Derivatives and Schubert Calculus

Anna Weigandt

MIT \rightarrow University of Minnesota
weigandt@umn.edu

July 17th 2023

FPSAC 2023
Based on joint work with Zachary Hamaker (Florida), Oliver Pechenik (Waterloo), and David Speyer (Michigan).

Schubert Polynomials

Schubert Varieties

The complete flag variety is the quotient $\mathcal{F} \ell(n)=\mathrm{GL}(n) / B$.

There's a natural action of B on $\mathcal{F} \ell(n)$ by left multiplication. The orbits Ω_{w} are called Schubert cells and give rise to the Bruhat decomposition:

$$
\mathcal{F} \ell(n)=\coprod_{w \in \mathcal{S}_{n}} \Omega_{w} .
$$

The Schubert varieties are the closures of these orbits: $\mathfrak{X}_{w}=\overline{\Omega_{w}}$.

Schubert Classes

Schubert varieties give rise to Schubert classes σ_{w} in the cohomology ring $H^{*}(\mathcal{F} \ell(n))$. The Schubert classes form a linear basis for $H^{*}(\mathcal{F} \ell(n))$.

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w \in \mathcal{S}_{n}} c_{u, v}^{w} \sigma_{w}
$$

In general, there is no known positive, combinatorial rule for these coefficients.

The Borel Isomorphism

Thanks to Borel, there is an isomorphism

$$
\Phi: H^{*}(\mathcal{F} \ell(n)) \rightarrow \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I
$$

where I is the ideal generated by symmetric polynomials with no constant term.

Question: What is a "good" polynomial representative for the $\operatorname{coset} \Phi\left(\sigma_{w}\right)$?

One Answer: Schubert polynomials, defined by Lascoux and Schützenberger (1982).

$$
\Phi\left(\sigma_{w}\right)=\left[\mathfrak{S}_{w}(\mathbf{x})\right]
$$

Schubert Polynomials

- Start with the longest permutation in \mathcal{S}_{n}

$$
w_{0}=n n-1 \ldots 1 \quad \mathfrak{S}_{w_{0}}:=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}
$$

- The rest are defined recursively by Newton's divided difference operators:

$$
N_{i} f:=\frac{f-s_{i} \cdot f}{x_{i}-x_{i+1}} \quad \text { and } \quad \mathfrak{S}_{w s_{i}}:=N_{i} \mathfrak{S}_{w} \text { if } w(i)>w(i+1)
$$

Schubert Polynomials for \mathcal{S}_{3}

The Schubert Basis

Schubert polynomials are stable with respect to inclusions of symmetric groups, e.g.,

$$
\mathfrak{S}_{132}=\mathfrak{S}_{1324}=\mathfrak{S}_{13245}=\cdots
$$

The set $\left\{\mathfrak{S}_{w}: w \in \mathcal{S}_{\infty}\right\}$ is a basis for $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$.

$$
\mathfrak{S}_{u} \mathfrak{S}_{v}=\sum_{w \in \mathcal{S}_{\infty}} c_{u, v}^{w} \mathfrak{S}_{w}
$$

Derivatives of Schubert Polynomials

Question: What happens when you take "the" derivative of a Schubert polynomial?

Question: What happens when you take "the" derivative of a Schubert polynomial?

Example: $\mathfrak{S}_{2413}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$.

$$
\frac{\partial}{\partial x_{1}}\left(\mathfrak{S}_{2413}\right)=2 x_{1} x_{2}+x_{2}^{2} \quad \frac{\partial}{\partial x_{2}}\left(\mathfrak{S}_{2413}\right)=x_{1}^{2}+2 x_{1} x_{2}
$$

Question: What happens when you take "the" derivative of a Schubert polynomial?

Example: $\mathfrak{S}_{2413}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$.

$$
\begin{array}{cc}
\frac{\partial}{\partial x_{1}}\left(\mathfrak{S}_{2413}\right)=2 x_{1} x_{2}+x_{2}^{2} & \frac{\partial}{\partial x_{2}}\left(\mathfrak{S}_{2413}\right)=x_{1}^{2}+2 x_{1} x_{2} \\
\frac{\partial}{\partial x_{1}}\left(\mathfrak{S}_{2413}\right)=\mathfrak{S}_{1423}-\mathfrak{S}_{3124}+\mathfrak{S}_{2314} & \frac{\partial}{\partial x_{2}}\left(\mathfrak{S}_{2413}\right)=\mathfrak{S}_{3124}+2 \mathfrak{S}_{2314}
\end{array}
$$

Question: What happens when you take "the" derivative of a Schubert polynomial?

Example: $\mathfrak{S}_{2413}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$.

$$
\begin{gathered}
\frac{\partial}{\partial x_{1}}\left(\mathfrak{S}_{2413}\right)=2 x_{1} x_{2}+x_{2}^{2} \quad \frac{\partial}{\partial x_{2}}\left(\mathfrak{S}_{2413}\right)=x_{1}^{2}+2 x_{1} x_{2} \\
\frac{\partial}{\partial x_{1}}\left(\mathfrak{S}_{2413}\right)=\mathfrak{S}_{1423}-\mathfrak{S}_{3124}+\mathfrak{S}_{2314} \quad \frac{\partial}{\partial x_{2}}\left(\mathfrak{S}_{2413}\right)=\mathfrak{S}_{3124}+2 \mathfrak{S}_{2314} \\
\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right)\left(\mathfrak{S}_{2413}\right)=\mathfrak{S}_{1423}+3 \mathfrak{S}_{2314} .
\end{gathered}
$$

Proposition (Hamaker-Pechenik-Speyer-Weigandt, 2020)
Let $\nabla=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}$. Then

$$
\nabla\left(\mathfrak{S}_{w}\right)=\sum_{s_{k} w<w} k \mathfrak{S}_{s_{k} w}
$$

Example: $\nabla\left(\mathfrak{S}_{2413}\right)=\mathfrak{S}_{1423}+3 \mathfrak{S}_{2314}$.
Proof idea: Show ∇ commutes with N_{i} and use this to induct with w_{0} as base case.

Schur Polynomials

Schur Polynomials

- The Schur polynomials s_{λ} are indexed by partitions and form a basis for the ring of symmetric polynomials.
- Schur polynomials have a combinatorial definition as a weighted sum of semistandard tableaux.

Example: $\lambda=(6,5,3)$

$T=$	1	3	4			5	7
	2	5	5		6	6	
	3	7	8				

$$
\operatorname{wt}(T)=x_{1} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{3} x_{6}^{2} x_{7}^{2} x_{8}
$$

Example: $\lambda=(3,1)$

1	1	1	1	1	2	1	2	2
2			2			2		

Schur polynomials are Schubert polynomials

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $k \geq \ell$, there exists some Grassmannian $w \in \mathcal{S}_{\infty}$ so that $\mathfrak{S}_{w}=s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

Example: $\lambda=(3,1)$ and $k=4$.

Schur polynomials are Schubert polynomials

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $k \geq \ell$, there exists some Grassmannian $w \in \mathcal{S}_{\infty}$ so that $\mathfrak{S}_{w}=s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

Example: $\lambda=(3,1)$ and $k=4$.
(1) Pad string
$(3,1,0,0)$

Schur polynomials are Schubert polynomials

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $k \geq \ell$, there exists some Grassmannian $w \in \mathcal{S}_{\infty}$ so that $\mathfrak{S}_{w}=s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

Example: $\lambda=(3,1)$ and $k=4$.
(1) Pad string
$(3,1,0,0)$
(2) Reverse string
$(0,0,1,3)$

Schur polynomials are Schubert polynomials

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $k \geq \ell$, there exists some Grassmannian $w \in \mathcal{S}_{\infty}$ so that $\mathfrak{S}_{w}=s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

Example: $\lambda=(3,1)$ and $k=4$.
(1) Pad string
$(3,1,0,0)$
(2) Reverse string
$(0,0,1,3)$
(3) Add i to i th entry
(1, 2, 4, 7)

Schur polynomials are Schubert polynomials

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $k \geq \ell$, there exists some Grassmannian $w \in \mathcal{S}_{\infty}$ so that $\mathfrak{S}_{w}=s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

Example: $\lambda=(3,1)$ and $k=4$.
(1) Pad string
$(3,1,0,0)$
(2) Reverse string $(0,0,1,3)$
(3) Add i to i th entry
(1, 2, 4, 7)
(9) Fill in missing numbers in increasing order
1247|356

Schur polynomials are Schubert polynomials

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $k \geq \ell$, there exists some Grassmannian $w \in \mathcal{S}_{\infty}$ so that $\mathfrak{S}_{w}=s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

Example: $\lambda=(3,1)$ and $k=4$.
(1) Pad string
$(3,1,0,0)$
(2) Reverse string $(0,0,1,3)$
(3) Add i to i th entry
$(1,2,4,7)$
(9) Fill in missing numbers in increasing order 1247|356

In fact, all Grassmannian Schubert polynomials are Schur polynomials.

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

1	3	4		5	7
2	5	5		9	
6	7	8			

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

	3	4				7
2	5	5				
6	7	8				

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

2	3	4	4	5	7
	5	5	9	9	
6	7	8			

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

2	3	4	4	5	7
5		5	9	9	
6	7	8			

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

2	3	4	4	5	7
5	5		9	9	
6	7	8			

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

2	3	4	4	5	7
5	5	8	9	9	
6	7				

JDT

Jeu de Taquin is a sliding game on semistandard tableaux introduced by Marcel-Paul Schützenberger.

2	3	4				7
5	5	8				
6	7					

Derivatives of Schur Polynomials

- When you apply $\nabla=\sum_{i=1}^{k} \frac{\partial}{\partial x_{i}}$ to a symmetric polynomial, the result is symmetric.
- Question: What does this action look like in terms of "tableaux combinatorics"?

The Symmetric Derivative Rule

Given λ and k, the number of variables, fill each box $(i, j) \in \lambda$ with $j-i+k$.

Example: $\lambda=(4,2,2,1)$ and $k=5$

5	6	7	8
4	5		
3	4		
2			

The Symmetric Derivative Rule

Given λ and k, the number of variables, fill each box $(i, j) \in \lambda$ with $j-i+k$.

Example: $\lambda=(4,2,2,1)$ and $k=5$

5	6	7	8
4	5		
3	4		
2			

$$
\nabla\left(s_{(4,2,2,1)}\right)=8 s_{(3,2,2,1)}+4 s_{(4,2,1,1)}+2 s_{(4,2,2)}
$$

Corollary

Given $\nabla=\sum_{i=1}^{k} \frac{\partial}{\partial x_{i}}$,

$$
\nabla\left(s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)\right)=\sum_{(i, j)}(j-i+k) s_{\lambda-(i, j)}\left(x_{1}, \ldots, x_{k}\right)
$$

where the sum is over corners of λ.

Example: $\lambda=(4,2,2,1)$ and $k=5$

5	6	7	8
4	5		
3	4		
2			

$$
\nabla\left(s_{(4,2,2,1)}\right)=8 s_{(3,2,2,1)}+4 s_{(4,2,1,1)}+2 s_{(4,2,2)}
$$

Combinatorial Proof via JDT

Upshot: Derivatives of Schubert (and Schur) polynomials are nice!

Goal: Use this formula to understand related combinatorial objects and constructions.

Applications of the Derivative Formula

Applications of the Schubert Derivative Formula

(1) Macdonald's Identity
(2) Strongly Sperner Posets
(3) Special rules for Schubert structure constants

Macdonald's Identity

Reduced Words

Every permutation can be written as a product of simple transpositions.

Example: $w=2413=s_{3} s_{1} s_{2}=s_{1} s_{1} s_{3} s_{1} s_{2}$.
We say an expression is reduced if it is as short of a factorization as possible.

The length of this factorization is the Coxeter length of w, denoted $\ell(w)$.

Macdonald's Identity

Theorem (Macdonald, 1991)

$$
\frac{1}{\ell(w)!} \sum_{a \in R(w)} a_{1} a_{2} \cdots a_{\ell(w)}=\mathfrak{S}_{w}(1,1, \ldots, 1)
$$

Example

$$
\mathfrak{S}_{2413}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2} \text { and } R(2413)=\{312,132\} .
$$

We verify

$$
\frac{1}{3!}(3 \cdot 1 \cdot 2+1 \cdot 3 \cdot 2)=2
$$

A (Short) Proof of Macdonald's Identity

Big idea: Chains in (left) weak Bruhat order biject with reduced words.

Example: $w=2413 \quad R(2413)=\{312,132\}$

A (Short) Proof of Macdonald's Identity

If m is a (monic) monomial of degree k, then $\nabla^{k}(m)=k!$.
\mathfrak{S}_{w} is homogeneous of degree $\ell(w)$ and therefore

$$
\nabla^{\ell(w)}\left(\mathfrak{S}_{w}\right)=\ell(w)!\mathfrak{S}_{w}(1,1, \ldots, 1)
$$

On the other hand, since $\nabla\left(\mathfrak{S}_{w}\right)=\sum_{\ell\left(s_{k} w\right)<\ell(w)} k \mathfrak{S}_{s_{k} w}$,

$$
\nabla^{\ell(w)}\left(\mathfrak{S}_{w}\right)=\sum_{a \in R(w)} a_{1} a_{2} \cdots a_{\ell(w)}
$$

$$
\ell(w)!\mathfrak{S}_{w}(1,1, \ldots, 1)=\sum_{a \in R(w)} a_{1} a_{2} \cdots a_{\ell(w)}
$$

Strongly Sperner Posets

Sperner Posets

A ranked poset is Sperner if no antichain is larger than the largest rank level in the poset.

Sperner

Not Sperner

The strong Sperner property says for all k, no union of k antichains exceeds the union of the k largest rank levels.

Theorem (Stanley 1980)
Let $P=\bigcup_{i=0}^{m} P_{i}$ be a ranked poser. Suppose there is an order-raising operator $U: \mathbb{Q} P \rightarrow \mathbb{Q} P$ such that if $0 \leq k<m / 2$ then $U^{m-2 k}: \mathbb{Q} P_{k} \rightarrow \mathbb{Q} P_{m-k}$ is a bijection. Then P is strongly Sterner.

$$
\begin{aligned}
& U(\phi)=\{1\}+\{2\} \\
& U(\{1\})=U(\{2\})=\{1,2\} \\
& U(\{1,2\})=0 . \\
& U^{2}(\phi)=2 \cdot\{1,2\}
\end{aligned}
$$

The Weak Order on S_{n} is Strongly Sperner

- Stanley (2017) conjectured the weak order on S_{n} is strongly Sperner and showed that it was enough to prove the determinant of a certain matrix of specialized Schubert polynomials doesn't vanish.
- You can prove this via the derivative formula (Hamaker-Pechenik-Speyer-Weigandt 2020)
- Gaetz and Gao (2020) gave a separate proof first that the weak order is strongly Sperner.

Special Rules for Schubert Structure Constants

Schubert Structure Constants

Big goal: Understand the coefficients in this expansion:

$$
\mathfrak{S}_{u} \mathfrak{S}_{v}=\sum_{w \in \mathcal{S}_{\infty}} c_{u, v}^{w} \mathfrak{S}_{w}
$$

Leveraging the Product Rule

Theorem (Pechenik-Weigandt 2022)

$$
\sum_{s_{i} u<u} i c_{s_{i} u, v}^{w}+\sum_{s_{j} v<v} j c_{u, s_{j} v}^{w}=\sum_{s_{k} w>w} k c_{u, v}^{s_{k} w}
$$

Proof idea: We have $\mathfrak{S}_{u} \mathfrak{S}_{v}=\sum_{z} c_{u, v}^{z} \mathfrak{S}_{z}$.
Apply ∇ to both sides:

$$
\nabla\left(\mathfrak{S}_{u}\right) \mathfrak{S}_{v}+\mathfrak{S}_{u} \nabla\left(\mathfrak{S}_{v}\right)=\sum_{z} c_{u, v}^{z} \nabla\left(\mathfrak{S}_{z}\right)
$$

Extract coefficients of \mathfrak{S}_{w} from both sides.

Inverse Grassmannian Permutations

What's the easiest case? When u and v each have a unique left descent. Such permutations are called inverse Grassmannians.

In this case we have

$$
p c_{s_{p} u, v}^{w}+q c_{u, s_{q} v}^{w}=\sum_{s_{k} w>w} k c_{u, v}^{s_{k} w}
$$

and by "stabilization tricks"

$$
c_{s_{p} u, v}^{w}+c_{u, s_{q} v}^{w}=c+\sum_{s_{k} w>w} c_{u, v}^{s_{k} w} .
$$

We extended a rule of Wyser in terms of (p, q)-clans to understand products indexed by inverse Grassmannian permutations, which lets us understand the RHS.

Backstable Clans

Let $u=213$ and $v=312$.

- $c_{u, v}^{w}=1$ if there is a word for w from the top clan to the bottom.
- $c_{u, v}^{w}$ is zero otherwise.

Example: $c_{u, v}^{4123}=1$

From these equations

$$
\begin{aligned}
& p c_{s_{p} u, v}^{w}+q c_{u, s_{q} v}^{w}=\sum_{s_{k} w>w} k c_{u, v}^{s_{k} w} \\
& c_{s_{p} u, v}^{w}+c_{u, s_{q} v}^{w}=c+\sum_{s_{k} w>w} c_{u, v}^{s_{k} w}
\end{aligned}
$$

you can extract (multiplicity free!) clan rules for $c_{S_{p} u, v}^{w}$ and $c_{u, s_{q} v}^{w}$.

Derivatives of Grothendieck Polynomials

Grothendieck Polynomials

Grothendieck polynomials are K-theoretic analogues of Schubert polynomials.

- Same initial condition:

$$
\mathfrak{G}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} .
$$

- Define $\bar{N}_{i}(f)=N_{i}\left(\left(1-x_{i+1}\right) f\right)$
- If $w(i)>w(i+1)$ then $\mathfrak{G}_{w s_{i}}=\bar{N}_{i}\left(\mathfrak{G}_{w}\right)$.

Grothendieck Polynomials

Grothendieck polynomials are K-theoretic analogues of Schubert polynomials.

- Same initial condition:

$$
\mathfrak{G}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}
$$

- Define $\bar{N}_{i}(f)=N_{i}\left(\left(1-x_{i+1}\right) f\right)$
- If $w(i)>w(i+1)$ then $\mathfrak{G}_{w s_{i}}=\bar{N}_{i}\left(\mathfrak{G}_{w}\right)$.

Notice: N_{i} might preserve degree or drop degree.

Grothendieck Polynomials for \mathcal{S}_{3}

Derivatives of Grothendieck Polynomials

$$
\begin{aligned}
& \text { Theorem (Pechenik-Speyer-Weigandt 2021) } \\
& \text { Let } \nabla=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \text { and } E=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} . \text { Then } \\
& \qquad\left(\nabla-E+\operatorname{maj}\left(w^{-1}\right)\right) \mathfrak{G}_{w}=\sum_{s_{k} w<w} k \mathfrak{G}_{s_{k} w}, \\
& \text { where } \operatorname{maj}\left(w^{-1}\right)=\sum_{s_{k} w<w} k .
\end{aligned}
$$

Castelnuovo-Mumford Regularity

Castelnuovo-Mumford Regularity

- Castelnuovo-Mumford regularity is an invariant from commutative algebra that says how complicated minimal free resolutions of a graded module can be.
- If you happen to know the regularity, it can help computers get more info about the module faster!

Castelnuovo-Mumford Regularity

- Castelnuovo-Mumford regularity is an invariant from commutative algebra that says how complicated minimal free resolutions of a graded module can be.
- If you happen to know the regularity, it can help computers get more info about the module faster!
- Jenna Rajchgot observed that if R / I is Cohen-Macaulay, the regularity of R / I is the difference between the degree of its K-polynomial and the height of I.

Schubert Determinantal Ideals

Schubert determinantal ideals I_{w} are generalizations of classical determinantal ideals.

Example:

$$
I_{2143}=\left\langle z_{11},\right| \begin{array}{lll}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & z_{33}
\end{array}| \rangle
$$

Fulton (1991) showed the height of I_{w} is $\ell(w)$ and that R / I_{w} is Cohen-Macaulay.

So it's enough to find the degree of the K-polynomial!

K-polynomials via Grothendieck Polynomials

The K-polynomial of R / I_{w} is obtained by substituting

$$
x_{i} \mapsto 1-t \quad \text { for all } i
$$

into the Grothendieck polynomial \mathfrak{G}_{w} (see Knutson-Miller 2004).
This change of variables is degree preserving.

Upshot: We just need to understand $\operatorname{deg}\left(\mathfrak{G}_{w}\right)$.
Note: Want to avoid recursive and algorithmic constructions, i.e., want simple permutation statistic.

Return to Derivatives of Grothendieck Polynomials

Theorem (Pechenik-Speyer-Weigandt 2021)
Let $\nabla=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}$ and $E=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}$. Then

$$
\left(\nabla-E+\operatorname{maj}\left(w^{-1}\right)\right) \mathfrak{G}_{w}=\sum_{s_{k} w<w} k \mathfrak{G}_{s_{k} w}
$$

where maj $\left(w^{-1}\right)=\sum_{s_{k} w<w} k$.

Upshot: Applying $\nabla-E+\operatorname{maj}\left(w^{-1}\right)$ drops the degree exactly when $\operatorname{deg}\left(\mathfrak{G}_{w}\right)=\operatorname{maj}\left(w^{-1}\right)$.

Return to Derivatives of Grothendieck Polynomials

Theorem (Pechenik-Speyer-Weigandt 2021)

Let $\nabla=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}$ and $E=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}$. Then

$$
\left(\nabla-E+\operatorname{maj}\left(w^{-1}\right)\right) \mathfrak{G}_{w}=\sum_{s_{k} w<w} k \mathfrak{G}_{s_{k} w},
$$

where maj $\left(w^{-1}\right)=\sum_{s_{k} w<w} k$.

Upshot: Applying $\nabla-E+\operatorname{maj}\left(w^{-1}\right)$ drops the degree exactly when $\operatorname{deg}\left(\mathfrak{G}_{w}\right)=\operatorname{maj}\left(w^{-1}\right)$.

Question: For which permutations does this happen?

Fireworks Permutations

A permutation is fireworks if the initial elements of its decreasing runs are in increasing order.

Example: 41|62|853|97
Another characterization is that these permutations are $3-12$ pattern avoiding.

Theorem (Pechenik-Speyer-Weigandt 2021) $\operatorname{deg}\left(\mathfrak{G}_{w}\right)=\operatorname{maj}\left(w^{-1}\right)$ if and only if w^{-1} is fireworks.

The Rajchgot Statistic

Example: $w=71645823$

The Rajchgot Statistic

Example: $w=71645823$

7	1	6	4	5	8	2	3
	1	6	4	5	8	2	3
		6	4	5	8	2	3
			4	5	8	2	3
				5	8	2	3
					8	2	3
						2	3
							3

The Rajchgot Statistic

Example: $w=71645823$

7	1	6	4	5	$\boxed{8}$	2	3
	1	6	4	5	8	2	3
		6	4	5	8	2	3
			4	5	8	2	3
				5	8	2	3
					8	2	3
						2	3
							3

The Rajchgot Statistic

Example: $w=71645823$

$$
\begin{aligned}
& \begin{array}{cccccc|ccc}
\hline 7 & 1 & 6 & 4 & 5 & \boxed{8} & 2 & 3 \\
& 1 & 6 & 4 & 4 & 5 & \boxed{8} & 2 & 3 \\
& & 6 & 4 & 5 & 8 & 2 & 3
\end{array} \\
& \begin{array}{lllll}
4 & 5 & 8 & 2 & 3
\end{array} \\
& \begin{array}{llll}
5 & 8 & 2 & 3
\end{array} \\
& 823 \\
& 23 \\
& 3
\end{aligned}
$$

The Rajchgot Statistic

Example: $w=71645823$

The Rajchgot Statistic

Example: $w=71645823$

$$
\begin{array}{|cccccccc}
\hline 7 & 1 & 6 & 4 & 5 & \boxed{8} & 2 & 3 \\
& \boxed{1} & 6 & \boxed{4} & \boxed{5} & \boxed{8} & 2 & 3 \\
& & 6 & 4 & 5 & \boxed{8} & 2 & 3 \\
& & & 4 & \boxed{y} & \boxed{8} & 2 & 3 \\
& & & & \boxed{5} & \boxed{8} & 2 & 2 \\
\hline 8 & 3 \\
& & & & & 8 & 2 & 3 \\
& & & & & & 2 & 3 \\
\hline & & & & & & 3 \\
\hline
\end{array}
$$

The Rajchgot statistic on permutations is

$$
\operatorname{raj}(w)=\# \text { unboxed entries }=19 .
$$

Theorem (Pechenik-Speyer-Weigandt 2021)

Given $w \in \mathcal{S}_{n}$,

- $\operatorname{deg}\left(\mathfrak{G}_{w}\right)=\operatorname{raj}(w)$, and
- $\operatorname{reg}\left(R / I_{w}\right)=\operatorname{raj}(w)-\ell(w)$.

Example: $\mathfrak{G}_{132}=x_{1}+x_{2}-x_{1} x_{2}$

$$
\begin{array}{c|cc}
\hline 1 & 3 & 2 \\
& \boxed{3} & 2 \\
& & 2 \\
& & \boxed{2}
\end{array}
$$

We have $\operatorname{raj}(132)=2=\operatorname{deg}\left(\mathfrak{G}_{132}\right)$.

Main Takeaway

Main Takeaway

Differential operators are useful for extracting structure from combinatorial families of polynomials!

Thank you!

