From Kreweras to Gessel: A walk through patterns in the quarter plane.

Formal Power Series and Algebraic Combinatorics 2023 Joint work with: Andrei Asinowski and Cyril Banderier

Sarah J. Selkirk

21 July 2023

$$S = \{(1, 1), (0, -1), (-1, 0)\}.$$

$$S = \{(1, 1), (0, -1), (-1, 0)\}.$$

Excursion: (0,0) to (0,0)Meander: (0,0) to anywhere

How many such excursions are there?

$$\frac{4^n}{(n+1)(2n+1)}\binom{3n}{n}$$

$$S = \{(1, 1), (0, -1), (-1, 0)\}.$$

$$S = \{(1, 1), (0, -1), (-1, 0)\}.$$

$$S = \{(1, 1), (0, -1), (-1, 0)\}.$$

A brief history of Kreweras walks

(gen. function of stationary distr. algebraic)

A brief history of Kreweras walks walks in the quarter plane

Combinatorial structures where patterns are commonly studied:

(links with sorting algorithms, logic, number theory, bioinformatics, ...)

Typical questions:

- What is number of structures of size *n* with *j* occurrences of the pattern?
- Is there a nice formula for the generating function?
- Asymptotic behaviour, limit laws?
- Generation of these objects?

Kreweras excursions of length 6

Kreweras excursions of length 6 avoiding the pattern

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

Gessel excursions of length 4.

Kreweras excursions of length 6

Kreweras excursions of length 6 avoiding the pattern /.

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

Kreweras excursions of length 6 avoiding the pattern /.

1, 2, 11, 85, 782, 8004, ... OEIS A135404: "Gessel excursions"

Kreweras excursions of length 6 avoiding the pattern -----.

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not \perp$$
" = " $\ell \leftarrow and k \not \perp$ ".

- Mark each \leftarrow followed by a \leftarrow (local indices a_1, \ldots, a_k).

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not \perp$$
" = " $\ell \leftarrow and k \not \perp$ ".

- Mark each \leftarrow followed by a \leftarrow (local indices a_1, \ldots, a_k).

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

move (1) before 2

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"k ++ and
$$\ell \not \perp " = "\ell ++ and k \not \perp ".$$

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not \perp " = "\ell \leftarrow and k \not \perp ".$$

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not \perp " = "\ell \leftarrow and k \not \perp ".$$

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not a = "\ell \leftarrow and k \not a$$
".

2. For $j = \ell \dots 1$, remove the \leftarrow step before the \checkmark step with index b_j and insert it immediately before the \leftarrow step with index b_j .

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not a = "\ell \leftarrow and k \not a$$
".

2. For $j = \ell \dots 1$, remove the \leftarrow step before the \checkmark step with index b_j and insert it immediately before the \leftarrow step with index b_j .

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

"
$$k \leftarrow and \ell \not a = "\ell \leftarrow and k \not a$$
".

2. For $j = \ell \dots 1$, remove the \leftarrow step before the \checkmark step with index b_j and insert it immediately before the \leftarrow step with index b_j .

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

- Mark each \leftarrow followed by a \leftarrow (local indices a_1, \ldots, a_k).
- For i = 1...k, remove the ← step with index a_i and insert it immediately before the ✓ step with index a_i + 1.
- For j = ℓ...1, remove the ← step before the ✓ step with index b_j and insert it immediately before the ← step with index b_j.

Kreweras excursions avoiding patterns of length 2

Pattern p	# {Kreweras excursions	OEIS	In bijection with
	of length 3n avoiding p}	UEIS	
~ ~	1, 2, 11, 85, 782, 8004,	A135404	Gessel excursions
4	1, 2, 11, 85, 782, 8004,	A135404	Gessel excursions
7	1, 1, 5, 37, 332, 3343,	None	Gessel excursions ending with \downarrow
1	1, 2, 10, 70, 588, 5544,	A005568	Pólya excursions
, J	1, 1, 4, 25, 196, 1764,	A001246	Diagonal excursions

Coincidence?

Nature of generating functions? (Simplified)

Nature of generating functions in specific cases

Pattern p	# {Kreweras excursions	OEIS	Nature of
	of length 3n avoiding p}	ULIS	gen. func.
~~	1, 2, 11, 85, 782, 8004,	A135404	Algebraic
4	1, 2, 11, 85, 782, 8004,	A135404	Algebraic
7	1, 1, 5, 37, 332, 3343,	None	Algebraic
1	1, 2, 10, 70, 588, 5544,	A005568	D-finite
	1, 1, 4, 25, 196, 1764,	A001246	D-finite

First three models: Algebraic

(using [Kauers-Koutschan-Zeilberger 2009] and [Bostan-Kauers 2009]) but not context-free [Banderier-Drmota 2015]: $4^n n^{-2/3}$ asymptotics. Last two models: D-finite, but not algebraic.

Pólya walks: $C_n C_{n+1} \sim 4 \frac{16^n}{\pi n^3}$. Such asymptotics involving a n^{-3} factor are not compatible with the rather constrained asymptotics of algebraic function coefficients.

Generating functions: walks avoiding a pattern

Generating functions: walks avoiding a pattern

For non-directed walks in \mathbb{N}^2 avoiding a pattern, the generating function is not necessarily algebraic (or D-finite!).

Kauers-Yatchak's model, 2015 (steps are with multiplicity)

Mishna–Rechnitzer's model, 2009

Forbidding some steps in the top (algebraic) model leads to the bottom (differentially transcendental) model.

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!

Perhaps by following some patterns...

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!

Perhaps by following some patterns...

Open Problem

Given a stepset and a pattern, determine the nature of the generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction...(small steps?)

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!

Perhaps by following some patterns...

Open Problem

Given a stepset and a pattern, determine the nature of the generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction...(small steps?)

Open Problem

Find an example of a walk in \mathbb{N}^2 and a pattern for which some adapted kernel method would work.

A highly symmetric walk?

Open Problem

Find a "Proof from The Book" for the Kreweras enumeration!

Perhaps by following some patterns...

Open Problem

Given a stepset and a pattern, determine the nature of the generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction...(small steps?)

Open Problem

Find an example of a walk in \mathbb{N}^2 and a pattern for which some adapted kernel method would work.

A highly symmetric walk?

Thank you!

The kernel method: Dyck paths [Knuth 1968]

Let F(z, u) be the generating function for Dyck paths with length marked by z and height marked by u, and $f_n(u)$ be defined as

$$F(z, u) = \sum_{n\geq 0} f_n(u) z^n.$$

The allowed steps are (1,1) and (1,-1), and so at each time step, the evolution of the height is encoded by a multiplication by the (Laurent) polynomial $P(u) = u^{-1} + u$.

Summing over all *n*,

$$\sum_{n\geq 0} f_{n+1}(u) z^{n+1} = \sum_{n\geq 0} f_n(u) P(u) z^{n+1} - \sum_{n\geq 0} u^{-1} f_n(0) z^{n+1}$$

Simplifying,

$$F(z, u) - f_0(u) = P(u)zF(z, u) - zu^{-1}F(z, 0)$$

 \rightsquigarrow functional equation:

$$(1-zP(u))F(z,u) = 1-z/uF(z,0)$$

The kernel 1 - zP(u) has two roots

$$u_1(z) = \frac{1 - \sqrt{1 - 4z^2}}{2z}, \qquad u_2(z) = \frac{1 + \sqrt{1 - 4z^2}}{2z}.$$
$$u_1(z) \to 0 \text{ as } z \to 0, \qquad u_2(z) \to \infty \text{ as } z \to 0.$$
Plugging $u = u_1$, we get

$$F(z,0)=\frac{u_1(z)}{z}$$

The kernel method: general paths [Banderier-Flajolet 2002]

 $u_i = \text{small roots}$ (i.e. $u_i(z) \sim 0$ for $z \sim 0$) of the kernel K(z, u) = 1 - zP(u)

Enumeration of directed lattice paths (marking *m* patterns) [Asinowski–Bacher–Banderier–Gittenberger–Roitner]

 $\Delta(z, u)$ is the determinant of the mutual correlation matrix.