Divisors, orbit harmonics, and DT invariants

Brendon Rhoades
joint work with Markus Reineke (Rühr-Universität Bochum) and Vasu Tewari (University of Hawaii \rightarrow University of Toronto)
UCSD

Outline

- Cohomological Hall algebra \mathcal{H}
- Donaldson-Thomas invariants
- DT invariants via polytopes

Quivers

Def: A quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a directed graph. Loops and multiple edges are allowed.

Physics

Kontsevich-Soibelman: Given a quiver Q, define the cohomological Hall algebra \mathcal{H}.

" There is an old proposal in String Theory ... which says that with a certain class of 4-dimensional quantum theories with $N=2$ spacetime supersymmetry one should be able to associate an algebra graded by the charge lattice, called the algebra of BPS states."

Quiver Representations

Def: A representation of $Q=\left(Q_{0}, Q_{1}\right)$ assigns \ldots

- a coordinate space $\mathbb{C}^{\gamma(i)}$ to each vertex i in Q_{0}, and
- a linear map $\mathbb{C}^{\gamma(i)} \rightarrow \mathbb{C}^{\gamma(j)}$ to each edge $i \rightarrow j$ in Q_{1}.

Dimension Vector

Every representation of Q has a dimension vector $\gamma: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$.

Dimension Vector Moduli Space

Given $\gamma: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$, let M_{γ} be the moduli space of all representations with dimension vector γ.

$$
\mathrm{M}_{\gamma} \cong \prod_{i \rightarrow j} \mathbb{C}^{\gamma(i) \times \gamma(j)}
$$

Equivariant cohomology

Obs: The moduli space M_{γ} carries an action of

$$
\mathrm{G}_{\gamma}:=\prod_{i \in Q_{0}} G L_{\gamma(i)}(\mathbb{C})
$$

by change-of-basis at each vertex. We have the equivariant cohomology ring

$$
\mathcal{H}_{\gamma}:=H_{\mathrm{G}_{\gamma}}^{\bullet}\left(\mathrm{M}_{\gamma}\right)
$$

with coefficients in \mathbb{C}.

Equivariant cohomology

Rmk: Can present \mathcal{H}_{γ} using polynomials.

$$
\mathcal{H}_{\gamma}=\mathbb{C}\left[x_{1}, x_{2}, y_{1}, z_{1}, z_{2}, z_{3}\right]^{S_{2} \times S_{1} \times S_{3}}
$$

Cohomological Hall Algebra

Def: [Kontsevich-Soibelman] Let Q be a quiver. The cohomological Hall algebra of Q is

$$
\mathcal{H}:=\bigoplus_{\gamma} \mathcal{H}_{\gamma}
$$

where γ ranges over all dimension vectors $Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$.
Multiplication: $\mathcal{H}_{\gamma_{1}} \otimes \mathcal{H}_{\gamma_{2}} \longrightarrow \mathcal{H}_{\gamma_{1}+\gamma_{2}}$

- Take direct sums of linear maps along each edge.
- Project along $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \mapsto\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right)$ at each vertex.
- Apply pushforward maps.

$$
H_{G_{\gamma_{1}} \times G_{\gamma_{2}}}^{\bullet}\left(\mathrm{M}_{\gamma_{1}} \times \mathrm{M}_{\gamma_{2}}\right) \xrightarrow{\sim} H_{G_{\gamma_{1}, \gamma_{2}}}^{\bullet}\left(M_{\gamma_{1}, \gamma_{2}}\right) \rightarrow H_{G_{\gamma_{1}, \gamma_{2}}}^{\bullet}\left(M_{\gamma}\right) \rightarrow H_{G_{\gamma}}^{\bullet}\left(M_{\gamma}\right)
$$

Cohomological Hall Algebra

Def: [Kontsevich-Soibelman] Let Q be a quiver. The cohomological Hall algebra of Q is

$$
\mathcal{H}:=\bigoplus_{\gamma} \mathcal{H}_{\gamma}
$$

with • product.
Rmk: For $f_{1} \in \mathcal{H}_{\gamma_{1}}$ and $f_{2} \in \mathcal{H}_{\gamma_{2}}$ with $\gamma=\gamma_{1}+\gamma_{2}$ we have

$$
f_{1} \cdot f_{2}=
$$

$$
\Sigma_{\gamma_{1}, \gamma_{2}} \cdot\left[f_{1}\left(\left(x_{i, \alpha}^{\prime}\right)\right) \cdot f_{2}\left(\left(x_{i, \alpha}^{\prime \prime}\right)\right) \frac{\prod_{i, j \in Q_{0}} \prod_{\alpha_{1}=1}^{\gamma_{1}(i)} \prod_{\alpha_{2}=1}^{\gamma_{2}(j)}\left(x_{j, \alpha_{2}}^{\prime \prime}-x_{i, \alpha_{1}}^{\prime}\right)^{a_{i j}}}{\prod_{i \in Q_{0}} \prod_{\alpha_{1}=1}^{\gamma_{1}(i)} \prod_{\alpha_{2}=1}^{\gamma_{2}(i)}\left(x_{i, \alpha_{2}}^{\prime \prime}-x_{i, \alpha_{1}}^{\prime}\right)}\right]
$$

where $a_{i j}$ counts arrows $i \rightarrow j$ and $\Sigma_{\gamma_{1}, \gamma_{2}} \in \mathbb{C}\left[S_{\gamma}\right]$ is a shuffling operator.

Cohomological Hall Algebra

Def: [Kontsevich-Soibelman] Let Q be a quiver. The cohomological Hall algebra of Q is

$$
\mathcal{H}:=\bigoplus_{\gamma} \mathcal{H}_{\gamma}
$$

with • product.

Q: What does \mathcal{H} look like?

Nice Quivers

Def: Call a quiver Q nice if

- Q is connected
- Q is symmetric
- each vertex of Q has at least one loop.

Efimov's Theorem

Thm: [Efimov] Let Q be a nice quiver. After deforming the product $\cdot \rightsquigarrow \star$ with a sign twist, \mathcal{H} is supercommutative and freely generated by a multigraded subspace $V=\bigoplus_{\gamma: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}} V_{\gamma}$. Each $V_{\gamma}=\bigoplus_{k} V_{\gamma, k}$ is a finite-dimensional singly-graded vector space.

DT invariants

Thm: [Efimov] Let Q be a nice quiver. The supercommutative algebra \mathcal{H} is freely generated by a multigraded subspace $V=\bigoplus_{\gamma: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}} V_{\gamma}$. Each $V_{\gamma}=\bigoplus_{k} V_{\gamma, k}$ is a finite-dimensional singly-graded vector space.

Def: If $\gamma: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$ is a dimension vector, the numerical and quantum Donaldson-Thomas invariants are

$$
\mathrm{DT}_{\gamma}:=\operatorname{dim} V_{\gamma} \quad \mathrm{DT}_{\gamma}(q):=\sum_{k} \operatorname{dim} V_{\gamma, k} \cdot q^{k}
$$

Q: How to compute $\operatorname{DT}_{\gamma}(q)$?

DT invariants

Thm: [Efimov] For Q nice, \mathcal{H} freely generated by $V=\bigoplus_{\gamma} V_{\gamma}$.

$$
\mathrm{DT}_{\gamma}:=\operatorname{dim} V_{\gamma} \quad \mathrm{DT}_{\gamma}(q):=\sum_{k} \operatorname{dim} V_{\gamma, k} \cdot q^{k}
$$

Cor: We have the power series identity

$$
\begin{aligned}
& \sum_{\gamma} \frac{\left(-q^{-1 / 2}\right)^{\chi}(\gamma, \gamma) \cdot \mathbf{x}^{\gamma}}{\prod_{i \in Q_{0}}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{\gamma(i)}\right)}= \\
& \operatorname{Exp}\left[\frac{1}{1-q} \sum_{\gamma}(-1)^{\chi Q(\gamma, \gamma)} \operatorname{DT}_{\gamma}\left(q^{-1}\right) \cdot \mathbf{x}^{\gamma}\right]
\end{aligned}
$$

where $\chi_{Q}(-,-)$ is the Euler form of Q and Exp is the plethystic exponential.

Nice Quivers to Graphs

Def: Given a nice quiver Q and a positive dimension vector $\gamma: Q_{0} \rightarrow \mathbb{Z}_{>0}$, let G_{γ} be the graph with

- a family \mathcal{F}_{i} of $\gamma(i)$ vertices for each $i \in Q_{0}$,
- $d-1$ edges between each of the vertices in \mathcal{F}_{i} if there are d loops at i in Q, and
- an edge between each vertex in \mathcal{F}_{i} and \mathcal{F}_{j} for all pairs $i \leftrightarrow j$ of arrows with $i \neq j$.

Break Divisors

Def: An (effective) divisor D on a graph G is a function $D: V(G) \rightarrow \mathbb{Z}_{\geq 0}$. The degree is $\operatorname{deg}(D):=\sum_{i \in V(G)} D(i)$.

Def: The genus of a connected graph G is

$$
g(G):=|E(G)|-|V(G)|+1
$$

Def: A divisor D on a connected graph G is a break divisor if

- $\operatorname{deg}(D)=g(G)$, and
- for all connected subgraphs $H \subseteq G$ we have $\operatorname{deg}\left(\left.D\right|_{H}\right) \geq g(H)$.

Break Divisors

Def: A divisor D on G is a break divisor if $\operatorname{deg}(D)=g(G)$ and $\operatorname{deg}\left(\left.D\right|_{H}\right) \geq g(H)$ for all connected $H \subseteq G$.

break

not break

Nice Quivers to Polytopes

Def: A divisor $D: V(G) \rightarrow \mathbb{Z}_{\geq 0}$ is a break divisor if

- $\operatorname{deg}(D)=g(G)$ and
- $\operatorname{deg}\left(\left.D\right|_{H}\right) \geq g(H)$ for all connected $H \subseteq G$.

Def: If Q is a nice quiver and $\gamma: Q_{0} \rightarrow \mathbb{Z}_{>0}$ is a dimension vector, let Z_{γ} be the locus of break divisors of G_{γ}.

Nice Quivers to Polytopes

Obs: Z_{γ} carries an action of the symmetry group of G_{γ}, and in particular of $S_{\gamma}=\prod_{i \in Q_{0}} S_{\gamma(i)}$.

Main Theorem: Numerical

Thm: [RRT] The numerical DT invariant DT_{γ} is the number of S_{γ}-orbits in Z_{γ}.

Two-Loop Case

Fact: We have $Z_{n}=\mathbb{Z}^{n} \cap P_{n}$ where

$$
P_{n}:=\operatorname{conv}\left(w \cdot(n-2, n-3, \ldots, 1,0,0): w \in S_{n}\right)
$$

is the trimmed permutohedron. The locus Z_{n} has size n^{n-2}.
Thm: [Konvalinka-Tewari] The number of S_{n}-orbits in Z_{n} is

$$
\frac{1}{n^{2}} \sum_{d \mid n}(-1)^{n+d} \mu(d)\binom{2 d-1}{d}
$$

(This sequence starts $1,1,1,2,5,13,35,100,300,925,2915 \ldots$)

Orbit Harmonics

Let $Z \subseteq \mathbb{C}^{n}$ be a finite point locus. We obtain a graded quotient ring $R(Z)$ as follows.

$$
\begin{aligned}
Z & \rightsquigarrow \mathbf{I}(Z)=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f(\mathbf{z})=0 \text { for all } \mathbf{z} \in Z\right\} \\
& \left.\rightsquigarrow \operatorname{gr} \mathbf{I}(Z) \quad \text { (associated graded ideal in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right) \\
& \rightsquigarrow R(Z):=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{gr} \mathbf{I}(Z)
\end{aligned}
$$

Main Theorem: Quantum

Thm: [RRT] Let $R\left(Z_{\gamma}\right)$ be the orbit harmonics quotient attached to Z_{γ}; it is a graded S_{γ}-module. The quantum DT invariant is the Hilbert series

$$
\operatorname{DT}_{\gamma}(q)=\operatorname{Hilb}\left(R\left(Z_{\gamma}\right)^{S_{\gamma}} ; q\right)
$$

of its S_{γ}-fixed subspace.
Suggestion: Find the graded S_{γ}-structure of $R\left(Z_{\gamma}\right)$.

Two-Loop Case

Fact: We have $Z_{n}=\mathbb{Z}^{n} \cap P_{n}$ where

$$
P_{n}:=\operatorname{conv}\left(w \cdot(n-2, n-3, \ldots, 1,0,0): w \in S_{n}\right)
$$

is the trimmed permutohedron. The locus Z_{n} has size n^{n-2}.

Thm: [RRT; Berget-R] The restriction of $R\left(Z_{n}\right)$ from S_{n} to S_{n-1} is a graded refinement of the S_{n-1} action on length $n-1$ parking functions. The graded character is $\left.\left(\omega \circ \mathrm{rev}_{q}\right) \nabla e_{n-1}\right|_{t \rightarrow 1}$.

Proof Ideas

Let Q be a nice quiver and $\gamma: Q_{0} \rightarrow \mathbb{Z}_{>0}$ satisfy $\sum_{i \in Q_{0}} \gamma(i)=n$.

- Show that $R\left(Z_{\gamma}\right)$ is a quotient of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by a power ideal I_{γ} [Ardila-Postnikov, Postnikov-Shapiro].
- Express $R\left(Z_{\gamma}\right) \cong I_{\gamma}^{\perp}$ as a Macaulay inverse system; this is generated by slim subgraph polynomials in G_{γ}.
- De-symmetrize the constructions of Efimov to show that

$$
\operatorname{DT}_{\gamma}(q)=\operatorname{Hilb}\left(\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J_{\gamma}\right)^{S_{\gamma}} ; q\right)
$$

where J_{γ} is the bond ideal corresponding to G_{γ}.

- Show that the composite

$$
R\left(Z_{\gamma}\right) \cong I_{\gamma}^{\perp} \hookrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J_{\gamma}
$$

is a graded S_{γ}-module isomorphism.

Thanks for listening!!

- M. Reineke, B. Rhoades, and V. Tewari. Zonotopal algebras, orbit harmonics, and Donaldson-Thomas invariants of symmetric quivers. Int. Math. Res. Not. IMRN, 2023, rnad033.

