The multispecies zero range process and modified Macdonald polynomials

Arvind Ayyer (Indian Institute of Science), Olya Mandelshtam (U Waterloo), and James Martin (Oxford)

FPSAC 2023

July 21, 2023

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; q, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; q, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..
$P_{(2,2,1)}(X ; q, t)=m_{221}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{2111}+\frac{(1-t)^{2}\left(5 q^{2} t^{3}+6 q^{2} t^{2}+4 q t^{3}+3 q^{2} t+11 q t^{2}+t^{3}+q^{2}+11 q t+3 t^{2}+4 q+6 t+5\right)}{\left(1-q t^{3}\right)\left(1-q t^{2}\right)} m_{1111}$

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; q, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..
$P_{(2,2,1)}(X ; q, t)=m_{221}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{2111}+\frac{(1-t)^{2}\left(5 q^{2} t^{3}+6 q^{2} t^{2}+4 q t^{3}+3 q^{2} t+11 q t^{2}+t^{3}+q^{2}+11 q t+3 t^{2}+4 q+6 t+5\right)}{\left(1-q t^{3}\right)\left(1-q t^{2}\right)} m_{1111}$
- the P_{λ} 's are connected to a 1D particle model called the multispecies asymmetric simple exclusion process (ASEP) with parameter $0 \leq t \leq 1$ and particle types given by λ

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; q, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..
$P_{(2,2,1)}(X ; q, t)=m_{221}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{2111}+\frac{(1-t)^{2}\left(5 q^{2} t^{3}+6 q^{2} t^{2}+4 q t^{3}+3 q^{2} t+11 q t^{2}+t^{3}+q^{2}+11 q t+3 t^{2}+4 q+6 t+5\right)}{\left(1-q t^{3}\right)\left(1-q t^{2}\right)} m_{1111}$
- the P_{λ} 's are connected to a 1D particle model called the multispecies asymmetric simple exclusion process (ASEP) with parameter $0 \leq t \leq 1$ and particle types given by λ

$$
n=8, \quad \lambda=(3,2,2,2,1)
$$

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; q, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..
$P_{(2,2,1)}\left(X_{i} q, t\right)=m_{221}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{2111}+\frac{(1-t)^{2}\left(5 q^{2} t^{3}+6 q^{2} t^{2}+4 q t^{3}+3 q^{2} t+11 q t^{2}+t^{3}+q^{2}+11 q t+3 t^{2}+4 q+6 t+5\right)}{\left(1-q t^{3}\right)\left(1-q t^{2}\right)} m_{111}$
- the P_{λ} 's are connected to a 1D particle model called the multispecies asymmetric simple exclusion process (ASEP) with parameter $0 \leq t \leq 1$ and particle types given by λ

$$
n=8, \quad \lambda=(3,2,2,2,1)
$$

Corresponds to the state $\mu=(1,2,2,0,0,0,3,2)$

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; \boldsymbol{q}, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..
$P_{(2,2,1)}\left(X_{i} q, t\right)=m_{221}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{2111}+\frac{(1-t)^{2}\left(5 q^{2} t^{3}+6 q^{2} t^{2}+4 q t^{3}+3 q^{2} t+11 q t^{2}+t^{3}+q^{2}+11 q t+3 t^{2}+4 q+6 t+5\right)}{\left(1-q t^{3}\right)\left(1-q t^{2}\right)} m_{111}$
- the P_{λ} 's are connected to a 1D particle model called the multispecies asymmetric simple exclusion process (ASEP) with parameter $0 \leq t \leq 1$ and particle types given by λ

$$
n=8, \quad \lambda=(3,2,2,2,1)
$$

Corresponds to the state $\mu=(1,2,2,0,0,0,3,2)$

$$
\operatorname{prob}(X A B Y \rightarrow X B A Y)= \begin{cases}1, & A>B \\ t, & A<B\end{cases}
$$

Macdonald polynomials and hopping particles

- Macdonald polynomials (Macdonald '88) $P_{\lambda}(X ; q, t)$ are a remarkable family of symmetric functions with coefficients in $\mathbb{Q}[q, t]$ that simultaneously generalize Schur functions $(q=t)$, Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($t=q^{\alpha}$ and $q \rightarrow 1$), others..
$P_{(2,2,1)}(X ; q, t)=m_{221}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{2111}+\frac{(1-t)^{2}\left(5 q^{2} t^{3}+6 q^{2} t^{2}+4 q t^{3}+3 q^{2} t+11 q t^{2}+t^{3}+q^{2}+11 q t+3 t^{2}+4 q+6 t+5\right)}{\left(1-q t^{3}\right)\left(1-q t^{2}\right)} m_{1111}$
- the P_{λ} 's are connected to a 1D particle model called the multispecies asymmetric simple exclusion process (ASEP) with parameter $0 \leq t \leq 1$ and particle types given by λ

$$
n=8, \quad \lambda=(3,2,2,2,1)
$$

Corresponds to the state $\mu=(1,2,2,0,0,0,3,2)$

$$
\operatorname{prob}(X A B Y \rightarrow X B A Y)= \begin{cases}1, & A>B \\ t, & A<B\end{cases}
$$

- $P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)$ specializes to the partition function of the multispecies ASEP at $x_{1}=\cdots=x_{n}=q=1$ (Cantini-de Gier-Wheeler '15)

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.

$$
\begin{aligned}
n & =6 \\
\lambda & =(3,3,2,1,1) \\
\lambda^{\prime} & =(5,3,2)
\end{aligned}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

- state: read off the bottom row

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} particles in row j.
- the pairing determines a labeling

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- state: read off the bottom row
- weight: $\operatorname{wt}(M)$ depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

- Can be represented by a tableau, where each string is mapped to a column

multiline queues, the ASEP, and Macdonald polynomials

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\mathrm{wrap}}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

multiline queues, the ASEP, and Macdonald polynomials

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\mathrm{wrap}}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

Theorem (Cantini-deGier-Wheeler '15)
At $x_{1}=\cdots=x_{n}=q=1, P_{\lambda}$ specializes to the partition function of $\operatorname{ASEP}(\lambda, n)$:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\sum_{\tau \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\tau)
$$

multiline queues, the ASEP, and Macdonald polynomials

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\mathrm{wrap}}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

Theorem (Cantini-deGier-Wheeler '15)

At $x_{1}=\cdots=x_{n}=q=1, P_{\lambda}$ specializes to the partition function of $\operatorname{ASEP}(\lambda, n)$:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\sum_{\tau \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\tau)
$$

Theorem (Martin '18)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{ASEP}(\lambda, n)$ is

$$
\widetilde{\operatorname{Pr}}(\tau)=\sum_{M \in \mathrm{MLQ}(\tau)} w t(M)(t)
$$

multiline queues, the ASEP, and Macdonald polynomials

$$
\mathrm{wt}(M)=x^{M} t^{\text {skipped }} \prod_{\text {pairings }} q^{(\ell-r+1) \delta_{\text {wrap }}} \frac{1-t}{1-q^{\ell-r+1} t^{\text {free }}}
$$

Theorem (Cantini-deGier-Wheeler '15)

At $x_{1}=\cdots=x_{n}=q=1, P_{\lambda}$ specializes to the partition function of $\operatorname{ASEP}(\lambda, n)$:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\sum_{\tau \in S_{n} \cdot \lambda} \tilde{\operatorname{Pr}}(\tau)
$$

Theorem (Martin '18)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{ASEP}(\lambda, n)$ is

$$
\tilde{\operatorname{Pr}}(\tau)=\sum_{M \in \mathrm{MLQ}(\tau)} w t(M)(t)
$$

Theorem (Corteel-M-Williams '18)

The Macdonald polynomial is given by

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{M \in \operatorname{MLQ}(\lambda, n)} w t(M)(X ; q, t)
$$

modified Macdonald polynomials

- modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$ (Garsia-Haiman '96) are a combinatorial form of $P_{\lambda}(X ; q, t)$, obtained via plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

(J_{λ} is a scalar multiple of P_{λ})

modified Macdonald polynomials

- modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$ (Garsia-Haiman '96) are a combinatorial form of $P_{\lambda}(X ; q, t)$, obtained via plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

(J_{λ} is a scalar multiple of P_{λ})

$$
\begin{aligned}
& \tilde{H}_{(2,1)}=q t s_{(1,1,1)}+(q+t) s_{(2,1)}+s_{3} \\
& \tilde{H}_{(2,1)}=q^{2} t^{2} s_{(1,1,1,1)}+\left(q^{2} t+q t^{2}+q t\right) s_{(2,1,1)}+\left(q^{2}+t^{2}\right) s_{(2,2)}+(q t+q+t) s_{(3,1)}+s_{(4)}
\end{aligned}
$$

modified Macdonald polynomials

- modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$ (Garsia-Haiman '96) are a combinatorial form of $P_{\lambda}(X ; q, t)$, obtained via plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

(J_{λ} is a scalar multiple of P_{λ})
$\widetilde{H}_{(2,1)}=q t s_{(1,1,1)}+(q+t) s_{(2,1)}+s_{3}$
$\tilde{H}_{(2,1)}=q^{2} t^{2} s_{(1,1,1,1)}+\left(q^{2} t+q t^{2}+q t\right) s_{(2,1,1)}+\left(q^{2}+t^{2}\right) s_{(2,2)}+(q t+q+t) s_{(3,1)}+s_{(4)}$

- these have positive integer coefficients! (And many other remarkable properties)

modified Macdonald polynomials

- modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$ (Garsia-Haiman '96) are a combinatorial form of $P_{\lambda}(X ; q, t)$, obtained via plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

(J_{λ} is a scalar multiple of P_{λ})

$$
\begin{aligned}
& \tilde{H}_{(2,1)}=q t s_{(1,1,1)}+(q+t) s_{(2,1)}+s_{3} \\
& \tilde{H}_{(2,1)}=q^{2} t^{2} s_{(1,1,1,1)}+\left(q^{2} t+q t^{2}+q t\right) s_{(2,1,1)}+\left(q^{2}+t^{2}\right) s_{(2,2)}+(q t+q+t) s_{(3,1)}+s_{(4)}
\end{aligned}
$$

- these have positive integer coefficients! (And many other remarkable properties)

Our goal is to get a multiline queue-esque construction for $\widetilde{H}_{\lambda}(X ; q, t)$ by interpreting plethysm through multiline queues

From multiline queues to \widetilde{H}_{λ}

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

From multiline queues to \widetilde{H}_{λ}

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

this can be represented by a multiline queue with columns labeled $x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots$

From multiline queues to \widetilde{H}_{λ}

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

this can be represented by a multiline queue with columns labeled $x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots$

From multiline queues to \widetilde{H}_{λ}

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

this can be represented by a multiline queue with columns labeled $x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots$

From multiline queues to \widetilde{H}_{λ}

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

this can be represented by a multiline queue with columns labeled $x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots$

we get multiline diagrams with no restriction on the number of particles at each site!

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$ column content of the diagram \rightarrow the monomial weight x^{σ}

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$ column content of the diagram \rightarrow the monomial weight x^{σ} skipped particles \rightarrow queue inversions (quinv)

x			where $x<y<z($ cyclically $\bmod n)$
y	\cdots	z	

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$ column content of the diagram \rightarrow the monomial weight x^{σ} skipped particles \rightarrow queue inversions (quinv)

x		where $x<y<z($ cyclically $\bmod n)$	
y	\cdots	z	

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$ column content of the diagram \rightarrow the monomial weight x^{σ} skipped particles \rightarrow queue inversions (quinv)

x			where $x<y<z($ cyclically $\bmod n)$
y	\cdots	z	

From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

multiline diagram of type $(\lambda, n) \rightarrow$ a tableau $\sigma: \lambda^{\prime} \rightarrow[n]$ column content of the diagram \rightarrow the monomial weight x^{σ} skipped particles \rightarrow queue inversions (quinv)

x			
y	\ldots	z	where $x<y<z($ cyclically $\bmod n)$

Theorem (Ayyer-M-Martin '21)

Let λ be a partition. The modified Macdonald polynomial equals

$$
\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma: \lambda^{\prime} \rightarrow[n]} q^{\operatorname{maj}(\sigma)} t^{\text {quinv }(\sigma)} x^{\sigma}
$$

The particle process corresponding to multiline diagrams is the multispecies totally asymmetric zero range process!

The particle process corresponding to multiline diagrams is the multispecies totally asymmetric zero range process!

The state of the particle process is read off the bottom row of the diagram:

$$
\tau=(4,1|3| 4,1)
$$

multispecies totally asymmetric zero range process

- a zero range process (ZRP) is continuous-time 1D stochastic process (Spitzer '70). Each site can contain any number of particles, and particles hop from site j to site $j \pm 1$ with rates that depend only on the content of site j.

multispecies totally asymmetric zero range process

- a zero range process (ZRP) is continuous-time 1D stochastic process (Spitzer '70). Each site can contain any number of particles, and particles hop from site j to site $j \pm 1$ with rates that depend only on the content of site j.
- In our case, we have a circular lattice with n sites, particles of types $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, which are moving clockwise.

multispecies totally asymmetric zero range process

- a zero range process (ZRP) is continuous-time 1D stochastic process (Spitzer '70). Each site can contain any number of particles, and particles hop from site j to site $j \pm 1$ with rates that depend only on the content of site j.
- In our case, we have a circular lattice with n sites, particles of types $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, which are moving clockwise.

- A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the particles $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ on the n sites. (particles of the same type are indistinguishable)

multispecies totally asymmetric zero range process

- a zero range process (ZRP) is continuous-time 1D stochastic process (Spitzer '70). Each site can contain any number of particles, and particles hop from site j to site $j \pm 1$ with rates that depend only on the content of site j.
- In our case, we have a circular lattice with n sites, particles of types $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, which are moving clockwise.

- A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the particles $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ on the n sites. (particles of the same type are indistinguishable)
- transitions: a particle of type ℓ can jump from site j to site $j+1 \bmod n$ with rate

$$
x_{j}^{-1} t^{m}
$$

where m is the number of particles at site j that have larger type than ℓ.

multispecies totally asymmetric zero range process

- a zero range process (ZRP) is continuous-time 1D stochastic process (Spitzer '70). Each site can contain any number of particles, and particles hop from site j to site $j \pm 1$ with rates that depend only on the content of site j.
- In our case, we have a circular lattice with n sites, particles of types $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, which are moving clockwise.

- A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the particles $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ on the n sites. (particles of the same type are indistinguishable)
- transitions: a particle of type ℓ can jump from site j to site $j+1 \bmod n$ with rate

$$
x_{j}^{-1} t^{m}
$$

where m is the number of particles at site j that have larger type than ℓ.

- Kuniba-Maruyama-Okado (2015+) (and others) have studied many variants of the TAZRP (all of which are integrable!). The version we study was first studied by Takayama '15

TAZRP probabilities and tableaux

Theorem (Ayyer-M-Martin '21)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{TAZRP}(\lambda, n)$ is

$$
\widetilde{\operatorname{Pr}}(\tau)=\sum_{\substack{\sigma: \lambda^{\prime} \rightarrow[n] \\ \sigma \text { has type } \tau}} x^{\sigma} t^{\mathrm{quinv}(\sigma)}
$$

TAZRP probabilities and tableaux

Theorem (Ayyer-M-Martin '21)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{TAZRP}(\lambda, n)$ is

$$
\tilde{\operatorname{Pr}}(\tau)=\sum_{\substack{\sigma: \lambda^{\prime} \rightarrow[n] \\ \sigma \text { has type } \tau}} x^{\sigma} t^{\text {quinv }(\sigma)}
$$

Corollary

The partition function of $\operatorname{TAZRP}(\lambda, n)$ is

$$
\mathcal{Z}_{\lambda, n}\left(x_{1}, \ldots, x_{n} ; t\right)=\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)
$$

TAZRP probabilities and tableaux

Theorem (Ayyer-M-Martin '21)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{TAZRP}(\lambda, n)$ is

$$
\widetilde{\operatorname{Pr}}(\tau)=\sum_{\substack{\sigma: \lambda^{\prime} \rightarrow[n] \\ \sigma \text { has type } \tau}} x^{\sigma} t^{\text {quinv }(\sigma)}
$$

Corollary

The partition function of $\operatorname{TAZRP}(\lambda, n)$ is

$$
\mathcal{Z}_{\lambda, n}\left(x_{1}, \ldots, x_{n} ; t\right)=\tilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)
$$

Proof: construction of a Markov chain on tableaux that lumps to the TAZRP.

a Markov chain on tableaux: transitions

- Each cell in the tableau is equipped with an exponential clock.

a Markov chain on tableaux: transitions

- Each cell in the tableau is equipped with an exponential clock.
- A transition triggered by a cell c :

a Markov chain on tableaux: transitions

- Each cell in the tableau is equipped with an exponential clock.
- A transition triggered by a cell c : if $\sigma(c) \neq \sigma(\operatorname{South}(c))$, take the maximal contiguous (cyclically) increasing chain of cells above c,

a Markov chain on tableaux: transitions

- Each cell in the tableau is equipped with an exponential clock.
- A transition triggered by a cell c : if $\sigma(c) \neq \sigma(\operatorname{South}(c))$, take the maximal contiguous (cyclically) increasing chain of cells above c, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

a Markov chain on tableaux: transitions

- Each cell in the tableau is equipped with an exponential clock.
- A transition triggered by a cell c : if $\sigma(c) \neq \sigma(\operatorname{South}(c))$, take the maximal contiguous (cyclically) increasing chain of cells above c, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

Theorem (Ayyer-M-Martin '21)

The stationary distribution of the Markov process on tableaux $\sigma: \lambda^{\prime} \rightarrow[n]$ is

$$
\mathrm{wt}(\sigma)=x^{\sigma} t^{\mathrm{quinv}(\sigma)}
$$

a Markov chain on tableaux: transitions

- Each cell in the tableau is equipped with an exponential clock.
- A transition triggered by a cell c : if $\sigma(c) \neq \sigma($ South $(c))$, take the maximal contiguous (cyclically) increasing chain of cells above c, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

Theorem (Ayyer-M-Martin '21)

The stationary distribution of the Markov process on tableaux $\sigma: \lambda^{\prime} \rightarrow[n]$ is

$$
w t(\sigma)=x^{\sigma} t^{q u i n v(\sigma)}
$$

- if $c=(1, j)$ is in the bottom row, the rate $f(\sigma, c)$ matches the transition rate $f_{\sigma(c)}\left(\lambda_{j}\right)$ of the corresponding particle in the TAZRP.
- (when λ has repeated parts, we need to do some more work!)

Observables

Observables are macroscopic properties of the TAZRP process that can be measured e.g. through simulation. These include:

- stationary probabilities/the partition function
- the current
- densities of particle content at individual sites
- correlations of behaviors of tuples of particles or tuples of sites

Observables

Observables are macroscopic properties of the TAZRP process that can be measured e.g. through simulation. These include:

- stationary probabilities/the partition function
- the current
- densities of particle content at individual sites
- correlations of behaviors of tuples of particles or tuples of sites
what can we learn about the observables using the enhanced Markov chain on multiline diagrams/tableaux and the connection with modified Macdonald polynomials?

Current

The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.

Current

The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

$$
J=[m]_{t} \frac{\widetilde{H}_{\left(1^{m-1}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}
$$

Current

The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

$$
J=[m]_{t} \frac{\widetilde{H}_{\left(1^{m-1}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}
$$

This comes from the stationary probability of the 1 -species TAZRP:

$$
\pi(\tau)=\frac{1}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\left[\begin{array}{c}
m \\
\tau_{1}, \ldots, \tau_{n}
\end{array}\right]_{t} \prod_{i=1}^{n} x_{i}^{\tau_{i}}
$$

Current

The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

$$
J=[m]_{t} \frac{\widetilde{H}_{\left(1^{m-1}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}
$$

This comes from the stationary probability of the 1 -species TAZRP:

$$
\pi(\tau)=\frac{1}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\left[\begin{array}{c}
m \\
\tau_{1}, \ldots, \tau_{n}
\end{array}\right]_{t} \prod_{i=1}^{n} x_{i}^{\tau_{i}}
$$

Theorem (Ayyer-M-Martin '22+)

Let $\lambda=\left(1^{m_{1}}, \ldots, k^{m_{k}}\right)$, and let $1 \leq j \leq k$. The current of the particle of type j of the TAZRP of type λ on n sites is given by

$$
J=\left[m_{j}+\cdots+m_{k}\right]_{t} \frac{\widetilde{H}_{\left(1^{m_{j}+\cdots+m_{k}-1}\right)}}{\widetilde{H}_{\left(1^{m_{j}+\cdots+m_{k}}\right)}}-\left[m_{j+1}+\cdots+m_{k}\right]_{t} \frac{\widetilde{H}_{\left(1^{m_{j+1}+\cdots+m_{k}-1}\right)}}{\widetilde{H}_{\left(1^{m_{j+1}+\cdots+m_{k}}\right)}}
$$

Particle densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$
- $z_{j}^{(\ell)}$: random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$
- $\left\langle z_{j}^{(\ell)}\right\rangle$: the expectation in the stationary distribution

Particle densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$
- $z_{j}^{(\ell)}$: random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$
- $\left\langle z_{j}^{(\ell)}\right\rangle$: the expectation in the stationary distribution

Theorem (Ayyer-M-Martin '22)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m_{\ell}}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Particle densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$
- $z_{j}^{(\ell)}$: random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$
- $\left\langle z_{j}^{(\ell)}\right\rangle$: the expectation in the stationary distribution

Theorem (Ayyer-M-Martin '22)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m}{ }^{m}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Corollary

$\left\langle z_{1}^{(\ell)}\right\rangle$ is symmetric in the variables $\left\{x_{2}, \ldots, x_{n}\right\}$.

Particle densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$
- $z_{j}^{(\ell)}$: random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$
- $\left\langle z_{j}^{(\ell)}\right\rangle$: the expectation in the stationary distribution

Theorem (Ayyer-M-Martin '22)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m} \ell^{+}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Corollary

$\left\langle z_{1}^{(\ell)}\right\rangle$ is symmetric in the variables $\left\{x_{2}, \ldots, x_{n}\right\}$.
This generalizes to probabilities for fixed content on an interval of sites $1, \ldots, k$: these probabilities are symmetric in the variables $\left\{x_{k+1}, \ldots, x_{n}\right\}$!

Future directions

- a few other particle models have been found to be connected to Macdonald polynomials:
- inhomogeneous ASEP and Schubert polynomials Lam-Williams '11
- long-range ASEP and $P_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)$ Angel-Ayyer-Martin '23+
- multi-hopping multispecies TAZRP and $\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1,0\right), \widetilde{H}_{\lambda}(1, \ldots, 1 ; 1, t)$ Esipova-M '23+, Corteel-Keating '23+

What other particle processes can be described through Macdonald (or related) polynomials?

- Using multiline queues, Corteel-Haglund-M-Mason-Williams FPSAC ' 20 defined quasisymmetric Macdonald polynomials which refine the symmetric Macdonald polynomial $P_{\lambda}(X ; q, t)$. Can we use a parallel construction to define an interesting family of quasisymmetric polynomials that refine $\widetilde{H}_{\lambda}(X ; q, t)$?

Modified Macdonald polynomials and the multispecies zero range process: arXiv:2011.06117, arXiv:2209.09859

Symmetries in local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.

Symmetries in local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.

Symmetries in local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Example: let $\lambda=(2,2,1,1), n=4, \ell=2$, and $w=(2 \mid 1)$.

Configurations contributing to $\mathbb{P}_{\lambda, n}(\bar{w})$ are

$$
(2|1| 12 \mid \cdot), \quad(2|1| 1 \mid 2), \quad(2|1| 2 \mid 1), \quad(2|1| \cdot \mid 12)
$$

Symmetries in local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Example: let $\lambda=(2,2,1,1), n=4, \ell=2$, and $w=(2 \mid 1)$.

Configurations contributing to $\mathbb{P}_{\lambda, n}(\bar{w})$ are

$$
(2|1| 12 \mid \cdot), \quad(2|1| 1 \mid 2), \quad(2|1| 2 \mid 1), \quad(2|1| \cdot \mid 12)
$$

Theorem (Ayyer-M-Martin '22)

$\mathbb{P}_{\lambda, n}(\bar{w})$ is symmetric in the variables $\left\{x_{\ell+1}, \ldots, x_{n}\right\}$.

