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Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ
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n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ

2

2
1

2

3

0
0

0

1
t 1

t1

n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ

2

2
1

2

3

0
0

0

1
t 1

t1

n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ

2

2
1

2

3

0
0

0

1
t 1

t1

n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ

2

2
1

2

3

0
0

0

1
t 1

t1

n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ

2

2
1

2

3

0
0

0

1
t 1

t1

n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



Macdonald polynomials and hopping particles

Macdonald polynomials (Macdonald ’88) Pλ(X ; q, t) are a remarkable family of

symmetric functions with coefficients in Q[q, t] that simultaneously generalize

Schur functions (q = t), Hall-Littlewood polynomials (q = 0), Jack polynomials

(t = qα and q → 1), others..

P(2,2,1) (X ; q, t) = m221 +
(1 − t)(2 + q + t + 2qt)

1 − qt2
m2111 +

(1 − t)2 (5q2 t3 + 6q2 t2 + 4qt3 + 3q2 t + 11qt2 + t3 + q2 + 11qt + 3t2 + 4q + 6t + 5)

(1 − qt3 )(1 − qt2 )

m1111

the Pλ’s are connected to a 1D particle model called the multispecies

asymmetric simple exclusion process (ASEP) with parameter 0 ≤ t ≤ 1 and

particle types given by λ

2

2
1

2

3

0
0

0

1
t 1

t1

n = 8, λ = (3, 2, 2, 2, 1)

Corresponds to the state µ = (1, 2, 2, 0, 0, 0, 3, 2)

prob(XABY → XBAY ) =

{
1, A > B

t, A < B

Pλ(x1, . . . , xn; q, t) specializes to the partition function of the multispecies

ASEP at x1 = · · · = xn = q = 1 (Cantini–de Gier–Wheeler ’15)



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



combinatorics of the ASEP: multiline queues

the stationary distribution of the ASEP can be described using multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of particles on a

n × λ1 lattice, with λ′j particles in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

2

1

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (5, 3, 2)

α = (3, 1, 0, 1, 2, 3)

wt(M) = x2
1 x

2
2 x3x

2
4 x5x

2
6

qt2(1− t)3

(1− qt3)2(1− qt2)

2 4

6 1 3

6 1 5 2 3

∈ MLQ

( )3

1

01

2

3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

state: read off the bottom row

weight: wt(M) depends on the parameters t, q, x1, . . . , xn:

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Can be represented by a tableau, where each string is mapped to a column



multiline queues, the ASEP, and Macdonald polynomials

wt(M) = xM tskipped
∏

pairings

q(`−r+1)δwrap
1− t

1− q`−r+1tfree

Theorem (Cantini-deGier-Wheeler ’15)

At x1 = · · · = xn = q = 1, Pλ specializes to the partition function of ASEP(λ, n):

Pλ(1, . . . , 1; 1, t) =
∑

τ∈Sn·λ

P̃r(τ)

Theorem (Martin ’18)

Fix λ, n. The (unnormalized) stationary probability of τ ∈ ASEP(λ, n) is

P̃r(τ) =
∑

M∈MLQ(τ)

wt(M)(t).

Theorem (Corteel-M-Williams ’18)

The Macdonald polynomial is given by

Pλ(x1, . . . , xn; q, t) =
∑

M∈MLQ(λ,n)

wt(M)(X ; q, t)
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modified Macdonald polynomials

modified Macdonald polynomials H̃λ(X ; q, t) (Garsia–Haiman ’96) are a

combinatorial form of Pλ(X ; q, t), obtained via plethystic substitution:

H̃λ(X ; q, t) = tn(λ)Jλ

[
X

1− t−1
; q, t−1

]
(Jλ is a scalar multiple of Pλ)

H̃(2,1) = qt s(1,1,1) + (q + t)s(2,1) + s3

H̃(2,1) = q2t2s(1,1,1,1) + (q2t + qt2 + qt)s(2,1,1) + (q2 + t2)s(2,2) + (qt + q + t)s(3,1) + s(4)

these have positive integer coefficients! (And many other remarkable properties)

Our goal is to get a multiline queue-esque construction for H̃λ(X ; q, t) by interpreting

plethysm through multiline queues
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From multiline queues to H̃λ

H̃λ(X ; q, t) = fλ(q, t) Pλ

[
X

1− t−1
; q, t−1

]
= fλ(q, t) Pλ

(
x1, x1t

−1
, x1t

−2
, . . . , x2, x2t

−1
, x2t

−2
, . . . ; q, t−1

)

this can be represented by a multiline queue with columns labeled x1, x1t
−1, x1t

−2, . . . , x2, x2t
−1, x2t

−2, . . .

row 1

row 2

row 3

row 4

x1 x1t
−1 x1t

−2 · · · x2 x2t
−1 x2t

−2 · · · x3 x3t
−1 x3t

−2 · · ·

t−1 7→ t

row 1

row 2

row 3

row 4

x1 x2 x3

we get multiline diagrams
with no restriction on the number

of particles at each site!

Conj: Corteel–Haglund–M–Mason–Williams ’20
Proof: Ayyer–M–Martin ’21
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From multiline diagrams to tableaux

Each string is mapped to a column in the tableau:

row 1

row 2

row 3

row 4

x1 x2 x3

1 4 3 2 4

4 2 4 3

4 3 4

4 4

σ =

xσ = x6
1 x

3
2 x

5
3

quinv(σ) = 6

2 3

3 1 2

1 1 3 1

3 1 2 3 1

2

3

1

3

3

1

1

1

2

3 1

1

1 3

multiline diagram of type (λ, n) → a tableau σ : λ′ → [n]

column content of the diagram → the monomial weight xσ

skipped particles → queue inversions (quinv)

x

y z· · ·
where x < y < z (cyclically mod n)

Theorem (Ayyer–M–Martin ’21)

Let λ be a partition. The modified Macdonald polynomial equals

H̃λ(x1, . . . , xn; q, t) =
∑

σ:λ′→[n]

qmaj(σ)tquinv(σ)xσ
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The state of the particle process is read off the bottom row of the
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τ = (4, 1 | 3 | 4, 1)
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multispecies totally asymmetric zero range process

a zero range process (ZRP) is continuous-time 1D stochastic process (Spitzer ’70). Each

site can contain any number of particles, and particles hop from site j to site j ± 1 with

rates that depend only on the content of site j .

In our case, we have a circular lattice with n sites, particles of types {λ1, λ2, . . .}, which

are moving clockwise.

• •

•

• • • •

2, 2

1

2 3, 3, 1

∅ Here, n = 5, λ = (3, 3, 2, 2, 2, 1, 1)

τ = ( 2, 2
∣∣ · ∣∣ 3, 3, 1

∣∣ 2
∣∣ 1 )

A configuration τ = (τ1, . . . , τn) is any allocation of the particles {λ1, λ2, . . .} on the n

sites. (particles of the same type are indistinguishable)

transitions: a particle of type ` can jump from site j to site j + 1 mod n with rate

x−1
j tm,

where m is the number of particles at site j that have larger type than `.

Kuniba–Maruyama–Okado (2015+) (and others) have studied many variants of the TAZRP

(all of which are integrable!). The version we study was first studied by Takayama ’15
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∅ Here, n = 5, λ = (3, 3, 2, 2, 2, 1, 1)

τ = ( 2, 2
∣∣ · ∣∣ 3, 3, 1

∣∣ 2
∣∣ 1 )

A configuration τ = (τ1, . . . , τn) is any allocation of the particles {λ1, λ2, . . .} on the n

sites. (particles of the same type are indistinguishable)

transitions: a particle of type ` can jump from site j to site j + 1 mod n with rate

x−1
j tm,

where m is the number of particles at site j that have larger type than `.

Kuniba–Maruyama–Okado (2015+) (and others) have studied many variants of the TAZRP

(all of which are integrable!). The version we study was first studied by Takayama ’15



TAZRP probabilities and tableaux

Theorem (Ayyer–M–Martin ’21)

Fix λ, n. The (unnormalized) stationary probability of τ ∈ TAZRP(λ, n) is

P̃r(τ) =
∑

σ:λ′→[n]
σ has type τ

xσtquinv(σ).

Corollary

The partition function of TAZRP(λ, n) is

Zλ,n(x1, . . . , xn; t) = H̃λ(x1, . . . , xn; 1, t).

Proof: construction of a Markov chain on tableaux that lumps to the TAZRP.
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a Markov chain on tableaux: transitions

Each cell in the tableau is equipped with an exponential clock.

A transition triggered by a cell c:

if σ(c) 6= σ(South(c)), take the maximal

contiguous (cyclically) increasing chain of cells above c, and increment the

content of each cell by 1. (This is sometimes called a ringing path)
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Theorem (Ayyer–M–Martin ’21)

The stationary distribution of the Markov process on tableaux σ : λ′ → [n] is

wt(σ) = xσtquinv(σ)

if c = (1, j) is in the bottom row, the rate f (σ, c) matches the transition rate

fσ(c)(λj ) of the corresponding particle in the TAZRP.

(when λ has repeated parts, we need to do some more work!)
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Observables

Observables are macroscopic properties of the TAZRP process that
can be measured e.g. through simulation. These include:

stationary probabilities/the partition function

the current

densities of particle content at individual sites

correlations of behaviors of tuples of particles or tuples of sites

what can we learn about the observables using the enhanced
Markov chain on multiline diagrams/tableaux and the connection
with modified Macdonald polynomials?
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Current

The current of particle ` across the edge j is defined as the number of particles of type ` traversing

the edge j per unit of time in the large time limit.

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

J = [m]t
H̃(1m−1)(x1, . . . , xn; 1, t)

H̃(1m)(x1, . . . , xn; 1, t)
.

This comes from the stationary probability of the 1-species TAZRP:

π(τ) =
1

H̃(1m)(x1, . . . , xn; 1, t)

[ m

τ1, . . . , τn

]
t

n∏
i=1

xτii

Theorem (Ayyer-M-Martin ’22+)

Let λ = (1m1 , . . . , kmk ), and let 1 ≤ j ≤ k. The current of the particle of type j of the TAZRP

of type λ on n sites is given by

J =
[
mj + · · · + mk

]
t

H̃(
1mj +···+mk−1

)
H̃(1mj +···+mk )

−
[
mj+1 + · · · + mk

]
t

H̃(
1mj+1+···+mk−1

)
H̃(1mj+1+···+mk )
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Particle densities

Take TAZRP(λ, n) with content λ = (1m1 , 2m2 , . . . , kmk )

z(`)
j : random variable counting the number of particles of type ` at site j in a

configuration of TAZRP(λ, n)

〈z(`)
j 〉: the expectation in the stationary distribution

Theorem (Ayyer-M-Martin ’22)

For 1 ≤ ` ≤ k, the density of the `’th species at site 1 is given by

〈z(`)
1 〉 = x1∂x1 log

(
H̃(1m`+···+mk )(x1, . . . , xn; 1, t)

H̃(1m`+1+···+mk )(x1, . . . , xn; 1, t)

)
.

Corollary

〈z(`)
1 〉 is symmetric in the variables {x2, . . . , xn}.

This generalizes to probabilities for fixed content on an interval of sites 1, . . . , k: these

probabilities are symmetric in the variables {xk+1, . . . , xn}!
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Future directions

a few other particle models have been found to be connected to Macdonald

polynomials:

inhomogeneous ASEP and Schubert polynomials Lam–Williams ’11

long-range ASEP and Pλ(x1, . . . , xn; 1, t) Angel–Ayyer–Martin ’23+

multi-hopping multispecies TAZRP and H̃λ(x1, . . . , xn; 1, 0), H̃λ(1, . . . , 1; 1, t)

Esipova–M ’23+, Corteel–Keating ’23+

What other particle processes can be described through Macdonald (or related)

polynomials?

Using multiline queues, Corteel-Haglund-M-Mason-Williams FPSAC ’20 defined

quasisymmetric Macdonald polynomials which refine the symmetric Macdonald

polynomial Pλ(X ; q, t). Can we use a parallel construction to define an

interesting family of quasisymmetric polynomials that refine H̃λ(X ; q, t)?



T

ou

y nk

ha

Modified Macdonald polynomials and the multispecies zero range process:

arXiv:2011.06117, arXiv:2209.09859



Symmetries in local correlations

Fix λ, n, and 0 ≤ ` ≤ n, and let w be a configuration of the TAZRP on the first

` sites of type µ, where µ ⊆ λ.

Let Pλ,n(w) be the stationary probability of having exactly the content

w1, . . . ,w` on sites 1, . . . , `.

Example: let λ = (2, 2, 1, 1), n = 4, ` = 2, and w = (2|1).

Configurations contributing to Pλ,n(w) are

(2|1|12|·), (2|1|1|2), (2|1|2|1), (2|1| · |12)

Theorem (Ayyer-M-Martin ’22)

Pλ,n(w) is symmetric in the variables {x`+1, . . . , xn}.
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