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Semistandard Parking Functions

Forever, gcd(m, n) = 1.

Definition

An (m, n)-dyck path is a lattice path in an n ×m grid from (n, 0) to (0,m) that
stays below the diagonal.

It is well known that |(m, n)-Dyck paths|= C(m,n) - the rational Catalan number.
The area of a dyck path D = number of boxes between the path and diagonal.

The coarea = (m−1)(n−1)
2 - area.

Definition

An (m, n)-parking function is a pair (D, ψ) where:

D is an (m, n)-dyck path

ψ : north steps of D→ {1, . . . ,m} is a bijection that is increasing on vertical
runs (top to bottom)
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Nicolle González Semistandard Parking Functions and a Finite Shuffle Theorem 3 / 12

Semistandard Parking Functions

Forever, gcd(m, n) = 1.

Definition

An (m, n)-dyck path is a lattice path in an n ×m grid from (n, 0) to (0,m) that
stays below the diagonal.

It is well known that |(m, n)-Dyck paths|= C(m,n) - the rational Catalan number.
The area of a dyck path D = number of boxes between the path and diagonal.

The coarea = (m−1)(n−1)
2 - area.

Definition

An (m, n)-parking function is a pair (D, ψ) where:

D is an (m, n)-dyck path

ψ : north steps of D→ {1, . . . ,m} is a bijection that is increasing on vertical
runs (top to bottom)



Nicolle González Semistandard Parking Functions and a Finite Shuffle Theorem 4 / 12

Definition

A rank r semistandard (m, n)-parking function is a pair (D, φ) where:

D is an (m, n)-dyck path

φ : north steps of D→ {1, . . . , r} is a map that is increasing on vertical runs
(top to bottom)

IDEA: SSPF interpolate between dyck paths (r = 1) and PF (r = m).
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The area of a (D, φ) = area(D)
The weight of (D, φ) = (|φ−1(1)|, |φ−1(2)|, . . . , |φ−1(r)|).
The dinv is...?? We need more.
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Affine Compositions and Dinv

The affine symmetric group is

S̃m :=

{
σ : Z→ Z | σ is a bijection, σ(x + m) = σ(x) + m, and

m∑
i=1

σ(i) =

(
m + 1

2

)}
.

A permutation σ ∈ S̃m is n-stable if σ(x + n) ≥ σ(x) for all x ∈ Z. Let S̃n
m the

set of n-stable affine permutations.

Theorem (Gorsky-Mazin-Vazirani)

There is an explicit bijection A : PF(m,n) → S̃n
m.

Given (D, ψ) ∈ PF(m,n) with σ = A(D, ψ), they defined:

co-dinv(D, ψ) := |{(i , h) ∈ {1, . . . ,m} × {1, . . . , n} | σ(i + h) < σ(i)}|

So that dinv := (m−1)(n−1)
2 - co-dinv.
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We generalized some of the Gorsky-Mazin-Vazirani results.

Definition
An (m, r)-affine composition is a function f : Z→ Z such that:

(1) f (x + m) = f (x) + r for all x ∈ Z.

(2) The set f −1{1, . . . , r} has exactly one element from each residue class mod m.

(3)
∑

x∈f−1{1,...,r} x =
(
m+1

2

)
.

Theorem (González-Simental-Vazirani)

There is an explicit weight preserving bijection Aw : SSPFr
(m,n) → n-stable

(m, r)-affine compositions.

Gorsky-Mazin-Vazirani proved the affine Springer fiber in the full affine flag variety
has an affine paving indexed by parking functions.

We extended this result and showed that the affine spaces in an affine paving of a
parabolic affine Springer fiber are indexed by the set SSPFr

(m,n), with co-dinv
measuring the dimension of the corresponding affine space.
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Nicolle González Semistandard Parking Functions and a Finite Shuffle Theorem 6 / 12

We generalized some of the Gorsky-Mazin-Vazirani results.

Definition
An (m, r)-affine composition is a function f : Z→ Z such that:

(1) f (x + m) = f (x) + r for all x ∈ Z.

(2) The set f −1{1, . . . , r} has exactly one element from each residue class mod m.

(3)
∑

x∈f−1{1,...,r} x =
(
m+1

2

)
.
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To any semistandard parking function we define its standardization via the map
std : SSPFr

(m,n) → PF(m,n) defined by

std(D, φ) := A−1S−1
w Aw(D, φ),

where Sw is a specific map from certain minimal length coset representatives in S̃m to
(m, r)-affine compositions. Define dinv by:

dinv(D, φ) := dinv(std(D, φ)).

Define the Anderson function by γ : Z2 → Z2 by γ(x , y) = mn −mx − ny .

Recipe: Given a rank r semistandard parking function (D, φ) construct the standard
parking function std(D, φ) by reading the 1’s, then 2’s, . . . , then r ’s in order, and then
breaking ties using the Anderson labels.
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Higher Rank Catalan Polynomials

Definition

The rank r rational (q, t)-Catalan polynomials are defined as:

C
(r)
(m,n)(x1, . . . , xr ; q, t) :=

∑
(D,φ)∈SSPFr (m,n)

qarea(D)tdinv(D,φ)xwt(φ).

Define the Hikita polynomial

H(m,n)(X ; q, t) :=
∑

(D,ϕ)∈PF(m,n)

qarea(D,ϕ)tdinv(D,ϕ)QDes(σ−1)(X )

The higher rank Catalan polynomials interpolate between the rational Catalan numbers
and the Hikita polynomial.

C
(1)
(m,n)(x1) = xm

1 C(m,n).

lim←−
r

C
(r)
(m,n)(x1, . . . , xr ; q, t) = H(m,n)(X ; q, t).

Thus, C
(r)
(m,n)(x1, . . . , xr ; q, t) are Schur positive, q, t-symmetric, and x1, . . . , xr -symmetric.
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Nicolle González Semistandard Parking Functions and a Finite Shuffle Theorem 8 / 12

Higher Rank Catalan Polynomials

Definition

The rank r rational (q, t)-Catalan polynomials are defined as:

C
(r)
(m,n)(x1, . . . , xr ; q, t) :=

∑
(D,φ)∈SSPFr (m,n)

qarea(D)tdinv(D,φ)xwt(φ).

Define the Hikita polynomial

H(m,n)(X ; q, t) :=
∑

(D,ϕ)∈PF(m,n)

qarea(D,ϕ)tdinv(D,ϕ)QDes(σ−1)(X )

The higher rank Catalan polynomials interpolate between the rational Catalan numbers
and the Hikita polynomial.

C
(1)
(m,n)(x1) = xm

1 C(m,n).

lim←−
r

C
(r)
(m,n)(x1, . . . , xr ; q, t) = H(m,n)(X ; q, t).

Thus, C
(r)
(m,n)(x1, . . . , xr ; q, t) are Schur positive, q, t-symmetric, and x1, . . . , xr -symmetric.
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The Rational Shuffle Theorem

Define the elliptic Hall algebra E as the C(q, t)-algebra generated by
{Pm,n | m, n ∈ Z≥0} (mod relations).

Schiffman-Vasserot gave a geometric action of E on symmetric functions
Sym := Q(q, t)[x1, . . . ]

S∞ .

Studying the Khovanov-Rozansky homology of (m, n)-torus links, Gorsky-Neguţ
conjectured:

Rational Shuffle Theorem (Mellit)

Pm,n · (1) = H(m,n)(X ; q, t).

When m = n + 1 this recovers the classical shuffle theorem.

Define the spherical DAHA, SH(r), as the spherical subalgebra of the DAHA

generated by {P(r)
m,n | m, n ∈ Z≥0} (mod relations).
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A Finite Shuffle Theorem

Theorem (Shiffmann-Vasserot)

The elliptic Hall algebra arises under the inverse limit: E ∼= lim←−r
SH(r) where

P(m,n) = lim←−r
P

(r)
(m,n).

Denote by Symr := Q(q, t)[x1, . . . , xr ]
Sr the ring of symmetric polynomials, recall

that:
Sym = lim←−

r

Symr .

Hence, the geometric action of E on Sym induces a geometric action of SH(r) on
Symr .

Since H(m,n)(X ; q, t) = lim←−r
C

(r)
(m,n)(Xr ; q, t), this yields a finite Shuffle theorem:

Theorem (González-Simental-Vazirani)

P(r)
m,n · (1) = C

(r)
(m,n)(x1, . . . , xr ; q, t).
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Can we describe this geometric action of SH(r) on Symr more explicitly?

There is a classical polynomial representation of SH(r) on Symr .

This induces an algebraic action of E on Sym that is isomorphic to the geometric
representation of Shiffmann-Vasserot. In particular, these actions are related via
the same plethysm that exchanges the Macdonald polynomials:

Pλ(X ; q, t)↔ H̃λ(X ; q, t)

Theorem (González-Simental-Vazirani)

The polynomial and geometric representations of SH(r) are nontrivially
isomorphic (they are related via a ‘truncated’ plethysm).

However, describing the action directly is really hard even at r = 1. Maybe next
time we meet I’ll know the answer :) .
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Theorem (González-Simental-Vazirani)

The polynomial and geometric representations of SH(r) are nontrivially
isomorphic (they are related via a ‘truncated’ plethysm).

However, describing the action directly is really hard even at r = 1. Maybe next
time we meet I’ll know the answer :) .
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