Catalania

Jonah Blasiak

Drexel University

Joint work with Mark Haiman, Jennifer Morse, Anna Pun, George Seelinger, and Daniel Summers

FPSAC 2023

Root ideals

- Set of positive roots $R_+ = R_+(\operatorname{GL}_n) \stackrel{\text{def}}{=} \{(i,j) : 1 \leq i < j \leq n\}.$
- A *root ideal* $\Psi \subseteq R_+$ is an upper order ideal of positive roots.

Example. $\Psi = \{(1,3), (1,4), (1,5), (1,6), (2,5), (2,6), (3,6)\}$

	(1, 3)	(1, 4)	(1, 5)	(1, 6)
			(2, 5)	(2, 6)
				(3, 6)

Root ideals

- Set of positive roots $R_+ = R_+(\operatorname{GL}_n) \stackrel{\text{def}}{=} \{(i,j) \mid 1 \leq i < j \leq n\}.$
- A *root ideal* $\Psi \subseteq R_+$ is an upper order ideal of positive roots.

Example.
$$\Psi = \{(1,3), (1,4), (1,5), (1,6), (2,5), (2,6), (3,6)\}$$

of root ideals of $R_+(GL_n) = \text{the } n\text{-th Catalan number } \frac{1}{n+1} {2n \choose n}$.

Example. The 5 root ideals of $R_+(GL_3)$:

Can it Catalanify?

What happens if we replace a product over positive roots with one over a root ideal?

- Weyl character formula $s_{\mu}(\mathbf{z}) = \sum_{w \in \mathcal{S}_n} w \left(\mathbf{z}^{\mu} \prod_{1 \leq i < j \leq n} (1 z_j/z_i)^{-1} \right)$
- Modified Hall-Littlewoods $H_{\mu}(X;q)=\sigma\Big(\mathbf{z}^{\mu}\prod_{i< j}(1-qz_i/z_j)^{-1}\Big)$
- Hall-Littlewood polynomials

$$P_{\mu}(X;q) = rac{1}{v_{\mu}(q)} \sigma \Big(\mathbf{z}^{\mu} \prod_{i < j} (1 - q z_j / z_i) \Big)$$

- Cauchy formula for Schubert polynomials $\prod_{1 \leq i \leq n} (x_i + y_i) = \sum_{w \in S} \mathfrak{S}_w(x_1, \dots, x_n) \mathfrak{S}_{ww_0}(y_n, \dots, y_n) \mathfrak{S}_w(y_n, \dots, y_n)$
- Cauchy formula for keys $\prod_{1\leq i\leq j\leq n}\frac{1}{1-x_i/v_i}=\sum_{lpha\in\mathbb{N}^n}K_{lpha}(\mathbf{x})\hat{K}_{-lpha}(\mathbf{y})$
- Cauchy formula for nonsymmetric Macdonald polynomials of Mimachi and Noumi

$$\prod_{i < i} \frac{(q\mathsf{t} x_i y_j; q)_\infty}{(q x_i y_j; q)_\infty} \prod_{i < i} \frac{(\mathsf{t} x_i y_j; q)_\infty}{(x_i y_j; q)_\infty} \prod_i \frac{(q\mathsf{t} x_i y_i; q)_\infty}{(x_i y_i; q)_\infty} = \sum_{\alpha \in \mathbb{N}^n} a_\alpha E_\alpha(\mathsf{x}; q, t) E_\alpha(\mathsf{y}; q^{-1}, t^{-1})$$

• Identity of Littlewood and Schur $\sum_{\lambda} s_{\lambda} = \prod_{i} (1-z_i)^{-1} \prod_{i < j} (1-z_i z_j)^{-1}$

Can it Catalanify?

What happens if we replace a product over positive roots with one over a root ideal?

- Weyl character formula $s_{\mu}(\mathbf{z}) = \sum_{w \in \mathcal{S}_n} w \left(\mathbf{z}^{\mu} \prod_{1 \leq i < j \leq n} (1 z_j/z_i)^{-1} \right)$
- Modified Hall-Littlewoods $H_{\mu}(X;q)=\sigma\Big(\mathbf{z}^{\mu}\prod_{i< j}(1-qz_i/z_j)^{-1}\Big)$
- Hall-Littlewood polynomials

$$P_\mu(X;q)=rac{1}{v_\mu(q)}\,m{\sigma}\Big(\mathbf{z}^\mu\prod_{i< j}(1-qz_j/z_i)\Big)$$

• Cauchy formula for Schubert polynomials

- $\prod_{1 \leq i < j \leq n} (x_i + y_j) = \sum_{w \in S_n} \mathfrak{S}_w(x_1, \dots, x_n) \mathfrak{S}_{ww_0}(y_n, \dots, y_1)$
- Cauchy formula for keys $\prod_{1\leq i\leq j\leq n} \frac{1}{1-x_i/y_j} = \sum_{lpha\in\mathbb{N}^n} \mathcal{K}_{lpha}(\mathbf{x})\hat{\mathcal{K}}_{-lpha}(\mathbf{y})$
- Cauchy formula for nonsymmetric Macdonald polynomials of Mimachi and Noumi

$$\prod_{i \leq i} \frac{(qt x_i y_j; q)_{\infty}}{(q x_i y_j; q)_{\infty}} \prod_{i \leq i} \frac{(t x_i y_j; q)_{\infty}}{(x_i y_j; q)_{\infty}} \prod_{i} \frac{(qt x_i y_i; q)_{\infty}}{(x_i y_i; q)_{\infty}} = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} E_{\alpha}(\mathbf{x}; q, t) E_{\alpha}(\mathbf{y}; q^{-1}, t^{-1})$$

• Identity of Littlewood and Schur $\sum_{\lambda} s_{\lambda} = \prod_{i} (1-z_i)^{-1} \prod_{i < j} (1-z_i z_j)^{-1}$

- $\Lambda(X) = \text{ring of symmetric functions in } X = x_1, x_2, \cdots$
- $h_d(X) = \sum_{i_1 \leq \dots \leq i_d} x_{i_1} \cdots x_{i_d}$ is the homogeneous symmetric function.
- Convention: $h_0 = 1$ and $h_d = 0$ for d < 0.

Def. Schur functions may be defined for any
$$\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n$$
 by $s_{\gamma}(X) = \det (h_{\gamma_i + j - i}(X))_{1 \leq i, j \leq n} \in \Lambda(X).$

Def. Schur functions may be defined for any $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n$ by $s_{\gamma}(X) = \det (h_{\gamma_i + j - i}(X))_{1 < i, j < n} \in \Lambda(X)$.

Proposition (Schur function straightening)

For
$$\gamma \in \mathbb{Z}^n$$
,
$$s_{\gamma}(X) = \begin{cases} \operatorname{sgn}(\gamma + \rho) s_{\operatorname{sort}(\gamma + \rho) - \rho}(X) & \text{if } \gamma + \rho \text{ has distinct nonnegative parts,} \\ 0 & \text{otherwise,} \end{cases}$$

- $\rho = (n-1, n-2, \ldots, 0),$
- $sort(\beta) = weakly decreasing sequence obtained by sorting <math>\beta$,
- $sgn(\beta) = sign \ of \ the \ shortest \ permutation \ taking \ \beta \ to \ sort(\beta).$

Example.
$$n = 4$$
, $\gamma = (3, 1, 2, 5)$.
 $\gamma + \rho = (3, 1, 2, 5) + (3, 2, 1, 0) = (6, 3, 3, 5)$ has a repeated part Hence $s_{3125} = 0$.

Def. Schur functions may be defined for any $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n$ by $s_{\gamma}(X) = \det (h_{\gamma_i + j - i}(X))_{1 \le i, i \le n} \in \Lambda(X).$

Proposition (Schur function straightening)

For
$$\gamma \in \mathbb{Z}^n$$
,
$$s_{\gamma}(X) = \begin{cases} \operatorname{sgn}(\gamma + \rho) s_{\operatorname{sort}(\gamma + \rho) - \rho}(X) & \text{if } \gamma + \rho \text{ has distinct nonnegative parts,} \\ 0 & \text{otherwise,} \end{cases}$$

- $\rho = (n-1, n-2, \ldots, 0),$
- $sort(\beta) = weakly decreasing sequence obtained by sorting <math>\beta$,
- $sgn(\beta) = sign \ of \ the \ shortest \ permutation \ taking \ \beta \ to \ sort(\beta).$

Example.
$$n = 4$$
, $\gamma = (3, 1, 2, 5)$. $\gamma + \rho = (3, 1, 2, 5) + (3, 2, 1, 0) = (6, 3, 3, 5)$ has a repeated part. Hence $s_{3125} = 0$.

Def. Schur functions may be defined for any $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n$ by $s_{\gamma}(X) = \det (h_{\gamma_i + j - i}(X))_{1 < i, j < n} \in \Lambda(X).$

Proposition (Schur function straightening)

For
$$\gamma \in \mathbb{Z}^n$$
,
$$s_{\gamma}(X) = \begin{cases} \operatorname{sgn}(\gamma + \rho) s_{\operatorname{sort}(\gamma + \rho) - \rho}(X) & \text{if } \gamma + \rho \text{ has distinct nonnegative parts,} \\ 0 & \text{otherwise,} \end{cases}$$

- $\rho = (n-1, n-2, \ldots, 0),$
- $sort(\beta) = weakly decreasing sequence obtained by sorting <math>\beta$,
- $sgn(\beta) = sign \ of \ the \ shortest \ permutation \ taking \ \beta \ to \ sort(\beta).$

Example.
$$n=4$$
, $\gamma=(4,7,1,6)$.
$$\gamma+\rho=(4,7,1,6)+(3,2,1,0)=(7,9,2,6)$$

$$\operatorname{sort}(\gamma+\rho)=(9,7,6,2)$$

$$\operatorname{sort}(\gamma+\rho)-\rho=(6,5,5,2)$$
 Hence $s_{4716}=s_{6552}.$

Def. The Weyl symmetrization operator is the linear map determined by

$$\sigma: \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \Lambda(X),$$

 $\mathbf{z}^{\gamma} \mapsto \mathbf{s}_{\gamma}(X),$

where $\mathbf{z}^{\gamma}=z_1^{\gamma_1}\cdots z_n^{\gamma_n}$. Extends to a map from $\mathbb{Q}[z_1^{\pm 1},\ldots,z_n^{\pm 1}][[q]]$.

Def. (Chen-Haiman 2008, Panyushev 2010) Given a root ideal $\Psi \subseteq R_+$ and weight $\gamma \in \mathbb{Z}^n$, the associated *Catalan function* is

$$H_{\gamma}^{\Psi}(X;q) \stackrel{def}{=} \sigma \Big(\mathbf{z}^{\gamma} \prod_{(i,j)\in\Psi} (1-qz_i/z_j)^{-1}\Big).$$

Example. Let $\mu = (\mu_1, \dots, \mu_n)$ be a partition.

- Empty root ideal: $H_{\mu}^{\emptyset}(X;q) = s_{\mu}(X)$.
- Full root ideal: $H_{\mu}^{R_+}(X;q) = H_{\mu}(X;q) = \sum_{\lambda} K_{\lambda\mu}(q) s_{\lambda}(X)$, the modified Hall-Littlewood polynomial.

Def. The Weyl symmetrization operator is the linear map determined by

$$\sigma: \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \Lambda(X),$$

 $\mathbf{z}^{\gamma} \mapsto s_{\gamma}(X),$

where $\mathbf{z}^{\gamma}=z_1^{\gamma_1}\cdots z_n^{\gamma_n}$. Extends to a map from $\mathbb{Q}[z_1^{\pm 1},\ldots,z_n^{\pm 1}][[q]]$.

Def. (Chen-Haiman 2008, Panyushev 2010) Given a root ideal $\Psi \subseteq R_+$ and weight $\gamma \in \mathbb{Z}^n$, the associated *Catalan function* is

$$H_{\gamma}^{\Psi}(X;q) \stackrel{def}{=} \sigma \Big(\mathbf{z}^{\gamma} \prod_{(i,j) \in \Psi} (1 - q z_i/z_j)^{-1}\Big).$$

Example. Let $\mu = (\mu_1, \dots, \mu_n)$ be a partition.

- Empty root ideal: $H_{\mu}^{\varnothing}(X;q) = s_{\mu}(X)$.
- Full root ideal: $H_{\mu}^{R_{+}}(X;q) = H_{\mu}(X;q) = \sum_{\lambda} K_{\lambda\mu}(q) s_{\lambda}(X)$, the modified Hall-Littlewood polynomial.

Def. The Weyl symmetrization operator is the linear map determined by

$$\sigma: \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \Lambda(X),$$

 $\mathbf{z}^{\gamma} \mapsto s_{\gamma}(X),$

where $\mathbf{z}^{\gamma} = z_1^{\gamma_1} \cdots z_n^{\gamma_n}$. Extends to a map from $\mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}][[q]]$.

Def. (Chen-Haiman 2008, Panyushev 2010) Given a root ideal $\Psi \subseteq R_+$ and weight $\gamma \in \mathbb{Z}^n$, the associated *Catalan function* is

$$H_{\gamma}^{\Psi}(X;q) \stackrel{def}{=} \sigma \Big(\mathbf{z}^{\gamma} \prod_{(i,j)\in\Psi} (1-qz_i/z_j)^{-1}\Big).$$

Example. Let $\mu = (\mu_1, \dots, \mu_n)$ be a partition.

- Empty root ideal: $H_{\mu}^{\varnothing}(X;q) = s_{\mu}(X)$.
- Full root ideal: $H_{\mu}^{R_{+}}(X;q) = H_{\mu}(X;q) = \sum_{\lambda} K_{\lambda\mu}(q) s_{\lambda}(X)$, the modified Hall-Littlewood polynomial.

Example. For $\mu = 3321$, $\Psi = \{(1,3), (1,4), (2,4)\}$,

3		1, 3	1, 4
	3		2, 4
		2	
			1

$$H^{\Psi}_{\mu}(X;q) = \sigma \Big(\prod_{(i,j) \in \Psi} (1 - qz_i/z_j)^{-1} \mathbf{z}^{\mu} \Big)$$

Example. For
$$\mu = 3321$$
, $\Psi = \{(1,3), (1,4), (2,4)\}$,

3		1, 3	1, 4
	3		2, 4
		2	
			1

$$egin{aligned} H^{\Psi}_{\mu}(X;q) \ &= \sigma \Big(\prod_{(i,j) \in \Psi} (1 - q \, z_i / z_j)^{-1} \mathbf{z}^{\mu} \Big) \ &= \sigma \Big((1 - q \, z_1 / z_3)^{-1} (1 - q \, z_2 / z_4)^{-1} (1 - q \, z_1 / z_4)^{-1} \mathbf{z}^{3321} \Big) \end{aligned}$$

Example. For
$$\mu = 3321$$
, $\Psi = \{(1,3), (1,4), (2,4)\}$,

3		1, 3	1, 4
	3		2, 4
		2	
			1

$$\begin{split} &H^{\Psi}_{\mu}(X;q) \\ &= \sigma \Big(\prod_{(i,j) \in \Psi} (1 - qz_i/z_j)^{-1} \mathbf{z}^{\mu} \Big) \\ &= \sigma \Big((1 - qz_1/z_3)^{-1} (1 - qz_2/z_4)^{-1} (1 - qz_1/z_4)^{-1} \mathbf{z}^{3321} \Big) \\ &= \sigma \big(\mathbf{z}^{3321} + q(\mathbf{z}^{3420} + \mathbf{z}^{4311} + \mathbf{z}^{4320}) + q^2(\mathbf{z}^{4410} + \mathbf{z}^{5301} + \mathbf{z}^{5310}) \\ &+ q^3(\mathbf{z}^{63-11} + \mathbf{z}^{5400} + \mathbf{z}^{6300}) + q^4(\mathbf{z}^{64-10} + \mathbf{z}^{73-10}) \Big) \end{split}$$

Example. For
$$\mu = 3321$$
, $\Psi = \{(1,3), (1,4), (2,4)\}$,

3		1, 3	1, 4
	3		2, 4
		2	
			1

$$\begin{split} &H^{\Psi}_{\mu}(X;q) \\ &= \sigma \Big(\prod_{(i,j) \in \Psi} (1 - qz_i/z_j)^{-1} \mathbf{z}^{\mu} \Big) \\ &= \sigma \Big((1 - qz_1/z_3)^{-1} (1 - qz_2/z_4)^{-1} (1 - qz_1/z_4)^{-1} \mathbf{z}^{3321} \Big) \\ &= \sigma \big(\mathbf{z}^{3321} + q(\mathbf{z}^{3420} + \mathbf{z}^{4311} + \mathbf{z}^{4320}) + q^2(\mathbf{z}^{4410} + \mathbf{z}^{5301} + \mathbf{z}^{5310}) \\ &\quad + q^3(\mathbf{z}^{63-11} + \mathbf{z}^{5400} + \mathbf{z}^{6300}) + q^4(\mathbf{z}^{64-10} + \mathbf{z}^{73-10}) \Big) \\ &= s_{3321} + q(s_{432} + s_{4311}) + q^2(s_{441} + s_{531}) + q^3s_{54}. \end{split}$$

Modified Hall-Littlewood polynomials $H_{\mu}(X;q)$

 $H_{\mu}(X;1) = h_{\mu}(X)$, the homogeneous symmetric function.

Schur expansion coefficients $K_{\lambda,\mu}(q)$ are the Kostka-Foulkes polynomials:

$$H_{\mu}(X;q) = \sum_{\lambda} K_{\lambda,\mu}(q) s_{\lambda}(X).$$

- The $K_{\lambda\mu}(q)$ originated in the character theory of $\mathsf{GL}_n(\mathbb{F}_q)$.
- The $K_{\lambda\mu}(q)$ are certain affine Kazhdan-Lusztig polynomials.
- The $H_{\mu}(X;q)$ are the graded Frobenius series of certain quotients of the *ring of coinvariants* $\mathbb{C}[y_1,\ldots,y_n]/(e_1,\ldots,e_n)$.

Theorem (Lascoux-Schützenberger 1978

For any partition μ ,

$$H_{\mu}(X;t) = \sum_{T} t^{charge(T)} s_{shape(T)}(X)$$

the sum over semistandard tableaux T of content μ

Modified Hall-Littlewood polynomials $H_{\mu}(X;q)$

 $H_{\mu}(X;1) = h_{\mu}(X)$, the homogeneous symmetric function.

Schur expansion coefficients $K_{\lambda,\mu}(q)$ are the Kostka-Foulkes polynomials:

$$H_{\mu}(X;q) = \sum_{\lambda} K_{\lambda,\mu}(q) s_{\lambda}(X).$$

- The $K_{\lambda\mu}(q)$ originated in the character theory of $\mathsf{GL}_n(\mathbb{F}_q)$.
- The $K_{\lambda\mu}(q)$ are certain affine Kazhdan-Lusztig polynomials.
- The $H_{\mu}(X;q)$ are the graded Frobenius series of certain quotients of the *ring of coinvariants* $\mathbb{C}[y_1,\ldots,y_n]/(e_1,\ldots,e_n)$.

Theorem (Lascoux-Schützenberger 1978)

For any partition μ ,

$$H_{\mu}(X;t) = \sum_{T} t^{charge(T)} s_{shape(T)}(X),$$

the sum over semistandard tableaux T of content μ .

 H_4

 $H_4 = s_4$

$$H_{31}$$

 H_{22}

 H_{211}

1 1 2 3

 H_{1111}

 $H_{31} = s_{31} + q s_4$

 H_4

$$H_{31}$$

 H_{22}

 H_{211}

1 1 2 3

 H_{1111}

- contain the modified Hall-Littlewood polynomials $H_{\mu}(X;q)$.
- contain the parabolic Hall-Littlewood polynomials studied by A. N. Kirillov-Schilling-Shimozono, Schilling-Warnaar, Shimozono, Shimozono-Weyman, Shimozono-Zabrocki around 2000.
- contain the k-Schur functions $s_{\mu}^{(k)}(X;q)$.
- are graded Euler characteristics of vector bundles on the flag variety.
 Cohomology vanishing results proven by Broer (1994), Hague (2009),
 Panyushev (2010).
- are Schur positive for partition μ , conjectured by Chen-Haiman (2008), proven by B.-Morse-Pun (2020).

- contain the modified Hall-Littlewood polynomials $H_{\mu}(X;q)$.
- contain the parabolic Hall-Littlewood polynomials studied by A. N. Kirillov-Schilling-Shimozono, Schilling-Warnaar, Shimozono, Shimozono-Weyman, Shimozono-Zabrocki around 2000.
- contain the k-Schur functions $s_{\mu}^{(k)}(X;q)$.
- are graded Euler characteristics of vector bundles on the flag variety.
 Cohomology vanishing results proven by Broer (1994), Hague (2009),
 Panyushev (2010).
- are Schur positive for partition μ , conjectured by Chen-Haiman (2008), proven by B.-Morse-Pun (2020).

- contain the modified Hall-Littlewood polynomials $H_{\mu}(X;q)$.
- contain the parabolic Hall-Littlewood polynomials studied by A. N. Kirillov-Schilling-Shimozono, Schilling-Warnaar, Shimozono, Shimozono-Weyman, Shimozono-Zabrocki around 2000.
- contain the k-Schur functions $s_{\mu}^{(k)}(X;q)$.
- are graded Euler characteristics of vector bundles on the flag variety.
 Cohomology vanishing results proven by Broer (1994), Hague (2009),
 Panyushev (2010).
- are Schur positive for partition μ , conjectured by Chen-Haiman (2008), proven by B.-Morse-Pun (2020).

k-Schur functions

The k-Schur functions $s_{\mu}^{(k)}(X;q)$ arose in the study of Lapointe-Lascoux-Morse (2000) on the Macdonald positivity conjecture.

$$k$$
-Schur functions $\left\{s_{\mu}^{(k)}(X;1)\right\}_{\mu_1\leq k}$ form a basis for $\mathbb{Q}[h_1,\ldots,h_k]\subset \Lambda(X)$.

Lam (2008) and Lapointe-Morse (2007) connected them to affine Schubert calculus. At q=1, they represent Schubert classes in the homology of the affine Grassmannian $\operatorname{Gr}_{SL_{k+1}}$.

k-Schur Catalan functions

Def. For a partition μ of length $\leq n$ and with $\mu_1 \leq k$, define the root ideal

$$\Delta^{k}(\mu) = \{(i,j) \in R_{+}(GL_{n}) : k - \mu_{i} + i < j\}.$$
"(#non-roots in row i) + $\mu_{i} = k$ "

Theorem (B.-Morse-Pun-Summers 2018)

The k-Schur functions have the following description as Catalan functions:

$$s_{\mu}^{(k)}(X;q)=H_{\mu}^{\Delta^{k}(\mu)}(X;q).$$

Example. For k = 6 and $\mu = 65532111$,

Positive Branching

Theorem (B.-Morse-Pun-Summers 2018)

The k-Schur functions $s_{\mu}^{(k)}(X;q)$ satisfy

(shift invariance)
$$e_n^{\perp} s_{u+1^n}^{(k+1)} = s_u^{(k)}$$
 for $\ell(\mu) \leq n$,

(positive branching)
$$s_{\mu}^{(k)} = \sum_{\lambda} a_{\lambda\mu}(q) \, s_{\lambda}^{(k+1)}$$
 with $a_{\lambda\mu}(q) \in \mathbb{N}[q],$

(Schur positivity)
$$s_{\mu}^{(k)} = \sum_{\lambda} c_{\lambda\mu}(q) \, s_{\lambda}$$
 with $c_{\lambda\mu}(q) \in \mathbb{N}[q]$.

Catalania

Goal: Given a class of symmetric functions, realize it as a subfamily of Catalan functions or variations of Catalan functions.

Realizing such a class as part of the larger set of Catalan functions provides stepping stones for an inductive approach to Schur positivity.

Root expansion

Prop. Suppose that $\alpha \in \Psi$ with $\Psi \setminus \alpha$ a root ideal. Then

$$H^{\Psi}_{\mu} = H^{\Psi \setminus \alpha}_{\mu} + q H^{\Psi}_{\mu + \epsilon_i - \epsilon_j}.$$

Example. For $\alpha = (2,3)$,

Root expansion tree

A Littlewood-Richardson rule via root expansion

Conjecture. Any Catalan function of partition weight has a root expansion tree with leaves which are 0 or single Schur functions.

Prop. For a rectangular root ideal $\Psi = \{(i,j) \in R_+ : i \leq d, j > d\}$,

$$H^{\Psi}_{\mu}(X;1) = s_{(\mu_1,...,\mu_d)} s_{(\mu_{d+1},...,\mu_n)}.$$

Example.

$$|a|_{2}$$
 $= |a|_{q=1} s_{32} s_{21}$

Using root expansion, we can obtain a rule for $s_{(\mu_1,\dots,\mu_d)}s_{(\mu_{d+1},\dots,\mu_n)}$ when μ is a partition.

Root expansion and affine Bruhat order

Theorem

The k-Schur functions have the following description as Catalan functions: $s_{\mu}^{(k)}(X;q) = H_{\mu}^{\Delta^{k}(\mu)}(X;q).$

Proof idea:

- Show that the k-Schur Catalan functions $H_{\mu}^{\Delta^{\kappa}(\mu)}(X;q)$ satisfy a dual Pieri rule.
- Show using root expansion that $H_{\mu-\epsilon_i}^{\Delta^k(\mu-\epsilon_i)}(X;q)$ straightens to 0 or a single k-Schur Catalan function $H_{\lambda}^{\Delta^k(\lambda)}(X;q)$ for partition λ .
- Expanding to the class of Catalan functions yields lots of intermediate objects!
- Combinatorics of the strong Bruhat order of the affine symmetric group is somehow encoded in the definition of $\Delta^k(\mu)$.

The modified Macdonald polynomials $\tilde{H}_{\mu} = \tilde{H}_{\mu}(X;q,t)$ are Schur positive symmetric functions over $\mathbb{Q}(q,t)$.

- Specialize to modified Hall-Littlewood polynomials: $\tilde{H}_{\mu}(X;0,t)=H_{\mu}(X;t)$ and $\tilde{H}_{\mu}(X;q,0)=H_{\mu'}(X;q)$
- Bigraded Frobenius series of S_n -submodules of $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ called Garsia-Haiman modules.

$$\tilde{H}_{31} = s_4 + (q+t+q^2)s_{31} + (qt+q^2)s_{22} + (qt+q^2t+q^3)s_{211} + q^3t s_{1111}$$

The modified Macdonald polynomials $\tilde{H}_{\mu} = \tilde{H}_{\mu}(X;q,t)$ are Schur positive symmetric functions over $\mathbb{Q}(q,t)$.

• Specialize to modified Hall-Littlewood polynomials: $\tilde{H}_{\mu}(X;0,t) = H_{\mu}(X;t)$ and $\tilde{H}_{\mu}(X;q,0) = H_{\mu'}(X;q)$.

• Bigraded Frobenius series of S_n -submodules of $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ called Garsia-Haiman modules.

$$\tilde{H}_{31} = s_4 + (q+t+q^2)s_{31} + (qt+q^2)s_{22} + (qt+q^2t+q^3)s_{211} + q^3t s_{1111}$$

$$ilde{H}_{31}(X;0,t) = H_{31}(X;t)$$
 t^0
 t^0

The modified Macdonald polynomials $\tilde{H}_{\mu} = \tilde{H}_{\mu}(X; q, t)$ are Schur positive symmetric functions over $\mathbb{Q}(q, t)$.

• Specialize to modified Hall-Littlewood polynomials: $\tilde{H}_{\mu}(X;0,t) = H_{\mu}(X;t)$ and $\tilde{H}_{\mu}(X;q,0) = H_{\mu'}(X;q)$.

• Bigraded Frobenius series of S_n -submodules of $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ called Garsia-Haiman modules.

$$\tilde{H}_{31} = s_4 + (q+t+q^2)s_{31} + (qt+q^2)s_{22} + (qt+q^2t+q^3)s_{211} + q^3t s_{1111}$$

$$ilde{H}_{31}(X;q,0) = H_{211}(X;q)$$
 t^0
 t^0

The modified Macdonald polynomials $\tilde{H}_{\mu} = \tilde{H}_{\mu}(X; q, t)$ are Schur positive symmetric functions over $\mathbb{Q}(q, t)$.

- Specialize to modified Hall-Littlewood polynomials: $\tilde{H}_{\mu}(X;0,t) = H_{\mu}(X;t)$ and $\tilde{H}_{\mu}(X;q,0) = H_{\mu'}(X;q)$.
- Bigraded Frobenius series of S_n -submodules of $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ called Garsia-Haiman modules.

$$\tilde{H}_{31} = s_4 + (q+t+q^2)s_{31} + (qt+q^2)s_{22} + (qt+q^2t+q^3)s_{211} + q^3t s_{1111}$$

$$\tilde{H}_{31}(X;q,0) = H_{211}(X;q)$$
 t^{0}
 t^{0}

The nabla operator

Def. ∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu} = t^{n(\mu)} q^{n(\mu')} \tilde{H}_{\mu}$, where $n(\mu) = \sum_{i} (i-1)\mu_{i}$.

• ∇e_n is the bigraded Frobenius series of the *ring of diagonal* coinvariants $\mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]/\mathcal{I}$, where \mathcal{I} is the ideal generated by \mathcal{S}_n -invariant polynomials with no constant term.

$$\nabla e_{3} = s_{3} + (q + t + q^{2} + qt + t^{2})s_{21} + (qt + q^{3} + q^{2}t + qt^{2} + t^{3})s_{111}$$

$$t^{3} = t^{2} + t^{2} + t^{2} + t^{3} + t^{2} + t^{3} + t^{2} + t^{3} + t^{2} + t^{3} + t^{3} + t^{2} + t^{3} + t^{3} + t^{2} + t^{3} + t^{3}$$

Positivity and representation theory related to nabla

	Schur	combinatorial formula	representation
	positive	Conjecture/Proved	theory
∇e_k	√	HHLRU 05	
Shuffle conj/thm		Carlsson-Mellit 15	Haiman 02
$\nabla^m e_k$	√	HHLRU 05	_
		Mellit 16	Haiman 02
$e_{m,n}\cdot (-1^{n+1})$	√	Gorsky-Negut 13	Hikita 12
$\mathbf{e}_{km,kn}\cdot (-1^{k(n+1)})$	√	Bergeron-Garsia-Leven-Xin 14	
<i>km</i> , <i>kn</i> -shuffle		Mellit 16	
∇H_{λ}	√	Haglund-Morse-Zabrocki 10	_
compositional shuffle		Carlsson-Mellit 15	
$\pm abla p_k$	√	Loehr-Warrington 07	_
square paths		Sergel 16	
$\pm \nabla m_{\lambda}$	conj	Sergel 18 (hook λ)	
$\pm abla s_{\lambda}$	√	Loehr-Warrington 07	
		BHMPS 21	

Building off work by Armstrong, Can-Loehr, Egge-Haglund-Kremer-Killpatrick, Garsia-Haglund, Garsia-Xin-Zabrocki, Hicks, Lenart, Loehr-Remmel, and many others.

$$H(R_q, R_t, R_{qt}, \mu) = \sigma \left(\frac{\mathbf{z}^{\mu} \prod_{(i,j) \in R_{qt}} \left(1 - qt z_i/z_j \right)}{\prod_{(i,j) \in R_r} \left(1 - q z_i/z_j \right) \prod_{(i,j) \in R_r} \left(1 - t z_i/z_j \right)} \right).$$

$$H(R_q, R_t, R_{qt}, \mu) = \sigma \left(\frac{\mathbf{z}^{\mu} \prod_{(i,j) \in R_{qt}} \left(1 - qt z_i / z_j \right)}{\prod_{(i,j) \in R_q} \left(1 - q z_i / z_j \right) \prod_{(i,j) \in R_t} \left(1 - t z_i / z_j \right)} \right).$$

Example. With
$$n = 3$$
,

$$H(R_+, R_+, \{(1,3)\}, (111)) = \sigma\left(\frac{\mathbf{z}^{111}(1 - qtz_1/z_3)}{\prod_{1 \le i \le j \le 3}(1 - qz_i/z_j)(1 - tz_i/z_j)}\right)$$

$$H(R_q, R_t, R_{qt}, \mu) = \sigma \left(\frac{\mathbf{z}^{\mu} \prod_{(i,j) \in R_{qt}} \left(1 - qt z_i / z_j \right)}{\prod_{(i,j) \in R_q} \left(1 - q z_i / z_j \right) \prod_{(i,j) \in R_t} \left(1 - t z_i / z_j \right)} \right).$$

Example. With
$$n = 3$$
,

$$H(R_+, R_+, \{(1,3)\}, (111)) = \sigma\left(\frac{\mathbf{z}^{111}(1 - qtz_1/z_3)}{\prod_{1 \le i < j \le 3}(1 - qz_i/z_j)(1 - tz_i/z_j)}\right)$$

$$= s_{111} + (q + t + q^2 + qt + t^2)s_{21} + (qt + q^3 + q^2t + qt^2 + t^3)s_3$$

$$H(R_q, R_t, R_{qt}, \mu) = \sigma \left(\frac{\mathbf{z}^{\mu} \prod_{(i,j) \in R_{qt}} \left(1 - qt z_i / z_j \right)}{\prod_{(i,j) \in R_q} \left(1 - q z_i / z_j \right) \prod_{(i,j) \in R_t} \left(1 - t z_i / z_j \right)} \right).$$

Example. With
$$n = 3$$
,

$$H(R_+, R_+, \{(1,3)\}, (111)) = \sigma\left(\frac{\mathbf{z}^{111}(1 - qt\,z_1/z_3)}{\prod_{1 \le i < j \le 3}(1 - q\,z_i/z_j)(1 - t\,z_i/z_j)}\right)$$

= $s_{111} + (q + t + q^2 + qt + t^2)s_{21} + (qt + q^3 + q^2t + qt^2 + t^3)s_3$
= $\omega \nabla e_3$.

The ∇e_n Catalanimal

Def. The ∇e_n Catalanimal $H(R_q, R_t, R_{qt}, \mu)$ is given by

- $R_a = R_t = R_+$,
- $R_{at} = \{(i, j) \in R_+ : i < j 1\},$
- weight $\mu = 1^n$.

Example. The ∇e_n Catalanimal for n=5:

Building off work of Negut and Schiffmann-Vasserot on the shuffle algebra

Theorem (B.-Haiman-Morse-Pun-Seelinger 2021)

$$\omega \nabla e_n = H(R_+, R_+, R_{qt}, 1^n) = \sigma \left(\frac{z_1 \cdots z_n \prod_{i < j-1} \left(1 - q t z_i / z_j \right)}{\prod_{i < i} \left(1 - q z_i / z_i \right) \prod_{i < i} \left(1 - t z_i / z_j \right)} \right).$$

The ∇e_n Catalanimal

Def. The ∇e_n Catalanimal $H(R_q, R_t, R_{at}, \mu)$ is given by

- $R_q = R_t = R_+$,
- $R_{at} = \{(i,j) \in R_+ : i < j-1\},\$
- weight $\mu = 1^n$.

Example. The ∇e_n Catalanimal for n = 5:

$$\omega \nabla e_5 = \begin{bmatrix} 1 & \bullet & \bullet & \bullet \\ 1 & \bullet & \bullet & \bullet \\ 1 & \bullet & \bullet & R_{qt} \end{bmatrix} \qquad \begin{matrix} R_q = R_t \\ \bullet & R_{qt} \end{matrix}$$

 $\label{lem:building:equation:building:equation} Building off work of Negut and Schiffmann-Vasserot on the shuffle algebra,$

Theorem (B.-Haiman-Morse-Pun-Seelinger 2021)

$$\omega \nabla e_n = H(R_+, R_+, R_{qt}, 1^n) = \sigma \left(\frac{z_1 \cdots z_n \prod_{i < j-1} \left(1 - q t z_i / z_j \right)}{\prod_{i < i} \left(1 - q z_i / z_i \right) \prod_{i < i} \left(1 - t z_i / z_i \right)} \right).$$

The ∇s_{λ} Catalanimal

Def. For partition λ , define the ∇s_{λ} Catalanimal $H(R_q, R_t, R_{qt}, \mu)$ by

- $R_+ \supseteq R_q = R_t \supseteq R_{qt}$,
- $R_+ \setminus R_q =$ pairs of boxes in the same diagonal,
- $R_q \setminus R_{qt}$ = pairs going between adjacent diagonals,
- μ : fill each diagonal D of λ with

 $1 + \chi(D \text{ contains a row start}) - \chi(D \text{ contains a row end}).$ Listing this filling in diagonal reading order gives μ .

Example. The ∇s_{λ} Catalanimal for $\lambda = 433$:

$$R_q = R_t$$

$$R_{qt}$$

The ∇s_{λ} Catalanimal

Def. For partition λ , define the ∇s_{λ} Catalanimal $H(R_q, R_t, R_{qt}, \mu)$ by

- $R_+ \supseteq R_q = R_t \supseteq R_{qt}$,
- $R_+ \setminus R_q =$ pairs of boxes in the same diagonal,
- $R_q \setminus R_{qt} =$ pairs going between adjacent diagonals,
- μ : fill each diagonal D of λ with
 - $1 + \chi(D \text{ contains a row start}) \chi(D \text{ contains a row end}).$ Listing this filling in diagonal reading order gives μ .

Example. The ∇s_{λ} Catalanimal for $\lambda = 433$:

The ∇s_{λ} Catalanimal

Example. The ∇s_{λ} Catalanimal for $\lambda = 433$:

$$(qt)^{-9}\omega\nabla s_{\lambda} = 1$$

$$0$$

$$0$$

$$1$$

Theorem (B.-Haiman-Morse-Pun-Seelinger 2021)

For a partition λ , let $H(R_q, R_t, R_{qt}, \mu)$ be the Catalanimal constructed above. Then for some $c_{\lambda} \in \pm q^{\mathbb{Z}} t^{\mathbb{Z}}$,

$$c_{\lambda} \, \omega \nabla s_{\lambda} = H(R_q, R_t, R_{qt}, \mu) = \sigma \left(\frac{\mathbf{z}^{\mu} \prod_{(i,j) \in R_{qt}} \left(1 - q t \frac{z_i}{z_j}\right)}{\prod_{(i,j) \in R_q} \left(1 - q \frac{z_i}{z_j}\right) \prod_{(i,j) \in R_t} \left(1 - t \frac{z_i}{z_j}\right)} \right).$$

Results arising from Catalanimal formulas

- New proof of the shuffle theorem.
- A shuffle theorem for paths under any line.
- Proof of the Loehr-Warrington conjecture, a Schur positive formula for ∇s_{λ} .
- Proof of the extended Delta conjecture of Haglund-Remmel-Wilson.
- A Catalan-style formula for the modified Macdonald polynomials.
- A connection between Catalanimals and the shuffle algebra.

Catalan-style formulas

We have obtained Catalan-style formulas for

- *k*-Schur functions $s_{\mu}^{(k)}(X;q) = H_{\mu}^{\Delta^k(\mu)}(X;q)$.
- *K*-theoretic *k*-Schur functions.
- ∇e_n , ∇s_λ , ∇H_λ , and ∇ (LLT polynomial).
- $\Delta_{h_{\ell}} \Delta'_{e_{k}} e_{n}$ from the extended Delta conjecture.
- Modified Macdonald polynomials $ilde{H}_{\mu}(X;q,t)$.

Catalania

Research directions:

- (1) Find Catalan-style formulas for a known class of polynomials.
- (2) Study the broader class of functions uncovered in (1).
- (3) Use Catalan-style formulas to prove positivity.
 - Develop root expansion techniques.
 - Find Cauchy formulas for expanding Catalan-style formulas.

Can it Catalanify?

What happens if we replace a product over positive roots with one over a root ideal?

- Weyl character formula $s_{\mu}(\mathbf{z}) = \sum_{w \in \mathcal{S}_n} w \left(\mathbf{z}^{\mu} \prod_{1 \leq i < j \leq n} (1 z_j/z_i)^{-1} \right)$
- Modified Hall-Littlewoods $H_{\mu}(X;q)=\sigma\Big(\mathbf{z}^{\mu}\prod_{i< j}(1-qz_i/z_j)^{-1}\Big)$
- Hall-Littlewood polynomials

$$P_\mu(X;q)=rac{1}{v_\mu(q)}\,m{\sigma}\Big(m{z}^\mu\prod_{i< j}(1-q\,z_j/z_i)\Big)$$

• Cauchy formula for Schubert polynomials

- $\prod_{1 \leq i < j \leq n} (x_i + y_j) = \sum_{w \in S_n} \mathfrak{S}_w(x_1, \dots, x_n) \mathfrak{S}_{ww_0}(y_n, \dots, y_1)$
- Cauchy formula for keys $\prod_{1\leq i\leq j\leq n} \frac{1}{1-x_i/y_j} = \sum_{lpha\in\mathbb{N}^n} \mathcal{K}_{lpha}(\mathbf{x})\hat{\mathcal{K}}_{-lpha}(\mathbf{y})$
- Cauchy formula for nonsymmetric Macdonald polynomials of Mimachi and Noumi

$$\prod_{i \leq i} \frac{(qt x_i y_j; q)_{\infty}}{(q x_i y_j; q)_{\infty}} \prod_{i \leq i} \frac{(t x_i y_j; q)_{\infty}}{(x_i y_j; q)_{\infty}} \prod_{i} \frac{(qt x_i y_i; q)_{\infty}}{(x_i y_i; q)_{\infty}} = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} E_{\alpha}(\mathbf{x}; q, t) E_{\alpha}(\mathbf{y}; q^{-1}, t^{-1})$$

• Identity of Littlewood and Schur $\sum_{\lambda} s_{\lambda} = \prod_{i} (1-z_i)^{-1} \prod_{i < j} (1-z_i z_j)^{-1}$

K-theory

Def. The *dual stable Grothendieck polynomials* indexed by $\gamma \in \mathbb{Z}^n$ is

$$g_{\gamma}(X) = \det \left(h_{\gamma_i+j-i}^{(i-1)}(X)\right)_{1 \leq i,j \leq n} \in \Lambda(X),$$

where
$$h_m^{(r)} = h_m(\underbrace{1, 1, \dots, 1}_{r, 1's}, x_1, x_2, \dots).$$

- $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- The basis $\{g_{\mu}\}_{\text{partitions }\mu}$ is dual to the basis of stable Grothendieck polynomials $\{G_{\lambda}\}_{\text{partitions }\lambda}$ under the Hall inner product.
- G_{λ} 's represent Schubert classes in the K-theory of the Grassmannian.
- G_{λ} 's have a formula in terms of set valued tableaux.

K-theory

Def. The *dual stable Grothendieck polynomials* indexed by $\gamma \in \mathbb{Z}^n$ is

$$g_{\gamma}(X) = \det \left(h_{\gamma_i+j-i}^{(i-1)}(X)\right)_{1 \leq i,j \leq n} \in \Lambda(X),$$

where
$$h_m^{(r)} = h_m(\underbrace{1, 1, \dots, 1}_{r, 1's}, x_1, x_2, \dots).$$

- $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- The basis $\{g_{\mu}\}_{\text{partitions }\mu}$ is dual to the basis of stable Grothendieck polynomials $\{G_{\lambda}\}_{\text{partitions }\lambda}$ under the Hall inner product.
- ullet G_{λ} 's represent Schubert classes in the K-theory of the Grassmannian.
- G_{λ} 's have a formula in terms of set valued tableaux.

K-theoretic Catalan functions

Def. (B.-Morse-Seelinger 2020) The *Katalan function* indexed by root ideals $\Psi, \mathcal{L} \subseteq R_+$ and weight $\gamma \in \mathbb{Z}^n$ is

$$\mathcal{K}^{\Psi,\mathcal{L}}_{\gamma}(X) \stackrel{def}{=} \sigma_g \bigg(\frac{\prod_{(i,j) \in \mathcal{L}} (1 - 1/z_j) \mathbf{z}^{\gamma}}{\prod_{(i,j) \in \Psi} (1 - z_i/z_j)} \bigg),$$

where $\sigma_g \colon \mathbf{z}^\alpha \mapsto g_\gamma(X)$.

Example. For $\mu = 3321$ and Ψ, \mathcal{L} as shown,

K-theoretic Catalan functions

Def. (B.-Morse-Seelinger 2020) The *Katalan function* indexed by root ideals $\Psi, \mathcal{L} \subseteq R_+$ and weight $\gamma \in \mathbb{Z}^n$ is

$$\mathcal{K}^{\Psi,\mathcal{L}}_{\gamma}(X) \stackrel{def}{=} \sigma_{g} \bigg(rac{\prod_{(i,j) \in \mathcal{L}} (1 - 1/z_{j}) \mathbf{z}^{\gamma}}{\prod_{(i,j) \in \Psi} (1 - z_{i}/z_{j})} \bigg),$$

where σ_g : $\mathbf{z}^{\alpha} \mapsto g_{\gamma}(X)$.

Example. For $\mu = 3321$ and Ψ, \mathcal{L} as shown,

$$\mathcal{K}_{\mu}^{\Psi,\mathcal{L}} = \begin{array}{c} 3 & \bullet \\ 3 & \bullet \\ 2 & 1 \end{array}$$

$$= \sigma_g \left(\frac{(1 - 1/z_4)^2 \mathbf{z}^{3321}}{(1 - z_1/z_3)(1 - z_1/z_4)(1 - z_2/z_4)} \right)$$

$$= g_{3321} + g_{432} + g_{4311} + g_{441} + g_{531} + g_{54} - (g_{332} + 2g_{431} + g_{53}).$$

K-theoretic Catalan functions

Def. (B.-Morse-Seelinger 2020) The *Katalan function* indexed by root ideals $\Psi, \mathcal{L} \subseteq R_+$ and weight $\gamma \in \mathbb{Z}^n$ is

$$\mathcal{K}^{\Psi,\mathcal{L}}_{\gamma}(X) \stackrel{def}{=} \sigma_{g} \bigg(\frac{\prod_{(i,j) \in \mathcal{L}} (1 - 1/z_{j}) \mathbf{z}^{\gamma}}{\prod_{(i,j) \in \Psi} (1 - z_{i}/z_{j})} \bigg),$$

where $\sigma_g \colon \mathbf{z}^\alpha \mapsto g_\gamma(X)$.

Example. For $\mu = 3321$ and Ψ, \mathcal{L} as shown,

$$\mathcal{K}_{\mu}^{\Psi,\mathcal{L}} = \begin{array}{c} 3 \\ \hline 3 \\ \hline 2 \\ \hline 1 \end{array} \quad \bullet \quad \mathcal{L}$$

$$= \sigma_g \left(\frac{(1 - 1/z_4)^2 \mathbf{z}^{3321}}{(1 - z_1/z_3)(1 - z_1/z_4)(1 - z_2/z_4)} \right)$$

$$= g_{3321} + g_{432} + g_{4311} + g_{441} + g_{531} + g_{54} - (g_{332} + 2g_{431} + g_{53}).$$

K-theoretic k-Schur functions

 Studied by Lam-Schilling-Shimozono (2010), Morse (2012), Ikeda-Iwao-Maeno (2018), Takigiku (2019).

Theorem (B.-Morse-Seelinger 2020

The K-k-Schur functions are a subfamily of Katalan functions

$$g_\mu^{(k)} = \mathcal{K}_\mu^{\Delta^k(\mu),\Delta^{k+1}(\mu)}.$$

Example. For k = 6 and $\mu = 65532111$,

K-theoretic k-Schur functions

Def. The *K-k-Schur functions* $g_{\mu}^{(k)}$ are Schubert representatives for the *K*-homology of the affine Grassmannian $Gr_{SL_{k+1}}$.

• Studied by Lam-Schilling-Shimozono (2010), Morse (2012), Ikeda-Iwao-Maeno (2018), Takigiku (2019).

Theorem (B.-Morse-Seelinger 2020)

The K-k-Schur functions are a subfamily of Katalan functions:

$$g_{\mu}^{(k)}=K_{\mu}^{\Delta^k(\mu),\Delta^{k+1}(\mu)}.$$

Example. For k = 6 and $\mu = 65532111$,

Branching Positivity

Theorem (B.-Morse-Seelinger 2020)

The K-k-Schur functions $g_{\mu}^{(k)}(X)$ satisfy

(shift invariance)
$$G_{1^n}^{\perp}g_{u+1^n}^{(k+1)}=g_u^{(k)}$$
 for $\ell(\mu)\leq n$,