Jonah Blasiak

Drexel University

Joint work with Mark Haiman, Jennifer Morse,
Anna Pun, George Seelinger, and Daniel Summers

FPSAC 2023



Root ideals

def

e Set of positive roots Ry = R (GL,) = {(i,j) :1<i<j<n}.

e A root ideal W C Ry is an upper order ideal of positive roots.

Example. ¥ = {(1,3),(1,4),(1,5), (1,6), (2,5), (2.6), (3,6)}




Root ideals

def

e Set of positive roots Ry = R (GL,) = {(i,j) |1 <i<j < n}.

e A root ideal W C Ry is an upper order ideal of positive roots.

Example. ¥ = {(1,3),(1,4),(1,5), (1,6), (2,5), (2.6), (3,6)}

# of root ideals of Ry(GL,) = the n-th Catalan number Fll(i”).

Example. The 5 root ideals of Ry(GL3):

:1:- H |




Can it Catalanify?

What happens if we replace a product over positive roots
with one over a root ideal?



Can it Catalanify?

What happens if we replace a product over positive roots
with one over a root ideal?

Weyl character formula s,,(2) = >_ ¢, W(Z“ [li<icj<n(l = zj/z,-)_1>
Modified Hall-Littlewoods H,,(X; q) = cr(z“ [l - qz,-/zj)—1>
Hall-Littlewood polynomials

Pu(Xi9) = g 0(2“ [Ti;(1 - qzj'/z,-))
Cauchy formula for Schubert polynomials
H1§i<j§n(xi +yj) = Zwesn Suw(xt, s Xn)Suwwo (Y, - - -5 ¥1)

Cauchy formula for keys [[;<;<;<, ﬁ,/yj =3 e Ka(x)K_a(y)

e Cauchy formula for nonsymmetric Macdonald polynomials of Mimachi and Noumi

H (thiyj; CI)oo H (tXIYJ oo H th,y, oo Zaa X q,t (y q 1’ t_l)

i<i (CRAZHE)ES i<j (xiyji @)oo 11 (Xi¥ii @)oo a€ENn

o Identity of Littlewood and Schur 3~y sy = [[;(1 —z)) " [];;(1 — ziz) ™"



Schur function straightening

e A(X) = ring of symmetric functions in X = x1,xp, - .
o hy(X)= Zi1<m<id Xi, - - - Xj, is the homogeneous symmetric function.
e Convention: hg =1 and hy =0 for d < 0.

Def. Schur functions may be defined for any v = (71,...,7n) € Z" by
SW(X) = det (h7i+f_i(X))1§i,j§n € /\(X)



Schur function straightening

Def. Schur functions may be defined for any v = (71,...,7,) € Z" by
sy (X) = det(h7i+j_,-(X))1SiJSn € N(X).

Proposition (Schur function straightening)

o (X) = sgn(Y + p)Ssort(y+p)—p(X) if ¥ + p has distinct nonnegative parts,
0 otherwise,
e p=(n—1,n—2,...,0),
o sort(8) = weakly decreasing sequence obtained by sorting [3,
e sgn(f3) = sign of the shortest permutation taking 3 to sort(f3).



Schur function straightening

Def. Schur functions may be defined for any v = (71,...,7,) € Z" by
sy (X) = det(h7i+j_,-(X))1SiJSn € N(X).

Proposition (Schur function straightening)

o (X) = sgn(Y + p)Ssort(y+p)—p(X) if ¥ + p has distinct nonnegative parts,
0 otherwise,
e p=(n—1,n—2,...,0),
sort(3) = weakly decreasing sequence obtained by sorting (3,
sgn(3) = sign of the shortest permutation taking 3 to sort(/3).

Example. n=4, v=(3,1,2,5).

v+p=1(31,2,5)+(3,2,1,0) = (6,3,3,5) has a repeated part.
Hence s3105 = 0.



Schur function straightening

Def. Schur functions may be defined for any v = (71,...,7,) € Z" by
sy (X) = det(h7i+j_,-(X))1SiJSn € N(X).

Proposition (Schur function straightening)

o (X) = sgn(Y + p)Ssort(y+p)—p(X) if ¥ + p has distinct nonnegative parts,
0 otherwise,
e p=(n—1,n—2,...,0),
sort(3) = weakly decreasing sequence obtained by sorting (3,
sgn(3) = sign of the shortest permutation taking 3 to sort(/3).

Example. n=4, v = (4,7,1,6).
Y+p=(47,1,6)+(3,2,1,0) = (7,9,2,6)
sort(y + p) = (9,7,6,2)
sort(y +p) — p = (6,5,5,2)

Hence s4716 = Sgs52-



Catalan functions

Def. The Weyl symmetrization operator is the linear map determined by
o:QzH, ...,z — AX),
7 = s(X),

where 27 = z]* ... z)". Extends to a map from Q[z, ..., zF![[4]].



Catalan functions

Def. The Weyl symmetrization operator is the linear map determined by
o:QzH, ...,z — AX),
7 = s(X),

where 27 = z]* ... z)". Extends to a map from Q[z, ..., zF![[4]].

Def. (Chen-Haiman 2008, Panyushev 2010) Given a root ideal ¥V C R,
and weight v € Z", the associated Catalan function is

HY (X; q) dé%(ﬂ I1 a- qz,-/zj)—l).

(i,j)ewv



Catalan functions

Def. The Weyl symmetrization operator is the linear map determined by
o:QzH, ...,z — AX),
7 = s(X),

where 27 = z]* ... z)". Extends to a map from Q[z, ..., zF![[4]].

Def. (Chen-Haiman 2008, Panyushev 2010) Given a root ideal ¥V C R,
and weight v € Z", the associated Catalan function is

def _
HY(X:q) Eo(z0 T 1 -qz/2)7").
(i.j)ev
Example.  Let p = (u1,...,pun) be a partition.
e Empty root ideal: H7(X; q) = s,(X).

e Full root ideal: HS*(X; q) = Hu(X; q) = >, Kau(g)sr(X), the
modified Hall-Littlewood polynomial.



Catalan functions

Example. For p = 3321, ¥ = {(1,3),(1,4),(2,4)},

3
3

2

1

HyY (X:q)
= o-( H (1- qz,-/zj)_lz“)

(i,j))ew



Catalan functions

Example. For p = 3321, ¥ = {(1,3),(1,4),(2,4)},

3
3

2

1

HyY (X:q)
= o-( H (1- qz,-/zj)_lz“)
(i,j))ev
= o((1—-qz1/z3) (1 — qz2/za) (1 — qz1/za) 12%)



Catalan functions

Example. For p = 3321, ¥ = {(1,3),(1,4),(2,4)},

3
3

2

1

Hy (X q)
= o-( H (1- qz,-/zj)_lz“>
(i,j)ew
= o((1—-qz1/z3) (1 — qz2/za) (1 — qz1/za) 12%)
= o (2392 4 (290 4 21 4 Z90) | G240 4 g50L | 55310

+ C]3(Z63_11 + Z5400 + Z6300) + q4(264—10 + Z73—10))



Catalan functions

Example. For p = 3321, ¥ = {(1,3),(1,4),(2,4)},

3
3

2

Hy (X q)
= a‘( H (1- qz,-/zj)_lz“>
(i,j)ew
= o((1—-qz1/z3) (1 — qz2/za) (1 — qz1/za) 12%)
= o (2392 4 (290 4 21 4 Z90) | G240 4 g50L | 55310
q3(25IE 4 Z5400 | g6300) | (4(564-10 | 573-10y)

= 53321 + q(S432 + 5a311) + q2(5441 + s531) + q>ssa.



Modified Hall-Littlewood polynomials H,(X; q)

H,.(X;1) = h,(X), the homogeneous symmetric function.

Schur expansion coefficients K ,,(q) are the Kostka-Foulkes polynomials:
Hu(X; q) = 225 Kau(@)sa(X).

e The K),(q) originated in the character theory of GL,(FFg).
e The K,(q) are certain affine Kazhdan-Lusztig polynomials.

e The H,(X; q) are the graded Frobenius series of certain quotients of
the ring of coinvariants Clyi, ..., yn]/(€1,- .., €n).



Modified Hall-Littlewood polynomials H,(X; q)

H,.(X;1) = h,(X), the homogeneous symmetric function.

Schur expansion coefficients K ,,(q) are the Kostka-Foulkes polynomials:
Hu(X; q) = 225 Kau(@)sa(X).

e The K),(q) originated in the character theory of GL,(FFg).
e The K,(q) are certain affine Kazhdan-Lusztig polynomials.

e The H,(X; q) are the graded Frobenius series of certain quotients of
the ring of coinvariants Clyi, ..., yn]/(€1,- .., €n).

Theorem (Lascoux-Schiitzenberger 1978)
For any partition p,

HM(X; t) = Z tcharge( 7—)Sshape( T) (X)7
T

the sum over semistandard tableaux T of content p.



Modified Hall-Littlewood polynomials

Hi111
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Modified Hall-Littlewood polynomials

Hi111
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H,

Modified Hall-Littlewood polynomials

Ha1 Ho Ho11
[1]1]1]2] [1]1]2]2]

Hx = s + qs31 + G°sa

Hi111
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Modified Hall-Littlewood polynomials

Ha Ha1 Ho Ho11 Hi111
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2] 2] 3] [4]
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Modified Hall-Littlewood polynomials

Ha Ha1 Ho Ho11
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Hi111 = s1111 + gso11 + ¢(s22 + s31) +
q3(s31+5211)+G* (s31+522)+G%s31+9%34
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Catalan functions

Catalan functions

e contain the modified Hall-Littlewood polynomials H,,(X; q).

e contain the parabolic Hall-Littlewood polynomials studied by
A. N. Kirillov-Schilling-Shimozono, Schilling-Warnaar, Shimozono,
Shimozono-Weyman, Shimozono-Zabrocki around 2000.

e contain the k-Schur functions s,(f)(X; q).
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Catalan functions

e contain the modified Hall-Littlewood polynomials H,,(X; q).

e contain the parabolic Hall-Littlewood polynomials studied by
A. N. Kirillov-Schilling-Shimozono, Schilling-Warnaar, Shimozono,
Shimozono-Weyman, Shimozono-Zabrocki around 2000.

e contain the k-Schur functions s,(f)(X; q).

e are graded Euler characteristics of vector bundles on the flag variety.
Cohomology vanishing results proven by Broer (1994), Hague (2009),
Panyushev (2010).



Catalan functions

Catalan functions

e contain the modified Hall-Littlewood polynomials H,,(X; q).

e contain the parabolic Hall-Littlewood polynomials studied by
A. N. Kirillov-Schilling-Shimozono, Schilling-Warnaar, Shimozono,
Shimozono-Weyman, Shimozono-Zabrocki around 2000.

e contain the k-Schur functions s,(f)(X; q).

e are graded Euler characteristics of vector bundles on the flag variety.
Cohomology vanishing results proven by Broer (1994), Hague (2009),
Panyushev (2010).

e are Schur positive for partition y, conjectured by Chen-Haiman
(2008), proven by B.-Morse-Pun (2020).



k-Schur functions

The k-Schur functions sl(lk) (X; q) arose in the study of
Lapointe-Lascoux-Morse (2000) on the Macdonald positivity conjecture.

k-Schur functions {sﬁk)(X; 1)}u1§k form a basis for Q[hy, ..., hx] C A(X).
Lam (2008) and Lapointe-Morse (2007) connected them to affine

Schubert calculus. At g = 1, they represent Schubert classes in the
homology of the affine Grassmannian Grg, ;.



k-Schur Catalan functions
Def. For a partition p of length < n and with g < k, define the root ideal
A*(u) = {(i,J) € Ri(GLn) : k— pi+i < j}.
“(#non-roots in row i) + pj = k"
Theorem (B.-Morse-Pun-Summers 2018)

The k-Schur functions have the following description as Catalan functions:
k
s$(X; q) = HY (X q).

Example. For k =6 and y = 65532111,




Positive Branching

Theorem (B.-Morse-Pun-Summers 2018)

The k-Schur functions sﬁk)(X ; q) satisfy

shift invariance eLs(kﬂ) =5k fory w) < n,
n >u+1 "

(positive branching) sflk) = Z ar.(q) s§k+1) with ay,(q) € N[q],
A

(Schur positivity) sflk) = Z cu(q) sy with c\u(q) € N[q].
A



Catalania

Goal: Given a class of symmetric functions, realize it as a subfamily
of Catalan functions or variations of Catalan functions.

Realizing such a class as part of the larger set of Catalan functions
provides stepping stones for an inductive approach to Schur positivity.



Root expansion

Prop. Suppose that & € W with W'\ « a root ideal. Then

\4 \4 \4
H,u = H,u \a + qu+e,~—eJ~'

Example. For a =(2,3),




Root expansion tree




Root expansion tree




Root expansion tree




Root expansion tree




Root expansion tree
AN
k-
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e




Root expansion tree




A Littlewood-Richardson rule via root expansion

Conjecture. Any Catalan function of partition weight has a root
expansion tree with leaves which are 0 or single Schur functions.

Prop. For a rectangular root ideal W = {(i,j) € Ry : i < d,j > d},

H;\LU(X; 1) = S(ut,oos110) Sagss oo tin)

Example.

= |q:1 532521

Using root expansion, we can obtain a rule for s, . when

[t is a partition.

i) S(Bd 15 s on)



Root expansion and affine Bruhat order

Theorem
The k-Schur functions have the following description as Catalan functions:

s$(X; g) = HAW(X; q).

Proof idea:
k

e Show that the k-Schur Catalan functions HHA (“)(X; q) satisfy a dual

Pieri rule.
K(p—e:

e Show using root expansion that H‘LA_EIH 6’)(X; q) straightens to 0 or a
single k-Schur Catalan function H)\Ak()‘)(X: q) for partition \.

e Expanding to the class of Catalan functions yields lots of intermediate
objects!

e Combinatorics of the strong Bruhat order of the affine symmetric
group is somehow encoded in the definition of AX(y).



Macdonald polynomials

The modified Macdonald polynomials F/u = I:IN(X; g, t) are Schur positive
symmetric functions over Q(q, t).

Example.
Ha1 = s34+ (g + t+g°)s31 + (gt + ¢°)so2 + (gt + ¢°t + ¢°)so11 + @t sum

t'| B H]EH H] E

oo Ho H—HEH H:!
qO ql q2 q3




Macdonald polynomials

The modified Macdonald polynomials F/u = I:IN(X; g, t) are Schur positive
symmetric functions over Q(q, t).

° S~pecia|ize to modified Hall-Littlewood polynomials:
H,(X;0,t) = H,(X; t) and H,(X; q,0) = Hy(X; q).

Example.
Ha1 = s4+ (g + t+ ¢°)ss1 + (gt + ¢°)s22 + (gt + ¢°t + ¢*)s211 + @t s11n

t'| B H]EH H] E

oo Ho H—HEH H:!
qO ql q2 q3

I:I31(X; 07 t) = H31(X; t)




Macdonald polynomials

The modified Macdonald polynomials I:Iu = I:IN(X; g, t) are Schur positive
symmetric functions over Q(q, t).

° S~pecia|ize to modified Hall-Littlewood polynomials:
H.(X;0,t) = Hu(X;t) and H,(X;q,0) = Hy(X; q).

Example.
Ha1 = s4+ (g + t+ ¢°)ss1 + (gt + ¢°)s22 + (gt + ¢°t + ¢*)s211 + @t s11n

t'| B H]EH H] E

oo Ho HT\EE\ H:v
qO ql q2 q3

F31(X; q,0) = Ha11(X; q)




Macdonald polynomials

The modified Macdonald polynomials I:Iu = I:IN(X; g, t) are Schur positive
symmetric functions over Q(q, t).

e Specialize to modified Hall-Littlewood polynomials:
H,(X;0,t) = Hu(X; t) and H,(X;q,0) = H.(X;q).
e Bigraded Frobenius series of S,-submodules of
Q[x1,. -, Xny¥1,-..,yn] called Garsia-Haiman modules.

Example.
Ha1 = s4+ (g + t+ ¢°)ss1 + (gt + ¢°)s22 + (gt + ¢°t + ¢*)s211 + @t s11n

t'| B H]EH H] E

oo Ho H’!‘IEE H:l
qO ql q2 q3

F31(X; q,0) = Ha11(X; q)




The nabla operator

Def. V is the linear operator on symmetric functions satisfying
VA, = t"g" I, where n(i) = 3°,(i — 1)pi.
e Ve, is the bigraded Frobenius series of the ring of diagonal
coinvariants Q[x1, ..., Xn, Y1, -, ¥n]/Z, where Z is the ideal
generated by Sp-invariant polynomials with no constant term.

Example.
Ves = 53+ (q+t+q® +qt + t2)sy + (gt + ¢° + ¢*t + qt® + t3)s1

t3ﬁ

2lg

1

tH H Ehﬁ H

O B B H
qO ql q2 q3



Positivity and representation theory related to nabla

Schur combinatorial formula representation
positive Conjecture/Proved theory
Ve v HHLRU 05
Shuffle conj/thm Carlsson-Mellit 15 Haiman 02
Ve v HHLRU 05
Mellit 16 Haiman 02
emn- (—1"1) v Gorsky-Negut 13 Hikita 12
€©km, kn * (—lk("+1)) v Bergeron-Garsia-Leven-Xin 14
km, kn-shuffle Mellit 16
VHy v Haglund-Morse-Zabrocki 10
compositional shuffle Carlsson-Mellit 15
+Vpk v Loehr-Warrington 07
square paths Sergel 16
+Vmy conj Sergel 18 (hook \)
+Vsy v Loehr-Warrington 07
BHMPS 21

Building off work by Armstrong, Can-Loehr, Egge-Haglund-Kremer-Killpatrick,
Garsia-Haglund, Garsia-Xin-Zabrocki, Hicks, Lenart, Loehr-Remmel, and many others.



Catalanimals

Def. The Catalanimal indexed by Rq, R, Rgs € Ry and € Z" is

2" [T jyer, (1 —atzi/z) >

H(Rq, Re, Rat. 1) :a<
’ ’ H(i,j)GRq (1 - qz,-/zj) H(i,j)eRt (1 — tz,-/zj)



Catalanimals

Def. The Catalanimal indexed by Rq, R, Rgs € Ry and € Z" is

2" [1(i jyera (1 - qtzi/z) >

H(Rq, Re, Rat. 1) :a<
’ ’ H(i7.j)€Rq (1 - qz,-/zj) H(i,j)eRt (1 — tz,-/zj)

Example. With n =3,

HRy Ry, {(1,3)}, (110) = o

2111(1 — qt21/23) >
[li<icj<3( — qzi/Z)(1 — tzi/z)



Catalanimals

Def. The Catalanimal indexed by Rq, R, Rgs € Ry and € Z" is

2" [1(i jyera (1 - qtzi/z) >

H(Rq, Re, Rat. 1) :a<
’ ’ H(i7.j)€Rq (1 - qz,-/zj) H(i,j)eRt (1 — tz,-/zj)

Example. With n =3,
21 (1 — gtz/z3)
H(R:, Ry, {(1,3)}, (111)) = o )
(Re: R [heroyes(@ — a2i/2)(1 — t21/2)
= 51+ (q+t+q° +qt + t2)so1 + (gt + ¢ + ¢°t + qt> + t3)s3



Catalanimals

Def. The Catalanimal indexed by Rq, R, Rgs € Ry and € Z" is

2" [T jyer, (1 —atzi/z) >

H(Rq, Re, Rat. 1) :a<
’ ’ H(i7.j)€Rq (1 - qz,-/zj) H(i,j)eRt (1 — tz,-/zj)

Example. With n =3,
21111 — gtz /z
H(R+7 R+7{(173)}7(111)) = U(Hl o 3(1(_1 qzq/t.zl)/(13)_ tZ'/Z')>
<igj< 7<) =

= s+ (g +t+¢° +qt+ t)su + (gt +¢° + ¢*t + gt* + )5
ZOJVE3.



The Ve, Catalanimal

Def. The Ve, Catalanimal H(Rq, R, Rqt, 1t) is given by
L] q = Rt = R_,’_'
® Rge={(i,j) € Ry i <j—1},
e weight p = 1".

Example. The Ve, Catalanimal for n = 5:




The Ve, Catalanimal

Def. The Ve, Catalanimal H(Rq, R, Rqt, 1t) is given by
[} q = Rt = R_,’_'
® Ry ={(i,j) € Ry i <j—1},
e weight p=1".

Example. The Ve, Catalanimal for n = 5:

Building off work of Negut and Schiffmann-Vasserot on the shuffle algebra,
Theorem (B.-Haiman-Morse-Pun-Seelinger 2021)

21+ Zn[Licjy (1 — qtzi/z) )
i<j (1 - qzi/zj) Hi<j (1 - tzi/zj) '

wVen = H(Ry, Ry, Rg, 17) = U(H



The Vs, Catalanimal

Def. For partition A, define the Vsy Catalanimal H(Rq, Rt, Rgt, f) by
® R—i—QRq:RtQthy

Ry \ Rq = pairs of boxes in the same diagonal,

Rq \ Rqt = pairs going between adjacent diagonals,

w: fill each diagonal D of A with

1 + x(D contains a row start) — x(D contains a row end).

Listing this filling in diagonal reading order gives p.

Example. The Vs) Catalanimal for A = 433:




The Vs, Catalanimal

Def. For partition A, define the Vsy Catalanimal H(Rq, Rt, Rgt, f) by
® R—i—QRq:RtQthy

Ry \ Rq = pairs of boxes in the same diagonal,

Rq \ Rqt = pairs going between adjacent diagonals,

w: fill each diagonal D of A with

1 + x(D contains a row start) — x(D contains a row end).

Listing this filling in diagonal reading order gives p.

Example. The Vs) Catalanimal for A = 433:

i, as a filling of A




The Vs, Catalanimal

Example. The Vs) Catalanimal for A = 433:

Theorem (B.-Haiman-Morse-Pun-Seelinger 2021)

For a partition A, let H(Rq, Ry, Rqt, j1) be the Catalanimal constructed
above. Then for some ¢\ € +q*t%,

2 [Lijyer, (1 —qt 2)
cxwVsy = H(Rg, Rt, R aﬂ):U( - = 7 z )
@t [Liijyer, (1 —a z_,') iijer (1t 711)



Results arising from Catalanimal formulas

New proof of the shuffle theorem.
A shuffle theorem for paths under any line.

Proof of the Loehr-Warrington conjecture,
a Schur positive formula for Vs;.

Proof of the extended Delta conjecture of Haglund-Remmel-Wilson.
A Catalan-style formula for the modified Macdonald polynomials.

A connection between Catalanimals and the shuffle algebra.



Catalan-style formulas

have obtained Catalan-style formulas for

k-Schur functions s;(Lk)(X; q) = HHN(“)(X; q).
K-theoretic k-Schur functions.

Ven, Vsy, VHy, and V(LLT polynomial).
AhZAgken from the extended Delta conjecture.

Modified Macdonald polynomials I:Iu(X; q,t).



Catalania

Research directions:

(1) Find Catalan-style formulas for a known class of polynomials.
(2) Study the broader class of functions uncovered in (1).
(3) Use Catalan-style formulas to prove positivity.

e Develop root expansion techniques.

e Find Cauchy formulas for expanding Catalan-style formulas.



Can it Catalanify?

What happens if we replace a product over positive roots
with one over a root ideal?

Weyl character formula s,,(2) = >_ ¢, W(Z“ [li<icj<n(l = zj/z,-)_1>
Modified Hall-Littlewoods H,,(X; q) = cr(z“ [l - qz,-/zj)—1>
Hall-Littlewood polynomials

Pu(Xi9) = g 0(2“ [Ti;(1 - qzj'/z,-))
Cauchy formula for Schubert polynomials
H1§i<j§n(xi +yj) = Zwesn Suw(xt, s Xn)Suwwo (Y, - - -5 ¥1)

Cauchy formula for keys [[;<;<;<, ﬁ,/yj =3 e Ka(x)K_a(y)

e Cauchy formula for nonsymmetric Macdonald polynomials of Mimachi and Noumi

H (thiyj; CI)oo H (tXIYJ oo H th,y, oo Zaa X q,t (y q 1’ t_l)

i<i (CRAZHE)ES i<j (xiyji @)oo 11 (Xi¥ii @)oo a€ENn

o Identity of Littlewood and Schur 3~y sy = [[;(1 —z)) " [];;(1 — ziz) ™"



K-theory

Def. The dual stable Grothendieck polynomials indexed by v € Z" is

gy(X) =det (b3 (X)), € NX),

where A = hn(1,1,...,1,x1,%,...).
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g\ = s)+ lower degree terms.

The basis {gu}pa,t;t;ons u is dual to the basis of stable Grothendieck
polynomials { G }partitions A under the Hall inner product.

o G)'s represent Schubert classes in the K-theory of the Grassmannian.

G)'s have a formula in terms of set valued tableaux.



K-theoretic Catalan functions

Def. (B.-Morse-Seelinger 2020) The Katalan function indexed by root
ideals W, £ C Ry and weight v € Z" is
KYL(x) % o i jec(=1/2)27
T T e\ T e U= 2i/7) )
(i,j)ew 114

where o,: 2% — g, (X).
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K-theoretic Catalan functions

Def. (B.-Morse-Seelinger 2020) The Katalan function indexed by root
ideals W, £ C Ry and weight v € Z" is
KYL(x) % o i jec(=1/2)27
T T e\ T e U= 2i/7) )
(i,j)ew 114

where o,: 2% — g, (X).

Example. For p = 3321 and WV, £ as shown,

_ < (1 _ 1/24)2 23321 >
A\ (- z1/z3)(1 — z1/z1)(1 — 22/ 1)

= 3321 + 8432 + 84311 + Gaa1 + 8531 + g5a — (8332 + 28431 + &53)-



K-theoretic k-Schur functions

Def. The K-k-Schur functions glsk) are Schubert representatives for the
K-homology of the affine Grassmannian Grgy, .

e Studied by Lam-Schilling-Shimozono (2010), Morse (2012),
Ikeda-lwao-Maeno (2018), Takigiku (2019).



K-theoretic k-Schur functions

Def. The K-k-Schur functions glsk) are Schubert representatives for the
K-homology of the affine Grassmannian Grgy, .

e Studied by Lam-Schilling-Shimozono (2010), Morse (2012),
Ikeda-lwao-Maeno (2018), Takigiku (2019).
Theorem (B.-Morse-Seelinger 2020)

The K-k-Schur functions are a subfamily of Katalan functions:
k k+1
g,Sk) — KuA (1), A% ()

Example. For k = 6 and p = 65532111,

V= Af(n)
o L =AK1(y)




Branching Positivity

Theorem (B.-Morse-Seelinger 2020)

The K-k-Schur functions gl(Lk)(X ) satisfy

(shift invariance) Gis gﬁiﬂ) = gﬁk) for (p) < n,

(alternating branching) gflk) = Z ar, g/(\kH) with (—1)|“|_|A|a)\“ eN.
A



