A Catalanimal formula for Macdonald polynomials

George H. Seelinger

joint work with J. Blasiak, M. Haiman, J. Morse, and A. Pun

ghseeli@umich.edu
FPSAC 2023
Based on arXiv:2307.06517

July 17, 2023

Root ideals

$R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq n\right\}$ denotes the set of positive roots for $G L_{n}$, where $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}$.

	12)(13)(14	14)(15
	${ }^{23)}(24$	24)(25
		4)(35

Root ideals

$R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq n\right\}$ denotes the set of positive roots for $G L_{n}$, where $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}$.

A root ideal $\Psi \subseteq R_{+}$is an upper order ideal of positive roots.

$$
\Psi=\text { Roots above Dyck path }
$$

Symmetric functions and Schur functions

- Let $\Lambda(X)$ be the ring of symmetric functions in $X=x_{1}, x_{2}, \ldots$
- $h_{d}=h_{d}(X)=\sum_{i_{1} \leq \cdots \leq i_{d}} x_{i_{1}} \cdots x_{i_{d}}$ with $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$,

$$
s_{\gamma}=s_{\gamma}(X)=\operatorname{det}\left(h_{\gamma_{i}+j-i}(X)\right)_{1 \leq i, j \leq n}
$$

Symmetric functions and Schur functions

- Let $\Lambda(X)$ be the ring of symmetric functions in $X=x_{1}, x_{2}, \ldots$
- $h_{d}=h_{d}(X)=\sum_{i_{1} \leq \cdots \leq i_{d}} x_{i_{1}} \cdots x_{i_{d}}$ with $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$,

$$
s_{\gamma}=s_{\gamma}(X)=\operatorname{det}\left(h_{\gamma_{i}+j-i}(X)\right)_{1 \leq i, j \leq n}
$$

Then,

$$
s_{\gamma}= \begin{cases}\operatorname{sgn}(\gamma+\rho) s_{\mathrm{sort}}(\gamma+\rho)-\rho & \text { if } \gamma+\rho \text { has distinct nonnegative parts } \\ 0 & \text { otherwise }\end{cases}
$$

- $\operatorname{sort}(\beta)=$ weakly decreasing sequence obtained by sorting β,
- $\operatorname{sgn}(\beta)=\operatorname{sign}$ of the shortest permutation taking β to $\operatorname{sort}(\beta)$.

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right] \rightarrow \Lambda(X)$ by linearly extending

$$
z^{\gamma} \mapsto s_{\gamma}(X)
$$

where $\boldsymbol{z}^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{n}^{\gamma_{n}}$.

Modified Macdonald polynomials

The modified Macdonald polynomials $\tilde{H}_{\mu}=\tilde{H}_{\mu}(X ; q, t)$ are Schur positive symmetric functions in $X=x_{1}, x_{2}, \ldots$ over $\mathbb{Q}(q, t)$.
They differ from the integral form Macdonald polynomials by $\tilde{H}_{\mu}(X ; q, t)=t^{\mathrm{n}(\mu)} J_{\mu}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]$.

Modified Macdonald polynomials

The modified Macdonald polynomials $\tilde{H}_{\mu}=\tilde{H}_{\mu}(X ; q, t)$ are Schur positive symmetric functions in $X=x_{1}, x_{2}, \ldots$ over $\mathbb{Q}(q, t)$ ．
They differ from the integral form Macdonald polynomials by $\tilde{H}_{\mu}(X ; q, t)=t^{\mathrm{n}(\mu)} J_{\mu}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]$ ．
$\tilde{H}_{22}=s_{4}+(q+t+q t) s_{31}+\left(q^{2}+t^{2}\right) s_{22}+\left(q t+q^{2} t+q t^{2}\right) s_{211}+q^{2} t^{2} s_{1111}$

t^{2}	回	B	而
t^{1}	\square	$\begin{gathered} \text { B } \\ \square \end{gathered}$	E
t^{0}	ه	\square	田
	q^{0}	q^{1}	q^{2}

Modified Hall-Littlewood polynomials

When $q=0$, the modified Macdonald polynomials reduce to the modified Hall-Littlewood polynomials $\tilde{H}_{\mu}(X ; 0, t)$.
$\tilde{H}_{22}(X ; 0, t)=s_{4}+t s_{31}+t^{2} s_{22}$

A Catalan function for modified Hall-Littlewoods

$B_{\mu}=$ set of roots above block diagonal matrix with block sizes $\mu_{\ell(\mu)}, \ldots, \mu_{1}$

A Catalan function for modified Hall-Littlewoods

$B_{\mu}=$ set of roots above block diagonal matrix with block sizes $\mu_{\ell(\mu)}, \ldots, \mu_{1}$

Theorem (Weyman, Shimozono-Weyman)

$$
\tilde{H}_{\mu}(X ; 0, t)=\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in B_{\mu}}\left(1-t z^{\alpha}\right)}\right),
$$

where $z^{\alpha}=z_{i} / z_{j}$.

Catalan functions for modified Hall-Littlewoods

b_{1}		
b_{2}	b_{3}	
b_{4}	b_{5}	b_{6}
b_{7}	b_{8}	b_{9}

$$
R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\} .
$$

row reading order $b_{1} \prec b_{2} \prec \cdots \prec b_{n}$

Catalan functions for modified Hall-Littlewoods

b_{1}		
b_{2}	b_{3}	
b_{4}	b_{5}	b_{6}
b_{7}	b_{8}	b_{9}

$$
R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\} .
$$

row reading order

$$
b_{1} \prec b_{2} \prec \cdots \prec b_{n}
$$

$$
\begin{aligned}
\tilde{H}_{\mu}(X ; 0, t) & =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in B_{\mu}}\left(1-t z^{\alpha}\right)}\right) \\
& =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right)
\end{aligned}
$$

A Catalanimal formula for $\tilde{H}_{\mu}(X ; q, t)$

$$
\begin{array}{ll}
\begin{array}{|l|l|}
\hline b_{1} & \\
\hline b_{2} & \\
\hline b_{3} & b_{4} \\
\hline b_{5} & b_{6} \\
\hline b_{7} & b_{8} \\
\hline
\end{array} & \begin{array}{l}
\\
\text { row reading order } \\
b_{1} \prec b_{2} \prec \cdots \prec b_{n}
\end{array}
\end{array}
$$

A Catalanimal formula for $\tilde{H}_{\mu}(X ; q, t)$

b_{1}	
b_{2}	
b_{3}	b_{4}
b_{5}	b_{6}
b_{7}	b_{8}

row reading order

$$
b_{1} \prec b_{2} \prec \cdots \prec b_{n}
$$

Theorem (Blasiak-Haiman-Morse-Pun-S.)

The modified Macdonald polynomial $\tilde{H}_{\mu}=\tilde{H}_{\mu}(X ; q, t)$ is given by

$$
\tilde{H}_{\mu}=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right) .
$$

Example

Example

$1-q \frac{z_{1}}{z_{2}}$	
$1-q t^{-1} \frac{z_{2}}{z_{3}}$	
$1-q^{2} t^{-2} \frac{z_{3}}{z_{5}}$	$1-q \frac{z_{4}}{z_{6}}$
$1-q^{2} t^{-3} \frac{z_{5}}{z_{7}}$	$1-q t^{-1} \frac{z_{6}}{z_{8}}$

1
\tilde{H}_{22211}
numerator factors $1-q^{\mathrm{arm}+1} t^{-\operatorname{leg}} z_{i} / z_{j}$

$q=t=1$ specialization

$$
\begin{aligned}
& \omega \sigma\left(z_{1}^{\cdots z_{n}} \frac{\prod_{\alpha_{j} \in R_{\mu} \backslash \hat{R}_{\mu}}\left(1-q^{a \operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right)}{\prod_{\alpha \in \mathcal{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{ }_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in \mathcal{R}_{\mu}}\left(1-t z^{\alpha}\right) \quad\right) \\
& \xrightarrow{q=t=1} \omega \sigma\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha \in R_{\mu} \backslash \hat{R}_{\mu}}\left(1-z^{\alpha}\right) \prod_{\alpha \in \hat{R}_{R}}\left(1-z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-z^{\alpha}\right)}\right) \\
& =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{a \in R_{+}}\left(1-z^{\alpha}\right)}\right) \\
& =\omega h_{1}^{n} \\
& =e_{1}^{n}
\end{aligned}
$$

$q=0$ specialization

$$
\left.\begin{array}{l}
\quad \prod \quad \omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}{}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)\right. \\
\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t \boldsymbol{z}^{\alpha}\right)
\end{array}\right)
$$

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X ; q)$.

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X ; q)$.
- Apply $\omega \nabla$ to both sides.

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X ; q)$.
- Apply $\omega \nabla$ to both sides.
- Use Catalanimal formula for $\omega \nabla \mathcal{G}_{\nu}(X ; q)$ and collect terms.

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

$$
\nu=(\square, \square \square)
$$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.

$$
\nu=(\square, \square \square)
$$

-4	-3	-2	-1	0	1
-3	-2	-1	0	1	2
-2	-1	0	1	2	3
-1	0	1	2	3	4
0	1	2	3	4	5

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.

$$
\nu=\left(\begin{array}{l}
\square \\
\square
\end{array} \square\right)
$$

				b_{3}	b_{6}
				b_{5}	b_{8}
b_{1}	b_{2}				
	b_{4}	b_{7}			

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} 		
b_{1}	b_{2}				
	b_{4}	b_{7}			

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 		

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\left(\begin{array}{l}
\square \\
\square
\end{array} \square\right)
$$

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}		
7					

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 		

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

Catalanimals

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

$$
H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)=\sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right) .
$$

Catalanimals

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

$$
H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)=\sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right)
$$

With $n=3$,

$$
\begin{aligned}
& H\left(R_{+}, R_{+},\left\{\alpha_{13}\right\},(111)\right)=\sigma\left(\frac{z^{111}\left(1-q t z_{1} / z_{3}\right)}{\prod_{1 \leq i<j \leq 3}\left(1-q z_{i} / z_{j}\right)\left(1-t z_{i} / z_{j}\right)}\right) \\
& =s_{111}+\left(q+t+q^{2}+q t+t^{2}\right) s_{21}+\left(q t+q^{3}+q^{2} t+q t^{2}+t^{3}\right) s_{3} \\
& =\omega \nabla e_{3}
\end{aligned}
$$

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,
- $R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal,
- $R_{q} \backslash R_{t}=$ the attacking pairs,
- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals,
- λ : fill each diagonal D of ν with $1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$. Listing this filling in reading order gives λ.

LLT Catalanimals

$\square R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal, $R_{q} \backslash R_{t}=$ the attacking pairs,

- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals, $R_{q t}=$ all other pairs,
λ : fill each diagonal D of ν with
$1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$.

ν

LLT Catalanimals

$\square R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal, $R_{q} \backslash R_{t}=$ the attacking pairs,

- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals, $R_{q t}=$ all other pairs,
λ : fill each diagonal D of ν with
$1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$.

λ, as a filling of ν

LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let $\boldsymbol{\nu}$ be a tuple of skew shapes and let $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ be the associated LLT Catalanimal. Then

$$
\begin{aligned}
\nabla \mathcal{G}_{\nu}(X ; q) & =c_{\nu} \omega \operatorname{pol}_{X}\left(H_{\nu}\right) \\
& =c_{\nu} \omega \operatorname{pol}_{X} \sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t \boldsymbol{z}^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q \boldsymbol{z}^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t z^{\alpha}\right)}\right)
\end{aligned}
$$

for some $c_{\nu} \in \pm q^{\mathbb{Z}} t^{\mathbb{Z}}$.

Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{D}\left(\prod_{u \in D} q^{-\operatorname{arm}(u)} t^{\operatorname{leg}(u)+1}\right) \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}(X ; q)
$$

where

- the sum runs over all subsets $D \subseteq\{(i, j) \in \mu \mid j>1\}$, and
- $\boldsymbol{\nu}(\mu, D)=\left(\nu^{(1)}, \ldots, \nu^{(k)}\right)$ where $k=\mu_{1}$ is the number of columns of μ, and $\nu^{(i)}$ is a ribbon of size μ_{i}^{*}, i.e., box contents
$\left\{-1,-2, \ldots,-\mu_{i}^{*}\right\}$, and descent set $\operatorname{Des}\left(\nu^{(i)}\right)=\{-j \mid(i, j) \in D\}$.

Haglund-Haiman-Loehr formula example

y_{1}	
b_{2}	b_{3}
b_{4}	b_{5}
μ	

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline 1 \\
\hline 2 \\
\hline 4 \\
\hline & q^{-1} t^{4} & \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 5 \\
\hline
\end{array} \\
\hline
\end{array} q^{-1} t^{3} \\
& D=\left\{b_{1}, b_{2}, b_{3}\right\} \\
& D=\left\{b_{2}, b_{3}\right\} \\
& D=\left\{b_{1}, b_{2}\right\} \\
& \begin{array}{c}
\frac{1}{3} \\
\frac{1}{2} 4 \\
\frac{3}{5} \\
t^{2}
\end{array} \\
& \text { 3/5 } \\
& \begin{array}{cc}
12 & \\
\frac{1}{4} q^{-1} t^{2} & 1 / 2 / 4 \\
D=\left\{b_{2}\right\} & D=\left\{b_{3}\right\}
\end{array} \\
& \begin{array}{l}
=\frac{3}{2}, ~ \\
D=\left\{b_{1}\right\}
\end{array}
\end{aligned}
$$

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}$ and apply $\omega \nabla$.

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu, D)}$ appearing on the LHS will have the same root ideal data $\left(R_{q}, R_{t}, R_{q t}\right)$.

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\nu(\mu, D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu, D)}$ appearing on the LHS will have the same root ideal data $\left(R_{q}, R_{t}, R_{q t}\right)$.
- Collect terms to get $\prod_{\left.\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}\right)}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right)$ factor.

$$
\tilde{H}_{\mu}=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right) .
$$

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

$$
\left.\frac{\prod_{{ }_{j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right)
$$

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition μ and positive integer s, the symmetric function $\tilde{H}_{\mu}^{(s)}$ is Schur positive. That is, the coefficients in

$$
\tilde{H}_{\mu}^{(s)}=\sum_{\nu} K_{\nu, \mu}^{(s)}(q, t) s_{\nu}(X)
$$

satisfy $K_{\nu, \mu}^{(s)}(q, t) \in \mathbb{N}[q, t]$.

Thank you!

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2021. LLT Polynomials in the Schiffmann Algebra, arXiv e-prints, arXiv:2112.07063.
__ 2023. A Raising Operator Formula for Macdonald Polynomials, arXiv e-prints, arXiv:2307.06517.

Haglund, J., M. Haiman, and N. Loehr. 2005. A Combinatorial Formula for Macdonald Polynomials 18, no. 3, 735-761 (electronic).

Haiman, Mark. 2001. Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14, no. 4, 941-1006, DOI 10.1090/S0894-0347-01-00373-3. MR1839919

Lascoux, Alain, Bernard Leclerc, and Jean-Yves Thibon. 1995. Ribbon tableaux, Hall-Littlewood functions and unipotent varieties, Sém. Lothar. Combin. 34, Art. B34g, approx. 23. MR1399754
Shimozono, Mark and Jerzy Weyman. 2000. Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class, European Journal of Combinatorics 21, no. 2, 257-288, DOI 10.1006/eujc.1999.0344.
Weyman, J. 1989. The Equations of Conjugacy Classes of Nilpotent Matrices, Inventiones mathematicae 98, no. 2, 229-245, DOI 10.1007/BF01388851.

