Divisors, orbit harmonics, and DT invariants

Brendon Rhoades

joint work with Markus Reineke (Rühr-Universität Bochum) and Vasu Tewari (University of Hawaii \rightarrow University of Toronto)

UCSD

Outline

- \blacktriangleright Cohomological Hall algebra \mathcal{H}
- Donaldson-Thomas invariants

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

DT invariants via polytopes

Quivers

Def: A quiver $Q = (Q_0, Q_1)$ is a directed graph. Loops and multiple edges are allowed.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Physics

Kontsevich-Soibelman: Given a quiver Q, define the *cohomological Hall algebra* \mathcal{H} .

"There is an old proposal in String Theory ... which says that with a certain class of 4-dimensional quantum theories with N = 2 spacetime supersymmetry one should be able to associate an algebra graded by the charge lattice, called the algebra of BPS states."

Quiver Representations

Def: A representation of $Q = (Q_0, Q_1)$ assigns ...

- a coordinate space $\mathbb{C}^{\gamma(i)}$ to each vertex *i* in Q_0 , and
- ▶ a linear map $\mathbb{C}^{\gamma(i)} \to \mathbb{C}^{\gamma(j)}$ to each edge $i \to j$ in Q_1 .

- 日本 本語 本 本 田 本 王 本 田 本

Dimension Vector

Every representation of Q has a dimension vector $\gamma : Q_0 \to \mathbb{Z}_{\geq 0}$.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Dimension Vector Moduli Space

Given $\gamma: Q_0 \to \mathbb{Z}_{\geq 0}$, let M_{γ} be the moduli space of all representations with dimension vector γ .

$$\mathsf{M}_{\gamma} \cong \prod_{i \to j} \mathbb{C}^{\gamma(i) \times \gamma(j)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Equivariant cohomology

Obs: The moduli space M_{γ} carries an action of

$$\mathsf{G}_{\gamma} := \prod_{i \in Q_0} \mathit{GL}_{\gamma(i)}(\mathbb{C})$$

by change-of-basis at each vertex. We have the *equivariant* cohomology ring

$$\mathcal{H}_\gamma:=\mathit{H}^ullet_{\mathsf{G}_\gamma}(\mathsf{M}_\gamma)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with coefficients in \mathbb{C} .

Equivariant cohomology

Rmk: Can present \mathcal{H}_{γ} using *polynomials*.

$$\mathcal{H}_{\gamma} = \mathbb{C}[x_1, x_2, y_1, z_1, z_2, z_3]^{S_2 \times S_1 \times S_3}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Cohomological Hall Algebra

Def: [Kontsevich-Soibelman] Let Q be a quiver. The *cohomological Hall algebra* of Q is

$$\mathcal{H} := \bigoplus_{\gamma} \mathcal{H}_{\gamma}$$

where γ ranges over all dimension vectors $Q_0 \to \mathbb{Z}_{\geq 0}$.

Multiplication: $\mathcal{H}_{\gamma_1} \otimes \mathcal{H}_{\gamma_2} \longrightarrow \mathcal{H}_{\gamma_1+\gamma_2}$

Take direct sums of linear maps along each edge.

• Project along
$$\begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mapsto \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$
 at each vertex.

Apply pushforward maps.

$$H^{\bullet}_{\mathcal{G}_{\gamma_{1}}\times\mathcal{G}_{\gamma_{2}}}(\mathsf{M}_{\gamma_{1}}\times\mathsf{M}_{\gamma_{2}})\xrightarrow{\sim} H^{\bullet}_{\mathcal{G}_{\gamma_{1},\gamma_{2}}}(\mathcal{M}_{\gamma_{1},\gamma_{2}})\to H^{\bullet}_{\mathcal{G}_{\gamma_{1},\gamma_{2}}}(\mathcal{M}_{\gamma})\to H^{\bullet}_{\mathcal{G}_{\gamma}}(\mathsf{M}_{\gamma})$$

Cohomological Hall Algebra

Def: [Kontsevich-Soibelman] Let Q be a quiver. The *cohomological Hall algebra* of Q is

$$\mathcal{H} := \bigoplus_{\gamma} \mathcal{H}_{\gamma}$$

with \cdot product.

Rmk: For $f_1 \in \mathcal{H}_{\gamma_1}$ and $f_2 \in \mathcal{H}_{\gamma_2}$ with $\gamma = \gamma_1 + \gamma_2$ we have $f_1 \cdot f_2 = \sum_{\gamma_1, \gamma_2} \cdot \left[f_1((x'_{i,\alpha})) \cdot f_2((x''_{i,\alpha})) \frac{\prod_{i,j \in Q_0} \prod_{\alpha_1=1}^{\gamma_1(i)} \prod_{\alpha_2=1}^{\gamma_2(j)} (x''_{i,\alpha_2} - x'_{i,\alpha_1})^{a_{ij}}}{\prod_{i \in Q_0} \prod_{\alpha_1=1}^{\gamma_1(i)} \prod_{\alpha_2=1}^{\gamma_2(i)} (x''_{i,\alpha_2} - x'_{i,\alpha_1})} \right]$

where a_{ij} counts arrows $i \to j$ and $\Sigma_{\gamma_1,\gamma_2} \in \mathbb{C}[S_{\gamma}]$ is a shuffling operator.

Cohomological Hall Algebra

Def: [Kontsevich-Soibelman] Let Q be a quiver. The *cohomological Hall algebra* of Q is

$$\mathcal{H} := igoplus_{\gamma} \mathcal{H}_{\gamma}$$

with \cdot product.

Q: What does \mathcal{H} look like?

Nice Quivers

Def: Call a quiver *Q* nice if

- ► Q is connected
- ► Q is symmetric
- each vertex of Q has at least one loop.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Efimov's Theorem

Thm: [Efimov] Let Q be a nice quiver. After deforming the product $\cdot \rightsquigarrow \star$ with a sign twist, \mathcal{H} is supercommutative and freely generated by a multigraded subspace $V = \bigoplus_{\gamma: Q_0 \to \mathbb{Z}_{\geq 0}} V_{\gamma}$. Each $V_{\gamma} = \bigoplus_k V_{\gamma,k}$ is a finite-dimensional singly-graded vector space.

DT invariants

Thm: [Efimov] Let Q be a nice quiver. The supercommutative algebra \mathcal{H} is freely generated by a multigraded subspace $V = \bigoplus_{\gamma: Q_0 \to \mathbb{Z}_{\geq 0}} V_{\gamma}$. Each $V_{\gamma} = \bigoplus_k V_{\gamma,k}$ is a finite-dimensional singly-graded vector space.

Def: If $\gamma : Q_0 \to \mathbb{Z}_{\geq 0}$ is a dimension vector, the *numerical* and *quantum Donaldson-Thomas invariants* are

$$\mathrm{DT}_\gamma := \dim V_\gamma \qquad \mathrm{DT}_\gamma(q) := \sum_k \dim V_{\gamma,k} \cdot q^k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Q: How to compute $DT_{\gamma}(q)$?

DT invariants

Thm: [Efimov] For Q nice, \mathcal{H} freely generated by $V = \bigoplus_{\gamma} V_{\gamma}$.

$$\mathrm{DT}_\gamma := \mathsf{dim} \ V_\gamma \qquad \mathrm{DT}_\gamma(q) := \sum_k \mathsf{dim} \ V_{\gamma,k} \cdot q^k.$$

Cor: We have the power series identity

$$\sum_{\gamma} rac{(-q^{-1/2})^{\chi_{\mathcal{Q}}(\gamma,\gamma)} \cdot \mathbf{x}^{\gamma}}{\prod_{i \in Q_0} (1-q)(1-q^2) \cdots (1-q^{\gamma(i)})} = \ ext{Exp}\left[rac{1}{1-q} \sum_{\gamma} (-1)^{\chi_{\mathcal{Q}}(\gamma,\gamma)} \mathrm{DT}_{\gamma}(q^{-1}) \cdot \mathbf{x}^{\gamma}
ight]$$

where $\chi_Q(-,-)$ is the Euler form of Q and Exp is the plethystic exponential.

Nice Quivers to Graphs

Def: Given a nice quiver Q and a positive dimension vector $\gamma: Q_0 \to \mathbb{Z}_{>0}$, let G_{γ} be the graph with

- ▶ a family \mathcal{F}_i of $\gamma(i)$ vertices for each $i \in Q_0$,
- ► d 1 edges between each of the vertices in *F_i* if there are d loops at *i* in *Q*, and
- An edge between each vertex in *F_i* and *F_j* for all pairs *i* ↔ *j* of arrows with *i* ≠ *j*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Break Divisors

Def: An (effective) divisor D on a graph G is a function $D: V(G) \to \mathbb{Z}_{\geq 0}$. The degree is deg $(D) := \sum_{i \in V(G)} D(i)$.

Def: The *genus* of a connected graph G is

$$g(G) := |E(G)| - |V(G)| + 1.$$

Def: A divisor D on a connected graph G is a break divisor if

•
$$\deg(D) = g(G)$$
, and

For all connected subgraphs H ⊆ G we have deg(D |_H) ≥ g(H).

Break Divisors

Def: A divisor D on G is a *break divisor* if deg(D) = g(G) and deg $(D |_H) \ge g(H)$ for all connected $H \subseteq G$.

g(G) = 2

break

not break

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nice Quivers to Polytopes

Def: A divisor $D: V(G) \rightarrow \mathbb{Z}_{\geq 0}$ is a *break divisor* if

•
$$\deg(D) = g(G)$$
 and

• deg $(D |_H) \ge g(H)$ for all connected $H \subseteq G$.

Def: If Q is a nice quiver and $\gamma : Q_0 \to \mathbb{Z}_{>0}$ is a dimension vector, let Z_{γ} be the locus of break divisors of G_{γ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nice Quivers to Polytopes

Obs: Z_{γ} carries an action of the symmetry group of G_{γ} , and in particular of $S_{\gamma} = \prod_{i \in Q_0} S_{\gamma(i)}$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Main Theorem: Numerical

Thm: [RRT] The numerical DT invariant DT_{γ} is the number of S_{γ} -orbits in Z_{γ} .

Two-Loop Case

Fact: We have $Z_n = \mathbb{Z}^n \cap P_n$ where

$$\mathsf{P}_n := \operatorname{conv}(w \cdot (n-2, n-3, \dots, 1, 0, 0) : w \in S_n)$$

is the trimmed permutohedron. The locus Z_n has size n^{n-2} .

Thm: [Konvalinka-Tewari] The number of S_n -orbits in Z_n is

$$\frac{1}{n^2}\sum_{d\mid n}(-1)^{n+d}\mu(d)\binom{2d-1}{d}$$

(This sequence starts 1, 1, 1, 2, 5, 13, 35, 100, 300, 925, 2915...)

Orbit Harmonics

Let $Z \subseteq \mathbb{C}^n$ be a finite point locus. We obtain a graded quotient ring R(Z) as follows.

$$Z \rightsquigarrow \mathbf{I}(Z) = \{ f \in \mathbb{C}[x_1, \dots, x_n] : f(\mathbf{z}) = 0 \text{ for all } \mathbf{z} \in Z \}$$

$$\rightsquigarrow \operatorname{gr} \mathbf{I}(Z) \quad (\text{associated graded ideal in } \mathbb{C}[x_1, \dots, x_n])$$

$$\rightsquigarrow R(Z) := \mathbb{C}[x_1, \dots, x_n]/\operatorname{gr} \mathbf{I}(Z)$$

Main Theorem: Quantum

Thm: [RRT] Let $R(Z_{\gamma})$ be the orbit harmonics quotient attached to Z_{γ} ; it is a graded S_{γ} -module. The quantum DT invariant is the Hilbert series

$$\mathrm{DT}_{\gamma}(q) = \mathrm{Hilb}(R(Z_{\gamma})^{S_{\gamma}}; q)$$

of its S_{γ} -fixed subspace.

Suggestion: Find the graded S_{γ} -structure of $R(Z_{\gamma})$.

Two-Loop Case

Fact: We have $Z_n = \mathbb{Z}^n \cap P_n$ where

$$P_n := \operatorname{conv}(w \cdot (n-2, n-3, \dots, 1, 0, 0) : w \in S_n)$$

is the trimmed permutohedron. The locus Z_n has size n^{n-2} .

Thm: [RRT; Berget-R] The restriction of $R(Z_n)$ from S_n to S_{n-1} is a graded refinement of the S_{n-1} action on length n-1 parking functions. The graded character is $(\omega \circ rev_q)\nabla e_{n-1}|_{t\to 1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Proof Ideas

Let Q be a nice quiver and $\gamma: Q_0 \to \mathbb{Z}_{>0}$ satisfy $\sum_{i \in Q_0} \gamma(i) = n$.

- Show that R(Z_γ) is a quotient of C[x₁,...,x_n] by a power ideal I_γ [Ardila-Postnikov, Postnikov-Shapiro].
- Express R(Z_γ) ≅ I_γ[⊥] as a Macaulay inverse system; this is generated by slim subgraph polynomials in G_γ.
- De-symmetrize the constructions of Efimov to show that

$$\mathrm{DT}_{\gamma}(q) = \mathrm{Hilb}((\mathbb{C}[x_1,\ldots,x_n]/J_{\gamma})^{S_{\gamma}};q)$$

where J_{γ} is the *bond ideal* corresponding to G_{γ} .

Show that the composite

$$R(Z_{\gamma}) \cong I_{\gamma}^{\perp} \hookrightarrow \mathbb{C}[x_1, \ldots, x_n] \twoheadrightarrow \mathbb{C}[x_1, \ldots, x_n]/J_{\gamma}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a graded S_{γ} -module isomorphism.

Thanks for listening!!

M. Reineke, B. Rhoades, and V. Tewari. Zonotopal algebras, orbit harmonics, and Donaldson-Thomas invariants of symmetric quivers. Int. Math. Res. Not. IMRN, 2023, rnad033.

