open Problem

Find an example of a walk in \mathbb{N}^{2} and a pattern for which some adapted kernel method would work.

A highly symmetric walk?

Thank you!

The kernel method: Dyck paths [Knuth 1968]

Let $F(z, u)$ be the generating function for Dyck paths with length marked by z and height marked by u, and $f_{n}(u)$ be defined as

$$
F(z, u)=\sum_{n \geq 0} f_{n}(u) z^{n}
$$

The allowed steps are $(1,1)$ and $(1,-1)$, and so at each time step, the evolution of the height is encoded by a multiplication by the (Laurent) polynomial $P(u)=u^{-1}+u$.

$$
f_{n+1}(u)=f_{n}(u) P(u)-\left\{u^{<0}\right\} f_{n}(u) P(u)=f_{n}(u) P(u)-u^{-1} f_{n}(0) .
$$

Summing over all n,

$$
\sum_{n \geq 0} f_{n+1}(u) z^{n+1}=\sum_{n \geq 0} f_{n}(u) P(u) z^{n+1}-\sum_{n \geq 0} u^{-1} f_{n}(0) z^{n+1}
$$

Simplifying,

$$
F(z, u)-f_{0}(u)=P(u) z F(z, u)-z u^{-1} F(z, 0)
$$

\rightsquigarrow functional equation:

$$
(1-z P(u)) F(z, u)=1-z / u F(z, 0)
$$

The kernel $1-z P(u)$ has two roots

$$
\begin{array}{lr}
u_{1}(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z}, & u_{2}(z)=\frac{1+\sqrt{1-4 z^{2}}}{2 z} \\
u_{1}(z) \rightarrow 0 \text { as } z \rightarrow 0, & u_{2}(z) \rightarrow \infty \text { as } z \rightarrow 0 .
\end{array}
$$

Plugging $u=u_{1}$, we get

$$
F(z, 0)=\frac{u_{1}(z)}{z}
$$

The kernel method: general paths [Banderier-Flajolet 2002]

	Ending anywhere	Ending at $y=0$
	Walk	Bridge
	$W(z, u)=\frac{1}{1-z P(u)}$	
	Meander $M(z, u)=\frac{u^{-c}}{1-z P(u)} \prod_{i=1}^{c}\left(u-u_{i}(z)\right)$	Excursion $E(z)=\frac{(-1)^{c-1}}{z} \prod_{i=1}^{c} u_{i}(z)$

$u_{i}=$ small roots (i.e. $u_{i}(z) \sim 0$ for $z \sim 0$) of the kernel $K(z, u)=1-z P(u)$

Enumeration of directed lattice paths (marking m

patterns) [Asinowski-Bacher-Banderier-Gittenberger-Roitner]

	Ending anywhere	Ending at $y=0$
	Walk	Bridge
	$W\left(z, u, v_{1}, \ldots, v_{m}\right)=\frac{\Delta(z, u)}{K(z, u)}$	$B\left(z, v_{1}, \ldots, v_{m}\right)=-\sum_{i=1}^{e} \frac{u_{i}^{\prime}}{u_{i}} \frac{\Delta\left(z, u_{i}\right)}{\partial_{z} K\left(z, u_{i}\right)}$
	Meander $M\left(z, u, v_{1}, \ldots, v_{m}\right)=\frac{\Delta(z, u)}{u^{e} K(z, u)} \prod_{i=1}^{e}\left(u-u_{i}(z)\right)$	Excursion $E\left(z, v_{1}, \ldots, v_{m}\right)=\frac{(-1)^{e+1}}{z} \prod_{i=1}^{e} u_{i}(z)$

$u_{i}=$ small roots of the kernel $K(z, u)=\operatorname{det}(I-z A) \quad "=1-z P(u)^{\prime \prime}$.
$\Delta(z, u)$ is the determinant of the mutual correlation matrix.

