Semistandard Parking Functions and a Finite Shuffle Theorem

joint with José Simental and Monica Vazirani

Nicolle González

UC Berkeley

July 16, 2023
Goal

Semistandard Parking Functions
Goal

Semistandard Parking Functions

Higher Rank Catalan Polynomials
Goal

Semistandard Parking Functions

Higher Rank Catalan Polynomials

A Finite Shuffle Theorem
Semistandard Parking Functions

Forever, $gcd(m, n) = 1.$
Semistandard Parking Functions

Forever, $gcd(m, n) = 1.$

Definition

An (m, n)-dyck path is a lattice path in an $n \times m$ grid from $(n, 0)$ to $(0, m)$ that stays below the diagonal.
SemistANDARD PARKING FUNCTIONS

Forever, \(\gcd(m, n) = 1 \).

Definition

An \((m, n)\)-**dyck path** is a lattice path in an \(n \times m \) grid from \((n, 0)\) to \((0, m)\) that stays below the diagonal.

It is well known that \(|(m, n)\text{-Dyck paths}| = C_{(m,n)} \) - the rational Catalan number. The **area** of a dyck path \(D \) = number of boxes between the path and diagonal. The **coarea** = \(\frac{(m-1)(n-1)}{2} \) - area.
Semistandard Parking Functions

Forever, \(\gcd(m, n) = 1 \).

Definition

An \((m, n)\)-dyck path is a lattice path in an \(n \times m\) grid from \((n, 0)\) to \((0, m)\) that stays below the diagonal.

It is well known that \(|(m, n)\)-Dyck paths\(|= C_{(m,n)}\) - the rational Catalan number. The area of a dyck path \(D\) = number of boxes between the path and diagonal. The coarea = \(\frac{(m-1)(n-1)}{2}\) - area.

Definition

An \((m, n)\)-parking function is a pair \((D, \psi)\) where:
- \(D\) is an \((m, n)\)-dyck path
- \(\psi: \text{north steps of } D \rightarrow \{1, \ldots, m\}\) is a bijection that is increasing on vertical runs (top to bottom)
Definition

A **rank r semistandard** \((m, n)\)-parking function is a pair \((D, \phi)\) where:

- \(D\) is an \((m, n)\)-dyck path
- \(\phi: \) north steps of \(D \rightarrow \{1, \ldots, r\}\) is a map that is increasing on vertical runs (top to bottom)

IDEA: SSPF interpolate between dyck paths \((r = 1)\) and PF \((r = m)\).
A rank r semistandard (m, n)-parking function is a pair (D, ϕ) where:
- D is an (m, n)-dyck path
- $\phi :$ north steps of $D \rightarrow \{1, \ldots, r\}$ is a map that is increasing on vertical runs (top to bottom)

IDEA: SSPF interpolate between dyck paths ($r = 1$) and PF ($r = m$).
Definition

A rank r semistandard (m, n)-parking function is a pair (D, ϕ) where:

- D is an (m, n)-dyck path
- $\phi: \text{north steps of } D \to \{1, \ldots, r\}$ is a map that is increasing on vertical runs (top to bottom)

IDEA: SSPF interpolate between dyck paths ($r = 1$) and PF ($r = m$).
A **rank r semistandard** \((m, n)\)-parking function is a pair \((D, \phi)\) where:

- \(D\) is an \((m, n)\)-dyck path
- \(\phi : \text{north steps of } D \rightarrow \{1, \ldots, r\}\) is a map that is increasing on vertical runs (top to bottom)

IDEA: SSPF interpolate between dyck paths \((r = 1)\) and PF \((r = m)\).

The **area** of a \((D, \phi)\) = \(\text{area}(D)\)

The **weight** of \((D, \phi)\) = \((|\phi^{-1}(1)|, |\phi^{-1}(2)|, \ldots, |\phi^{-1}(r)|)\).

The **dinv** is...?? We need more.
Affine Compositions and Dinv

The **affine symmetric group** is

\[\tilde{S}_m := \left\{ \sigma : \mathbb{Z} \rightarrow \mathbb{Z} \mid \sigma \text{ is a bijection, } \sigma(x + m) = \sigma(x) + m, \text{ and } \sum_{i=1}^{m} \sigma(i) = \binom{m+1}{2} \right\}. \]
Affine Compositions and Dinv

The **affine symmetric group** is

$$\tilde{S}_m := \left\{ \sigma : \mathbb{Z} \to \mathbb{Z} \mid \sigma \text{ is a bijection, } \sigma(x + m) = \sigma(x) + m, \text{ and } \sum_{i=1}^{m} \sigma(i) = \binom{m+1}{2} \right\}.$$

A permutation $\sigma \in \tilde{S}_m$ is **n-stable** if $\sigma(x + n) \geq \sigma(x)$ for all $x \in \mathbb{Z}$. Let \tilde{S}_m^n the set of n-stable affine permutations.
Affine Compositions and Dinv

The **affine symmetric group** is

\[\tilde{S}_m := \left\{ \sigma : \mathbb{Z} \to \mathbb{Z} \mid \sigma \text{ is a bijection, } \sigma(x + m) = \sigma(x) + m, \text{ and } \sum_{i=1}^{m} \sigma(i) = \binom{m+1}{2} \right\}. \]

A permutation \(\sigma \in \tilde{S}_m \) is **n-stable** if \(\sigma(x + n) \geq \sigma(x) \) for all \(x \in \mathbb{Z} \). Let \(\tilde{S}_m^n \) the set of \(n \)-stable affine permutations.

Theorem (Gorsky-Mazin-Vazirani)

There is an explicit bijection \(A : PF_{(m,n)} \to \tilde{S}_m^n \).
Affine Compositions and Dinv

The **affine symmetric group** is

\[
\tilde{S}_m := \left\{ \sigma : \mathbb{Z} \to \mathbb{Z} \mid \sigma \text{ is a bijection, } \sigma(x + m) = \sigma(x) + m, \text{ and } \sum_{i=1}^{m} \sigma(i) = \binom{m+1}{2} \right\}.
\]

A permutation \(\sigma \in \tilde{S}_m \) is **n-stable** if \(\sigma(x + n) \geq \sigma(x) \) for all \(x \in \mathbb{Z} \). Let \(\tilde{S}_m^n \) the set of \(n \)-stable affine permutations.

Theorem (Gorsky-Mazin-Vazirani)

There is an explicit bijection \(\mathcal{A} : PF_{(m,n)} \to \tilde{S}_m^n \).

Given \((D, \psi) \in PF_{(m,n)} \) with \(\sigma = \mathcal{A}(D, \psi) \), they defined:

\[
\text{co-dinv}(D, \psi) := |\{(i, h) \in \{1, \ldots, m\} \times \{1, \ldots, n\} \mid \sigma(i + h) < \sigma(i)\}|
\]

So that \(\text{dinv} := \frac{(m-1)(n-1)}{2} - \text{co-dinv} \).
We generalized some of the Gorsky-Mazin-Vazirani results.
We generalized some of the Gorsky-Mazin-Vazirani results.

Definition

An \((m, r)\)-affine composition is a function \(f : \mathbb{Z} \to \mathbb{Z}\) such that:

1. \(f(x + m) = f(x) + r\) for all \(x \in \mathbb{Z}\).
2. The set \(f^{-1}\{1, \ldots, r\}\) has exactly one element from each residue class mod \(m\).
3. \(\sum_{x \in f^{-1}\{1, \ldots, r\}} x = \binom{m+1}{2}\).
We generalized some of the Gorsky-Mazin-Vazirani results.

Definition

An \((m, r)\)-affine composition is a function \(f : \mathbb{Z} \rightarrow \mathbb{Z}\) such that:

1. \(f(x + m) = f(x) + r\) for all \(x \in \mathbb{Z}\).
2. The set \(f^{-1}\{1, \ldots, r\}\) has exactly one element from each residue class mod \(m\).
3. \(\sum_{x \in f^{-1}\{1, \ldots, r\}} x = \binom{m+1}{2}\).

Theorem (González-Simental-Vazirani)

There is an explicit weight preserving bijection \(A_w : SSPF_r^{(m,n)} \rightarrow n\text{-stable (}m, r\text{)-affine compositions.}
We generalized some of the Gorsky-Mazin-Vazirani results.

Definition

An \((m, r)\)-**affine composition** is a function \(f : \mathbb{Z} \rightarrow \mathbb{Z}\) such that:

1. \(f(x + m) = f(x) + r\) for all \(x \in \mathbb{Z}\).
2. The set \(f^{-1}\{1, \ldots, r\}\) has exactly one element from each residue class mod \(m\).
3. \(\sum_{x \in f^{-1}\{1, \ldots, r\}} x = \binom{m+1}{2}\).

Theorem (González-Simental-Vazirani)

There is an explicit weight preserving bijection \(A_w : \text{SSPF}_{(m, n)}^r \rightarrow \text{n-stable (m, r)-affine compositions}.

Gorsky-Mazin-Vazirani proved the affine Springer fiber in the full affine flag variety has an affine paving indexed by parking functions.
We generalized some of the Gorsky-Mazin-Vazirani results.

Definition

An \((m, r)\)-affine composition is a function \(f : \mathbb{Z} \to \mathbb{Z}\) such that:

1. \(f(x + m) = f(x) + r\) for all \(x \in \mathbb{Z}\).
2. The set \(f^{-1}\{1, \ldots, r\}\) has exactly one element from each residue class mod \(m\).
3. \(\sum_{x \in f^{-1}\{1, \ldots, r\}} x = \binom{m+1}{2}\).

Theorem (González-Simental-Vazirani)

There is an explicit weight preserving bijection \(A_w : \text{SSPF}^r_{(m,n)} \to n\text{-stable} (m, r)\)-affine compositions.

Gorsky-Mazin-Vazirani proved the affine Springer fiber in the full affine flag variety has an affine paving indexed by parking functions.

We extended this result and showed that the affine spaces in an affine paving of a parabolic affine Springer fiber are indexed by the set \(\text{SSPF}^r_{(m,n)}\), with \(\text{co-dinv}\) measuring the dimension of the corresponding affine space.
To any semistandard parking function we define its \textbf{standardization} via the map \(\text{std} : \text{SSPF}_{(m,n)}^r \rightarrow \text{PF}_{(m,n)} \) defined by

\[
\text{std}(D, \phi) := A^{-1} S^{-1} w(A, D, \phi),
\]

where \(S_w \) is a specific map from certain minimal length coset representatives in \(\tilde{S}_m \) to \((m, r)\)-affine compositions. Define \(\text{dinv} \) by:

\[
\text{dinv}(D, \phi) := \text{dinv}(\text{std}(D, \phi)).
\]
To any semistandard parking function we define its standardization via the map \(\text{std} : \text{SSPF}_r^{(m,n)} \rightarrow \text{PF}^{(m,n)} \) defined by

\[
\text{std}(D, \phi) := A^{-1} S_w^{-1} A_w(D, \phi),
\]

where \(S_w \) is a specific map from certain minimal length coset representatives in \(\tilde{S}_m \) to \((m,r)\)-affine compositions. Define \(\text{dinv} \) by:

\[
\text{dinv}(D, \phi) := \text{dinv}(\text{std}(D, \phi)).
\]

Define the Anderson function by \(\gamma : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 \) by \(\gamma(x, y) = mn - mx - ny \).

Recipe: Given a rank \(r \) semistandard parking function \((D, \phi)\) construct the standard parking function \(\text{std}(D, \phi) \) by reading the 1’s, then 2’s, \ldots, then \(r \)'s in order, and then breaking ties using the Anderson labels.
Higher Rank Catalan Polynomials

Definition

The rank r rational (q, t)-Catalan polynomials are defined as:

$$C^{(r)}_{(m,n)}(x_1, \ldots, x_r; q, t) := \sum_{(D, \phi) \in SSPF^r(m,n)} q^{\text{area}(D)} t^{\text{dinv}(D, \phi)} x^{\text{wt}(\phi)}.$$
Higher Rank Catalan Polynomials

Definition

The **rank r rational \((q, t)\)-Catalan polynomials** are defined as:

\[
C_{(m,n)}^{(r)}(x_1, \ldots, x_r; q, t) := \sum_{(D, \phi) \in SSPF^r(m,n)} q^{\text{area}(D)} t^{\text{dinv}(D, \phi)} x^{\text{wt}(\phi)}.
\]

Define the **Hikita polynomial**

\[
H_{(m,n)}(X; q, t) := \sum_{(D, \varphi) \in PF(m,n)} q^{\text{area}(D, \varphi)} t^{\text{dinv}(D, \varphi)} Q_{\text{Des}(\sigma^{-1})}(X)
\]
Higher Rank Catalan Polynomials

Definition

The rank r rational (q, t)-Catalan polynomials are defined as:

$$C^{(r)}_{(m,n)}(x_1, \ldots, x_r; q, t) := \sum_{(D, \phi) \in SSPFr(m,n)} q^{\text{area}(D)} t^{\text{dinv}(D, \phi)} x^{\text{wt}(\phi)}.$$

Define the Hikita polynomial

$$H_{(m,n)}(X; q, t) := \sum_{(D, \varphi) \in PF(m,n)} q^{\text{area}(D, \varphi)} t^{\text{dinv}(D, \varphi)} Q_{\text{Des}(\sigma^{-1})}(X).$$

The higher rank Catalan polynomials interpolate between the rational Catalan numbers and the Hikita polynomial.

$$C^{(1)}_{(m,n)}(x_1) = x_1^m C_{(m,n)}.$$
Higher Rank Catalan Polynomials

Definition

The rank r rational (q, t)-Catalan polynomials are defined as:

$$C_{(m,n)}^{(r)}(x_1, \ldots, x_r; q, t) := \sum_{(D,\phi) \in SSPF^{r}(m,n)} q^{\text{area}(D)} t^{\text{dinv}(D,\phi)} x^{\text{wt}(\phi)}.$$

Define the Hikita polynomial

$$\mathcal{H}_{(m,n)}(X; q, t) := \sum_{(D,\varphi) \in PF(m,n)} q^{\text{area}(D,\varphi)} t^{\text{dinv}(D,\varphi)} Q_{\text{Des}(\sigma^{-1})}(X).$$

The higher rank Catalan polynomials interpolate between the rational Catalan numbers and the Hikita polynomial.

$$C_{(m,n)}^{(1)}(x_1) = x_1^m C_{(m,n)}.$$

$$\lim_{r \to \infty} C_{(m,n)}^{(r)}(x_1, \ldots, x_r; q, t) = \mathcal{H}_{(m,n)}(X; q, t).$$

Thus, $C_{(m,n)}^{(r)}(x_1, \ldots, x_r; q, t)$ are Schur positive, q, t-symmetric, and x_1, \ldots, x_r-symmetric.
The Rational Shuffle Theorem

Define the **elliptic Hall algebra** \mathcal{E} as the $\mathbb{C}(q, t)$-algebra generated by
$$\{P_{m,n} \mid m, n \in \mathbb{Z}_{\geq 0}\} \text{ (mod relations)}.$$

Schiffman-Vasserot gave a *geometric* action of \mathcal{E} on symmetric functions $Sym := Q(q, t)[x_1, \ldots]^{S_{\infty}}$.
The Rational Shuffle Theorem

Define the **elliptic Hall algebra** \mathcal{E} as the $\mathbb{C}(q, t)$-algebra generated by $\{P_{m, n} \mid m, n \in \mathbb{Z}_{\geq 0}\}$ (mod relations).

Schiffman-Vasserot gave a geometric action of \mathcal{E} on symmetric functions $\text{Sym} := Q(q, t)[x_1, \ldots][S_\infty]$.

Studying the Khovanov-Rozansky homology of (m, n)-torus links, Gorsky-Neguț conjectured:

Rational Shuffle Theorem (Mellit)

$$P_{m, n} \cdot (1) = \mathcal{H}_{(m, n)}(X; q, t).$$

When $m = n + 1$ this recovers the classical shuffle theorem.
The Rational Shuffle Theorem

Define the **elliptic Hall algebra** \mathcal{E} as the $\mathbb{C}(q, t)$-algebra generated by \(\{ P_{m,n} \mid m, n \in \mathbb{Z}_{\geq 0} \} \) (mod relations).

Schiffman-Vasserot gave a *geometric* action of \mathcal{E} on symmetric functions $\text{Sym} := Q(q, t)[x_1, \ldots]^{S_{\infty}}$.

Studying the Khovanov-Rozansky homology of (m, n)-torus links, Gorsky-Neguț conjectured:

Rational Shuffle Theorem (Mellit)

\[P_{m,n} \cdot (1) = \mathcal{H}_{(m,n)}(X; q, t). \]

When $m = n + 1$ this recovers the classical shuffle theorem.

Define the **spherical DAHA**, $\mathcal{SH}(r)$, as the spherical subalgebra of the DAHA generated by $\{ P_{m,n}^{(r)} \mid m, n \in \mathbb{Z}_{\geq 0} \}$ (mod relations).
A Finite Shuffle Theorem

Theorem (Shiffmann-Vasserot)

The elliptic Hall algebra arises under the inverse limit: \(\mathcal{E} \cong \lim_{\leftarrow} \mathcal{SH}(r) \) where

\[
P_{(m,n)} = \lim_{\leftarrow} P_{(m,n)}^{(r)}.
\]
A Finite Shuffle Theorem

Theorem (Shiffmann-Vasserot)

The elliptic Hall algebra arises under the inverse limit:
\[\mathcal{E} \cong \lim_{\leftarrow r} \mathcal{SH}(r) \]
where
\[P_{(m,n)} = \lim_{\leftarrow r} P_{(m,n)}^{(r)} \]

Denote by \(\text{Sym}_r := Q(q, t)[x_1, \ldots, x_r]^S_r \) the ring of symmetric polynomials, recall that:
\[\text{Sym} = \lim_{\leftarrow r} \text{Sym}_r. \]

Hence, the geometric action of \(\mathcal{E} \) on \(\text{Sym} \) induces a geometric action of \(\mathcal{SH}(r) \) on \(\text{Sym}_r. \)
A Finite Shuffle Theorem

Theorem (Shiffmann-Vasserot)

The elliptic Hall algebra arises under the inverse limit: \(\mathcal{E} \cong \lim_{\to} \mathcal{SH}(r) \) where \(P_{(m,n)} = \lim_{\to} P_{(m,n)}^{(r)} \).

Theorem (González-Simental-Vazirani)

Denote by \(\text{Sym}_r := \mathbb{Q}(q, t)[x_1, \ldots, x_r]^S_r \) the ring of symmetric polynomials, recall that:

\[
\text{Sym} = \lim_{\to} \text{Sym}_r.
\]

Hence, the geometric action of \(\mathcal{E} \) on \(\text{Sym} \) induces a geometric action of \(\mathcal{SH}(r) \) on \(\text{Sym}_r \).

Since \(\mathcal{H}_{(m,n)}(X; q, t) = \lim_{\to} C_{(m,n)}^{(r)}(X_r; q, t) \), this yields a finite Shuffle theorem:

\[
P_{(m,n)}^{(r)} \cdot (1) = C_{(m,n)}^{(r)}(x_1, \ldots, x_r; q, t).
\]
Can we describe this geometric action of $\mathcal{SH}(r)$ on Sym_r more explicitly?
Can we describe this geometric action of $\text{SH}(r)$ on Sym_r more explicitly?

There is a classical *polynomial representation* of $\text{SH}(r)$ on Sym_r.

This induces an *algebraic* action of \mathcal{E} on Sym that is isomorphic to the geometric representation of Shiffmann-Vasserot.
Can we describe this geometric action of $\text{SH}(r)$ on Sym_r more explicitly?

There is a classical polynomial representation of $\text{SH}(r)$ on Sym_r. This induces an algebraic action of \mathcal{E} on Sym that is isomorphic to the geometric representation of Shiffmann-Vasserot. In particular, these actions are related via the same plethysm that exchanges the Macdonald polynomials:

$$P_\lambda(X; q, t) \leftrightarrow \tilde{H}_\lambda(X; q, t)$$
Can we describe this geometric action of $\mathsf{SH}(r)$ on Sym_r more explicitly?

There is a classical polynomial representation of $\mathsf{SH}(r)$ on Sym_r.

This induces an algebraic action of \mathcal{E} on Sym that is isomorphic to the geometric representation of Shiffmann-Vasserot. In particular, these actions are related via the same plethysm that exchanges the Macdonald polynomials:

$$P_\lambda(X; q, t) \leftrightarrow \tilde{H}_\lambda(X; q, t)$$

Theorem (González-Simental-Vazirani)

The polynomial and geometric representations of $\mathsf{SH}(r)$ are nontrivially isomorphic (they are related via a ‘truncated’ plethysm).
Can we describe this geometric action of $\mathcal{SH}(r)$ on Sym_r more explicitly?

There is a classical polynomial representation of $\mathcal{SH}(r)$ on Sym_r.

This induces an algebraic action of \mathcal{E} on Sym that is isomorphic to the geometric representation of Shiffmann-Vasserot. In particular, these actions are related via the same plethysm that exchanges the Macdonald polynomials:

$$P_\lambda(X; q, t) \leftrightarrow \tilde{H}_\lambda(X; q, t)$$

Theorem (González-Simental-Vazirani)*

The polynomial and geometric representations of $\mathcal{SH}(r)$ are nontrivially isomorphic (they are related via a ‘truncated’ plethysm).

However, describing the action directly is really hard even at $r = 1$. Maybe next time we meet I’ll know the answer :) .
References

Burban, I., and Schiffmann, O.
On the Hall algebra of an elliptic curve, I.

Gonzalez, N., Simental, J., and Vazirani, M.
Higher Rank \((q, t)\)-Catalan Polynomials, Affine Springer Fibers, and a Finite Rational Shuffle Theorem.

Gorsky, E., Mazin, M., and Vazirani, M.
Affine permutations and rational slope parking functions.

Mellit, A.
Toric braids and \((m, n)\)-parking functions.

THANK YOU!