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Unravelling a formula!

S = {(1, 1), (0,−1), (−1, 0)}.

Excursion: (0, 0) to (0, 0)
Meander: (0, 0) to anywhere

How many such excursions are there?

4n

(n + 1)(2n + 1)

(
3n

n

)

Equivalence classes!

2-colouring

S = {(1, 2), (1,−1)} Ternary trees

4-colouring
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A brief history of Kreweras walks

1965

PhD Thesis
Kreweras

1986

Gessel
(lattice path interpretation, algebraicity)

1984

Flatto and Hahn
(gen. function of stationary distr. algebraic)

1983

Niederhausen
(simpler proof)

1981

Kreweras and
Niederhausen

(simplified proof)

2007

Bernardi
(bijection!)

2005

Bousquet-Mélou
(multivariable kernel method)
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A brief history of Kreweras walks walks in the quarter plane

1965

PhD Thesis
Kreweras

1986

Gessel
(lattice path interpretation, algebraicity)

1984

Flatto and Hahn
(gen. function of stationary distr. algebraic)

1983

Niederhausen
(simpler proof)

1981

Kreweras and
Niederhausen

(simplified proof)

2007

Bernardi
(bijection!)

1999

2010

Bousquet-Mélou and
Mishna

(general classification – “small steps”)

2013

2005

Bousquet-Mélou
(multivariable kernel method)
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Combinatorial structures where patterns are commonly
studied:

(links with sorting algorithms, logic, number theory, bioinformatics, . . . )

Typical questions:

What is number of structures of size n with j occurrences of the pattern?

Is there a nice formula for the generating function?

Asymptotic behaviour, limit laws?

Generation of these objects?
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Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6

avoiding the pattern .

1, 2, 11, 85, 782, 8004, . . . OEIS A135404: “Gessel excursions”

Gessel excursions of length 4.
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Patterns in walks in the quarter plane: A humble start

‘Shortcut’ bijection (Asinowski, Banderier, S.):

←→ ←→ ←→ ←→
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What about other patterns?

Kreweras excursions of length 6

avoiding the pattern .
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k and ℓ ” = “ℓ and k ”.

Mark each followed by a (local indices a1, . . . , ak).

Mark each preceded by a (local indices b1, . . . , bℓ).

1

2

3 4 5

6

12

3

456

(1, 4, 5)

(3, 6)
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k and ℓ ” = “ℓ and k ”.

1. For i = 1 . . . k, remove the step with index ai and insert it
immediately before the step with index ai + 1.

1

2

3 4 5

6

(1)

move (1) before 2

7→

5

6

(4)(5)

move (4) before 5

move (5) before 6

7→
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k and ℓ ” = “ℓ and k ”.

2. For j = ℓ . . . 1, remove the step before the step with index bj
and insert it immediately before the step with index bj .

3

6

3

6

7→

3

6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k and ℓ ” = “ℓ and k ”.

Mark each followed by a (local indices a1, . . . , ak).

Mark each preceded by a (local indices b1, . . . , bℓ).

For i = 1 . . . k, remove the step with index ai and insert it
immediately before the step with index ai + 1.

For j = ℓ . . . 1, remove the step before the step with index bj
and insert it immediately before the step with index bj .

7→ 7→
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Kreweras excursions avoiding patterns of length 2

Kreweras Gessel Pólya Diagonal

Pattern p
# {Kreweras excursions

of length 3n avoiding p}
OEIS In bijection with

1, 2, 11, 85, 782, 8004, . . . A135404 Gessel excursions

1, 2, 11, 85, 782, 8004, . . . A135404 Gessel excursions

1, 1, 5, 37, 332, 3343, . . . None
Gessel excursions

ending with ↓

1, 2, 10, 70, 588, 5544, . . . A005568 Pólya excursions

1, 1, 4, 25, 196, 1764, . . . A001246 Diagonal excursions

Coincidence?
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Nature of generating functions? (Simplified)
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Nature of generating functions in specific cases

Pattern p
# {Kreweras excursions

of length 3n avoiding p}
OEIS

Nature of

gen. func.

1, 2, 11, 85, 782, 8004, . . . A135404 Algebraic

1, 2, 11, 85, 782, 8004, . . . A135404 Algebraic

1, 1, 5, 37, 332, 3343, . . . None Algebraic

1, 2, 10, 70, 588, 5544, . . . A005568 D-finite

1, 1, 4, 25, 196, 1764, . . . A001246 D-finite

First three models: Algebraic
(using [Kauers–Koutschan–Zeilberger 2009] and [Bostan–Kauers 2009])
but not context-free [Banderier–Drmota 2015]: 4nn−2/3 asymptotics.

Last two models: D-finite, but not algebraic.

Pólya walks: CnCn+1 ∼ 4 16n

πn3 . Such asymptotics involving a n−3 factor
are not compatible with the rather constrained asymptotics of algebraic
function coefficients.

Sarah J. Selkirk University of Klagenfurt 14

https://
https://
https://


Generating functions: walks avoiding a pattern

For walks in Z2 avoiding a
pattern, generating function
is rational.

complement of regular expression

For walks in N × Z avoiding
a pattern, generating function
is algebraic.

pushdown automaton with single stack

For directed walks in N2

avoiding a pattern, generating
function is algebraic.

vectorial kernel method [Asinowski, Bacher, Banderier,
Gittenberger, Roitner]

For non-directed walks in N2

avoiding a pattern, gen. func-
tion is not necessarily algebraic.

Classification needed!
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Generating functions: walks avoiding a pattern

For non-directed walks in N2 avoiding a pattern, the gener-
ating function is not necessarily algebraic (or D-finite!).

Kauers–Yatchak’s model, 2015
(steps are with multiplicity)

1

1 2 1

2

11

Mishna–Rechnitzer’s model, 2009

Forbidding some steps in the top (algebraic) model leads to the bottom
(differentially transcendental) model.

Sarah J. Selkirk University of Klagenfurt 16



Conclusion

Open Problem

Find a “Proof from The Book” for the Kreweras enumeration!

Perhaps by following some patterns. . .

Open Problem

Given a stepset and a pattern, determine the nature of the generating
function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this direction. . . (small
steps?)

Open Problem

Find an example of a walk in N2 and a pattern for which some adapted
kernel method would work.

A highly symmetric walk? Thank you!
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The kernel method: Dyck paths [Knuth 1968]

Let F (z , u) be the generating function for Dyck paths with length
marked by z and height marked by u, and fn(u) be defined as

F (z , u) =
∑
n≥0

fn(u)z
n.

The allowed steps are (1, 1) and (1,−1), and so at each time step, the
evolution of the height is encoded by a multiplication by the (Laurent)
polynomial P(u) = u−1 + u.

• + • −
•

fn+1(u) = fn(u)P(u)− {u<0}fn(u)P(u) = fn(u)P(u)− u−1fn(0).

Sarah J. Selkirk University of Klagenfurt 18



Summing over all n,∑
n≥0

fn+1(u)z
n+1 =

∑
n≥0

fn(u)P(u)z
n+1 −

∑
n≥0

u−1fn(0)z
n+1

Simplifying,

F (z , u)− f0(u) = P(u)zF (z , u)− zu−1F (z , 0)

⇝ functional equation:

(1− zP(u))F (z , u) = 1− z/uF (z , 0)

The kernel 1− zP(u) has two roots

u1(z) =
1−
√
1− 4z2

2z
, u2(z) =

1 +
√
1− 4z2

2z
.

u1(z)→ 0 as z → 0, u2(z)→∞ as z → 0.
Plugging u = u1, we get

F (z , 0) =
u1(z)

z

Sarah J. Selkirk University of Klagenfurt 19



The kernel method: general paths [Banderier–Flajolet 2002]

Ending anywhere Ending at y = 0
Walk Bridge

U
n
co
n
st
ra
in
ed

W (z , u) =
1

1− zP(u)
B(z) = z

c∑
i=1

u′i (z)

ui (z)

Meander Excursion

C
on

st
ra
in
ed

Z ≥
0

M(z , u) =
u−c

1− zP(u)

c∏
i=1

(u − ui (z)) E (z) =
(−1)c−1

z

c∏
i=1

ui (z)

ui= small roots (i.e. ui (z) ∼ 0 for z ∼ 0) of the kernel K(z , u) = 1− zP(u)
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Enumeration of directed lattice paths (marking m
patterns) [Asinowski–Bacher–Banderier–Gittenberger–Roitner]

Ending anywhere Ending at y = 0
Walk Bridge

U
n
co
n
st
ra
in
ed

W (z , u, v1, . . . , vm) =
∆(z , u)

K (z , u)
B(z , v1, . . . , vm) = −

e∑
i=1

u′i
ui

∆(z , ui )

∂zK (z , ui )

Meander Excursion

C
on

st
ra
in
ed

Z ≥
0

M(z , u, v1, . . . , vm) =
∆(z , u)

ueK (z , u)

e∏
i=1

(u − ui (z)) E (z , v1, . . . , vm) =
(−1)e+1

z

e∏
i=1

ui (z)

ui= small roots of the kernel K (z , u) = det(I − zA) “ = 1− zP(u)′′.
∆(z , u) is the determinant of the mutual correlation matrix.
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