A Catalanimal formula for Macdonald polynomials

George H. Seelinger joint work with J. Blasiak, M. Haiman, J. Morse, and A. Pun

ghseeli@umich.edu

FPSAC 2023

Based on arXiv:2307.06517

July 17, 2023

Root ideals

 $R_+ = \{\alpha_{ij} \mid 1 \leq i < j \leq n\}$ denotes the set of positive roots for GL_n , where $\alpha_{ij} = \epsilon_i - \epsilon_j$.

(12)	(13)	(14)	(15)
	(23)	(24)	(25)
		(34)	(35)
			(45)

Root ideals

 $R_+ = \{ \alpha_{ij} \mid 1 \leq i < j \leq n \}$ denotes the set of positive roots for GL_n , where $\alpha_{ij} = \epsilon_i - \epsilon_j$.

(12)	(13)	(14)	(15)
	(23)	(24)	(25)
		(34)	(35)
			(45)

A root ideal $\Psi \subseteq R_+$ is an upper order ideal of positive roots.

	(12)	(13)	(14)	(15)
		(23)		(25)
			(34)	(35)
				(45)

 $\Psi = \mathsf{Roots}$ above Dyck path

Symmetric functions and Schur functions

- Let $\Lambda(X)$ be the ring of symmetric functions in $X=x_1,x_2,\ldots$
- $h_d=h_d(X)=\sum_{i_1\leq \cdots \leq i_d} x_{i_1}\cdots x_{i_d}$ with $h_0=1$ and $h_d=0$ for d<0.
- For any $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n$,

$$s_{\gamma} = s_{\gamma}(X) = \det(h_{\gamma_i + j - i}(X))_{1 \leq i, j \leq n}$$

Symmetric functions and Schur functions

- Let $\Lambda(X)$ be the ring of symmetric functions in $X=x_1,x_2,\ldots$
- $h_d = h_d(X) = \sum_{i_1 \leq \dots \leq i_d} x_{i_1} \cdots x_{i_d}$ with $h_0 = 1$ and $h_d = 0$ for d < 0.
- For any $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{Z}^n$,

$$s_{\gamma} = s_{\gamma}(X) = \det(h_{\gamma_i + j - i}(X))_{1 \leq i, j \leq n}$$

Then,

$$s_{\gamma} = \begin{cases} \operatorname{sgn}(\gamma + \rho) s_{\operatorname{sort}(\gamma + \rho) - \rho} & \text{if } \gamma + \rho \text{ has distinct nonnegative parts,} \\ 0 & \text{otherwise,} \end{cases}$$

- $sort(\beta)$ = weakly decreasing sequence obtained by sorting β ,
- $sgn(\beta) = sign$ of the shortest permutation taking β to $sort(\beta)$.

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \Lambda(X)$ by linearly extending

$$\mathbf{z}^{\gamma}\mapsto s_{\gamma}(X)$$

where $\mathbf{z}^{\gamma} = z_1^{\gamma_1} \cdots z_n^{\gamma_n}$.

Modified Macdonald polynomials

The modified Macdonald polynomials $\tilde{H}_{\mu} = \tilde{H}_{\mu}(X; q, t)$ are Schur positive symmetric functions in $X = x_1, x_2, \ldots$ over $\mathbb{Q}(q, t)$.

They differ from the integral form Macdonald polynomials by $\tilde{H}_{\mu}(X;q,t)=t^{\mathsf{n}(\mu)}J_{\mu}[\frac{X}{1-t^{-1}};q,t^{-1}].$

Modified Macdonald polynomials

The modified Macdonald polynomials $\hat{H}_{\mu} = \hat{H}_{\mu}(X; q, t)$ are Schur positive symmetric functions in $X = x_1, x_2, \ldots$ over $\mathbb{Q}(q, t)$.

They differ from the integral form Macdonald polynomials by $\tilde{H}_{\mu}(X;q,t)=t^{\mathsf{n}(\mu)}J_{\mu}[\frac{X}{1-t^{-1}};q,t^{-1}].$

$$\tilde{H}_{22} = s_4 + (q+t+qt)s_{31} + (q^2+t^2)s_{22} + (qt+q^2t+qt^2)s_{211} + q^2t^2s_{1111}$$

Modified Hall-Littlewood polynomials

When q=0, the modified Macdonald polynomials reduce to the modified Hall-Littlewood polynomials $\tilde{H}_{\mu}(X;0,t)$.

$$\tilde{H}_{22}(X;0,t) = s_4 + ts_{31} + t^2 s_{22}$$

A Catalan function for modified Hall-Littlewoods

 $B_{\mu}= ext{set}$ of roots above block diagonal matrix with block sizes $\mu_{\ell(\mu)},\dots,\mu_1$

A Catalan function for modified Hall-Littlewoods

 $B_{\mu}= ext{set}$ of roots above block diagonal matrix with block sizes $\mu_{\ell(\mu)},\dots,\mu_1$

Theorem (Weyman, Shimozono-Weyman)

$$\tilde{H}_{\mu}(X;0,t) = \omega \sigma \Big(\frac{z_1 \cdots z_n}{\prod_{\alpha \in B_n} (1 - t \mathbf{z}^{\alpha})} \Big),$$

where $\mathbf{z}^{\alpha} = z_i/z_j$.

Catalan functions for modified Hall-Littlewoods

$$R_{\mu} := \{ \alpha_{ij} \in R_{+} \mid \operatorname{south}(b_{i}) \leq b_{j} \}.$$

Catalan functions for modified Hall-Littlewoods

$$R_{\mu} := \{ \alpha_{ij} \in R_{+} \mid \operatorname{south}(b_{i}) \leq b_{j} \}.$$

$$R_{3321} =$$

$$\begin{split} \tilde{H}_{\mu}(X;0,t) &= \omega \sigma \Big(\frac{z_1 \cdots z_n}{\prod_{\alpha \in B_{\mu}} (1 - t \mathbf{z}^{\alpha})} \Big), \\ &= \omega \sigma \Big(\frac{z_1 \cdots z_n}{\prod_{\alpha \in B_{\mu}} (1 - t \mathbf{z}^{\alpha})} \Big) \end{split}$$

A Catalanimal formula for $ilde{H}_{\mu}(X;q,t)$

row reading order $b_1 \prec b_2 \prec \cdots \prec b_n$

$$R_{\mu} := \{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \leq b_{j} \},$$

$$\widehat{R}_{\mu} := \{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \prec b_{j} \}.$$

A Catalanimal formula for $ilde{H}_{\mu}(X;q,t)$

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_5 \\ b_6 \\ b_7 \\ b_8 \end{bmatrix}$$
 reading of

row reading order $b_1 \prec b_2 \prec \cdots \prec b_n$

$$R_{\mu} := \{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \leq b_{j} \},$$

$$\widehat{R}_{\mu} := \{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \prec b_{j} \}.$$

Theorem (Blasiak-Haiman-Morse-Pun-S.)

The modified Macdonald polynomial $\tilde{H}_{\mu}=\tilde{H}_{\mu}(X;q,t)$ is given by

$$ilde{H}_{\mu} = \omega oldsymbol{\sigma} \Bigg(z_1 \cdots z_n rac{lpha_{ij} \in R_{\mu} ackslash \widehat{R}_{\mu}}{\prod_{lpha \in R_{+}} ig(1 - q^{rm(b_i) + 1} t^{-\log(b_i)} z_i / z_j ig) \prod_{lpha \in \widehat{R}_{\mu}} ig(1 - q t oldsymbol{z}^{lpha}ig)}{\prod_{lpha \in R_{+}} ig(1 - q oldsymbol{z}^{lpha}ig) \prod_{lpha \in R_{\mu}} ig(1 - t oldsymbol{z}^{lpha}ig)} \Bigg).$$

Example

partition $\mu = 22211$

Example

numerator factors $1-q^{\mathrm{arm}+1}t^{-\mathrm{leg}}z_i/z_j$

 \widehat{R}_{μ} (t and qt factors)

 qt^{-1}

q=t=1 specialization

$$\omega \sigma \left(z_{1} \cdots z_{n} \frac{\prod_{\alpha_{ij} \in R_{\mu} \setminus \widehat{R}_{\mu}} \left(1 - q^{\operatorname{arm}(b_{i})+1} t^{-\operatorname{leg}(b_{i})} z_{i} / z_{j} \right) \prod_{\alpha \in \widehat{R}_{\mu}} \left(1 - q t \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_{+}} \left(1 - q \boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_{\mu}} \left(1 - t \boldsymbol{z}^{\alpha} \right)} \right)$$

$$\stackrel{q=t=1}{\to} \omega \sigma \left(z_{1} \cdots z_{n} \frac{\prod_{\alpha \in R_{\mu} \setminus \widehat{R}_{\mu}} (1 - \boldsymbol{z}^{\alpha}) \prod_{\alpha \in \widehat{R}_{\mu}} (1 - \boldsymbol{z}^{\alpha})}{\prod_{\alpha \in R_{+}} (1 - \boldsymbol{z}^{\alpha}) \prod_{\alpha \in R_{\mu}} (1 - \boldsymbol{z}^{\alpha})} \right)$$

$$= \omega \sigma \left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in R_{+}} (1 - \boldsymbol{z}^{\alpha})} \right)$$

$$= \omega h_{1}^{n}$$

$$= e_{1}^{n}$$

q=0 specialization

$$\omega \sigma \left(z_{1} \cdots z_{n} \frac{\prod\limits_{\alpha_{ij} \in R_{\mu} \setminus \widehat{R}_{\mu}} \left(1 - q^{\operatorname{arm}(b_{i}) + 1} t^{-\operatorname{leg}(b_{i})} z_{i} / z_{j} \right) \prod\limits_{\alpha \in \widehat{R}_{\mu}} \left(1 - q t \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_{+}} \left(1 - q \boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_{\mu}} \left(1 - t \boldsymbol{z}^{\alpha} \right)} \right)$$

$$\stackrel{q=0}{\to} \omega \sigma \left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in R_{\mu}} (1 - t \boldsymbol{z}^{\alpha})} \right)$$

$$= \tilde{H}_{\mu}(X; 0, t)$$

Proof of formula for \widetilde{H}_{μ}

Definition

 ∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu} = t^{n(\mu)} q^{n(\mu^*)} \tilde{H}_{\mu}$, where $n(\mu) = \sum_i (i-1) \mu_i$.

Proof of formula for $ilde{H}_{\mu}$

Definition

 ∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu} = t^{n(\mu)} q^{n(\mu^*)} \tilde{H}_{\mu}$, where $n(\mu) = \sum_i (i-1)\mu_i$.

• Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X;q)$.

Proof of formula for $ilde{H}_{\!\mu}$

Definition

 ∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu} = t^{n(\mu)} q^{n(\mu^*)} \tilde{H}_{\mu}$, where $n(\mu) = \sum_i (i-1) \mu_i$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X;q)$.
- Apply $\omega \nabla$ to both sides.

Proof of formula for $ilde{H}_{\mu}$

Definition

 ∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu} = t^{n(\mu)} q^{n(\mu^*)} \tilde{H}_{\mu}$, where $n(\mu) = \sum_i (i-1) \mu_i$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X;q)$.
- Apply $\omega \nabla$ to both sides.
- Use Catalanimal formula for $\omega \nabla \mathcal{G}_{\nu}(X;q)$ and collect terms.

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

$$u = \left(\begin{array}{c} \\ \end{array} \right)$$

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

• The *content* of a box in row y, column x is x - y.

$$u = \left(\begin{array}{c} \\ \end{array} \right)$$

-4	-3	-2	-1	0	1
-3	-2	-1	0	1	2
-2	-1	0	1	2	3
-1	0	1		3	4
0	1	2	3	4	5

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.

$$u = \left(\begin{array}{c} \\ \end{array} \right)$$

			<i>b</i> ₃	<i>b</i> ₆
			<i>b</i> ₅	<i>b</i> ₈
b_1	b_2			
	<i>b</i> ₄	b ₇		

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array}\right)$$

			<i>b</i> ₃	<i>b</i> ₆
			b_5	<i>b</i> ₈
b_1	b_2			
	<i>b</i> ₄	<i>b</i> ₇		

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - $\operatorname{content}(b) = \operatorname{content}(a) + 1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array}\right)$$

			<i>b</i> ₃	<i>b</i> ₆
			b_5	<i>b</i> ₈
b_1	<i>b</i> ₂			
	<i>b</i> ₄	<i>b</i> ₇		

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{ccc} & & & \\ & & & \\ & & & \end{array} \right)$$

			<i>b</i> ₃	<i>b</i> ₆
			b_5	<i>b</i> ₈
b_1	b_2			
	<i>b</i> ₄	<i>b</i> ₇		

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - $\operatorname{content}(b) = \operatorname{content}(a) + 1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{c} \\ \end{array} \right)$$

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - $\operatorname{content}(b) = \operatorname{content}(a) + 1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array}\right)$$

			<i>b</i> ₃	<i>b</i> ₆
			b_5	<i>b</i> ₈
b_1	b_2			
	<i>b</i> ₄	<i>b</i> ₇		

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - $\operatorname{content}(b) = \operatorname{content}(a) + 1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array} \right)$$

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - $\operatorname{content}(b) = \operatorname{content}(a) + 1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array}\right)$$

			<i>b</i> ₃	<i>b</i> ₆
			b_5	<i>b</i> ₈
b_1	b_2			
	<i>b</i> ₄	<i>b</i> ₇		

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y, column x is x y.
- Reading order: label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a,b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - $\operatorname{content}(b) = \operatorname{content}(a) + 1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

$$u = \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array}\right)$$

			<i>b</i> ₃	<i>b</i> ₆
			b_5	<i>b</i> ₈
b_1	b_2			
	<i>b</i> ₄	<i>b</i> ₇		

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\nu}(\mathbf{x};q) = \sum_{T \in SSYT(\nu)} q^{inv(T)} \mathbf{x}^{T},$$

where inv(T) is the number of attacking inversions in T and $x^T = \prod_{a \in \nu} x_{T(a)}$.

				5	6
				1	1
T =					
	2	4			
		3	5		

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\nu}(\mathbf{x};q) = \sum_{T \in SSYT(\nu)} q^{\text{inv}(T)} \mathbf{x}^{T},$$

where inv(T) is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

non-inversion

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{x};q) = \sum_{T \in \mathsf{SSYT}(\boldsymbol{\nu})} q^{\mathsf{inv}(T)} \boldsymbol{x}^T,$$

where inv(T) is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{x};q) = \sum_{T \in \mathsf{SSYT}(\boldsymbol{\nu})} q^{\mathsf{inv}(T)} \boldsymbol{x}^T,$$

where inv(T) is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\nu}(\mathbf{x};q) = \sum_{T \in SSYT(\nu)} q^{\text{inv}(T)} \mathbf{x}^{T},$$

where inv(T) is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

non-inversion

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{x};q) = \sum_{T \in \mathsf{SSYT}(\boldsymbol{\nu})} q^{\mathsf{inv}(T)} \boldsymbol{x}^T,$$

where inv(T) is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

				5	6
				1	1
T =					
	2	4			
		3	5		

non-inversion

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{x};q) = \sum_{T \in \mathsf{SSYT}(\boldsymbol{\nu})} q^{\mathsf{inv}(T)} \boldsymbol{x}^T,$$

where inv(T) is the number of attacking inversions in T and $x^T = \prod_{a \in \nu} x_{T(a)}$.

				5	6
				1	1
T =					
	2	4			
		3	5		

- A semistandard tableau on ν is a map $T: \nu \to \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\nu}(\mathbf{x};q) = \sum_{T \in SSYT(\nu)} q^{\text{inv}(T)} \mathbf{x}^{T},$$

where inv(T) is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$$inv(T) = 4$$
, $\mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$

Catalanimals

The Catalanimal indexed by $R_q, R_t, R_{qt} \subseteq R_+$ and $\lambda \in \mathbb{Z}^n$ is

$$H(R_q, R_t, R_{qt}, \lambda) = \sigma \left(\frac{\mathbf{z}^{\lambda} \prod_{\alpha \in R_{qt}} \left(1 - qt\mathbf{z}^{\alpha} \right)}{\prod_{\alpha \in R_q} \left(1 - q\mathbf{z}^{\alpha} \right) \prod_{\alpha \in R_t} \left(1 - t\mathbf{z}^{\alpha} \right)} \right).$$

Catalanimals

The Catalanimal indexed by $R_q, R_t, R_{qt} \subseteq R_+$ and $\lambda \in \mathbb{Z}^n$ is

$$H(R_q, R_t, R_{qt}, \lambda) = \sigma \left(\frac{\mathbf{z}^{\lambda} \prod_{\alpha \in R_{qt}} (1 - qt\mathbf{z}^{\alpha})}{\prod_{\alpha \in R_q} (1 - q\mathbf{z}^{\alpha}) \prod_{\alpha \in R_t} (1 - t\mathbf{z}^{\alpha})} \right).$$

With
$$n = 3$$
,

$$H(R_{+}, R_{+}, \{\alpha_{13}\}, (111)) = \sigma\left(\frac{\mathbf{z}^{111}(1 - qtz_{1}/z_{3})}{\prod_{1 \leq i < j \leq 3}(1 - qz_{i}/z_{j})(1 - tz_{i}/z_{j})}\right)$$

$$= s_{111} + (q + t + q^{2} + qt + t^{2})s_{21} + (qt + q^{3} + q^{2}t + qt^{2} + t^{3})s_{3}$$

$$= \omega \nabla e_{3}.$$

For a tuple of skew shapes ν , the *LLT Catalanimal* $H_{\nu} = H(R_q, R_t, R_{qt}, \lambda)$ is determined by

- $R_+ \supseteq R_q \supseteq R_t \supseteq R_{qt}$,
- ullet $R_+ \setminus R_q =$ pairs of boxes in the same diagonal,
- $R_q \setminus R_t$ = the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,
- λ : fill each diagonal D of ν with $1 + \chi(D \text{ contains a row start}) \chi(D \text{ contains a row end})$. Listing this filling in reading order gives λ .

- $R_+ \setminus R_q =$ pairs of boxes in the same diagonal,
- $R_q \setminus R_t$ = the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,
- $R_{qt} =$ all other pairs,

 λ : fill each diagonal D of ν with

 $1 + \chi(D \text{ contains a row start}) - \chi(D \text{ contains a row end}).$

 ν

- $R_+ \setminus R_q$ = pairs of boxes in the same diagonal,
- $R_q \setminus R_t =$ the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,
- $R_{qt} =$ all other pairs,

 λ : fill each diagonal D of ν with

 $1 + \chi(D \text{ contains a row start}) - \chi(D \text{ contains a row end}).$

 λ , as a filling of $oldsymbol{
u}$

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let ν be a tuple of skew shapes and let $H_{\nu}=H(R_q,R_t,R_{qt},\lambda)$ be the associated LLT Catalanimal. Then

$$egin{aligned}
abla \mathcal{G}_{m{
u}}(X;q) &= c_{m{
u}} \, \omega \, \mathsf{pol}_X(H_{m{
u}}) \\ &= c_{m{
u}} \, \omega \, \mathsf{pol}_X \, \sigmaigg(rac{\mathbf{z}^\lambda \prod_{lpha \in R_{qt}} ig(1 - qt \, \mathbf{z}^lphaig)}{\prod_{lpha \in R_q} ig(1 - q \, \mathbf{z}^lphaig) \prod_{lpha \in R_t} ig(1 - t \, \mathbf{z}^lphaig)}igg) \end{aligned}$$

for some $c_{\nu} \in \pm q^{\mathbb{Z}} t^{\mathbb{Z}}$.

Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

$$ilde{H}_{\mu}(X;q,t) = \sum_{D} \left(\prod_{u \in D} q^{-\mathrm{arm}(u)} t^{\mathrm{leg}(u)+1}
ight) \mathcal{G}_{oldsymbol{
u}(\mu,D)}(X;q) \,,$$

where

- the sum runs over all subsets $D \subseteq \{(i,j) \in \mu \mid j > 1\}$, and
- $\nu(\mu, D) = (\nu^{(1)}, \dots, \nu^{(k)})$ where $k = \mu_1$ is the number of columns of μ , and $\nu^{(i)}$ is a ribbon of size μ_i^* , i.e., box contents $\{-1, -2, \dots, -\mu_i^*\}$, and descent set $Des(\nu^{(i)}) = \{-j \mid (i, j) \in D\}$.

Haglund-Haiman-Loehr formula example

Putting it all together

• Take HHL formula $\tilde{H}_{\mu}=\sum_{D}a_{\mu,D}\mathcal{G}_{\nu(\mu,D)}$ and apply $\omega\nabla.$

Putting it all together

- Take HHL formula $\tilde{H}_{\mu} = \sum_{D} a_{\mu,D} \mathcal{G}_{\nu(\mu,D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu,D)}$ appearing on the LHS will have the same root ideal data (R_q,R_t,R_{qt}) .

Putting it all together

- Take HHL formula $\tilde{H}_{\mu} = \sum_{D} a_{\mu,D} \mathcal{G}_{\nu(\mu,D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu,D)}$ appearing on the LHS will have the same root ideal data (R_q,R_t,R_{qt}) .
- Collect terms to get $\prod_{\alpha_i \in R_{\mu} \setminus \widehat{R}_{\mu}} (1 q^{\operatorname{arm}(b_i) + 1} t^{-\operatorname{leg}(b_i)} z_i / z_j)$ factor.

$$\begin{split} & \prod_{\boldsymbol{\mathcal{H}}_{\boldsymbol{\mathcal{H}}} = \omega \boldsymbol{\sigma} \Bigg(z_1 \cdots z_n \frac{\alpha_{ij} \in R_{\boldsymbol{\mathcal{H}}} \setminus \widehat{R}_{\boldsymbol{\mathcal{H}}}}{\prod_{\alpha \in R_{\boldsymbol{\mathcal{H}}}} \left(1 - q^{\operatorname{arm}(b_i) + 1} t^{-\operatorname{leg}(b_i)} z_i / z_j \right) \prod_{\alpha \in \widehat{R}_{\boldsymbol{\mathcal{H}}}} \left(1 - q t \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_{\boldsymbol{\mathcal{H}}}} \left(1 - q \boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_{\boldsymbol{\mathcal{H}}}} \left(1 - t \boldsymbol{z}^{\alpha} \right)} \Bigg). \end{split}$$

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

$$ilde{H}_{\mu}^{(s)} := \omega oldsymbol{\sigma} \left((z_1 \cdots z_n)^s \, rac{\prod_{lpha_j \in R_{\mu} \setminus \widehat{R}_{\mu}} \left(1 - q^{\operatorname{arm}(b_i) + 1} t^{-\operatorname{leg}(b_i)} z_i / z_j
ight) \prod_{lpha \in \widehat{R}_{\mu}} \left(1 - q t oldsymbol{z}^{lpha}
ight)}{\prod_{lpha \in R_{+}} \left(1 - q oldsymbol{z}^{lpha}
ight) \prod_{lpha \in R_{\mu}} \left(1 - t oldsymbol{z}^{lpha}
ight)}
ight)$$

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition μ and positive integer s, the symmetric function $\tilde{H}_{\mu}^{(s)}$ is Schur positive. That is, the coefficients in

$$ilde{H}_{\mu}^{(s)} = \sum_{
u} \mathcal{K}_{
u,\mu}^{(s)}(q,t) \, extstyle s_
u(X)$$

satisfy $K_{\nu,\mu}^{(s)}(q,t) \in \mathbb{N}[q,t]$.

Thank you!

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2021. *LLT Polynomials in the Schiffmann Algebra*, arXiv e-prints, arXiv:2112.07063.

______. 2023. A Raising Operator Formula for Macdonald Polynomials, arXiv e-prints, arXiv:2307.06517.

Haglund, J., M. Haiman, and N. Loehr. 2005. *A Combinatorial Formula for Macdonald Polynomials* **18**, no. 3, 735–761 (electronic).

Haiman, Mark. 2001. Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. **14**, no. 4, 941–1006, DOI 10.1090/S0894-0347-01-00373-3. MR1839919

Lascoux, Alain, Bernard Leclerc, and Jean-Yves Thibon. 1995. *Ribbon tableaux, Hall-Littlewood functions and unipotent varieties*, Sém. Lothar. Combin. **34**, Art. B34g, approx. 23. MR1399754

Shimozono, Mark and Jerzy Weyman. 2000. *Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class*, European Journal of Combinatorics **21**, no. 2, 257–288, DOI 10.1006/eujc.1999.0344.

Weyman, J. 1989. The Equations of Conjugacy Classes of Nilpotent Matrices, Inventiones mathematicae **98**, no. 2, 229–245, DOI 10.1007/BF01388851.