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“Isn’t it time for you to start studying middle-aged tableaux?” – my wife, last Tuesday



Disclaimers and conventions

In this talk, we believe:

all symmetric functions have coefficients in Z (or maybe Z[β])
all Young diagrams & tableaux (straight or shifted) are in French notation

D442 = SD431 =

it’s ok to give motivation from geometry, even if the speaker doesn’t really understand
what “K -theory of the Lagrangian Grassmannian” means



Schur functions

Schur functions sλ are a very special basis for the ring Sym of symmetric functions, with many
different (but ultimately equivalent) definitions:

they are the unique orthonormal Z-basis for Sym under the Hall inner product; equiv. the

unique basis that satisfies the Cauchy identity
∑
λ

sλ(x)sλ(y) =
∏
i ,j

1

1− xiyj

they are the generating functions for semistandard Young tableaux of a fixed shape
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s21 =
∑

T∈SSYT(21)
xwt(T ) = x21x2 + x1x

2
2 + 2x1x2x3 + · · ·

they correspond to the representatives of Schubert classes in the cohomology ring of the
(complex) Grassmannian

bilaternants, representation theory, etc.



Variations on Schur functions

Take your favorite definition and tweak it:

instead of considering cohomology, you could consider the K -theory of structure sheaves
of the Grassmannian, or torus-equivariant K -theory, or other Grassmannians, etc.

instead of considering semistandard Young tableaux, you could consider generating

functions for set-valued tableaux
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12 234 5
, or “valued-set tableaux”
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or shifted, marked tableaux
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, or reverse plane partitions

2 2

1 2 4

1 1 1 2

,

etc., with appropriate interpretations of wt(T ) for tableaux of each type

These often go together: e.g., the generating functions for shifted, marked tableaux (Schur
Q-functions) are also representatives of cohomology classes dual to Schubert cycles in
orthogonal Grassmannians and characters of irreducible representations of the queer Lie
super-algebra Q(n)



What is lost, what is gained

One thing that is lost is self-duality: in∑
λ

sλ(x)sλ(y) =
∏
i ,j

1

1− xiyj

we have the same basis twice

but when we replace Schur functions with another family, we tend to get formulas like∑
λ

Gλ(x)gλ(y) =
∏(

something
)

where Gλ are a basis for one Hopf algebra of symmetric function-like things and gλ are a basis
for a different Hopf algebra, dual to the first

(whereas Sym is self-dual)



First variation: (conjugate) (dual) (stable) Grothendieck polynomials

Grothendieck polynomials are K -theory representatives for Schubert varieties
(Lascoux–Schützenberger)

Stable Grothendieck polynomials Gλ are certain limits of G. polys (Fomin–Kirillov)

Stable G. polynomials are generating functions for set-valued tableaux (Buch)
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G21 =
∑

T∈SVT(21)
β|T |−|λ|xwt(T ) = x21x2 + βx21x

2
2 + 3βx1x

2
2x3 + · · · ;

recover sλ on setting β = 0

Dual stable G. polynomials gλ are defined by
∑
λ

Gλ(x)gλ(y) =
∏
i ,j

1

1− xiyj

The gλ are given by a combinatorial formula



First variation: (conjugate) (dual) (stable) Grothendieck polynomials

Grothendieck polynomials are K -theory representatives for Schubert varieties
(Lascoux–Schützenberger)

Stable Grothendieck polynomials Gλ are certain limits of G. polys (Fomin–Kirillov)

Stable G. polynomials are generating functions for set-valued tableaux (Buch)
Gλ =

∑
T∈SVT(λ) β

|T |−|λ|xwt(T ); recover sλ on setting β = 0

Dual stable G. polynomials gλ are defined by
∑
λ

Gλ(x)gλ(y) =
∏
i ,j

1

1− xiyj

The gλ are given by a combinatorial formula
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g21 =
∑

T∈RPP(21)
(−β)∗xwt(T ) = (−β)x21 + x21x2 + (−β)x1x2 + x1x

2
2 + · · ·

summing over reverse plane partitions (with wt(T ) recording the number of columns in
which each entry appears) . . .



First variation: (conjugate) (dual) (stable) Grothendieck polynomials

Grothendieck polynomials are K -theory representatives for Schubert varieties
(Lascoux–Schützenberger)

Stable Grothendieck polynomials Gλ are certain limits of G. polys (Fomin–Kirillov)

Stable G. polynomials are generating functions for set-valued tableaux (Buch)
Gλ =

∑
T∈SVT(λ) β

|T |−|λ|xwt(T ); recover sλ on setting β = 0; ω(Gλ(x)) = GλT ( x
1−βx)

Dual stable G. polynomials gλ are defined by
∑
λ

Gλ(x)gλ(y) =
∏
i ,j

1

1− xiyj

The gλ are given by a combinatorial formula, as are their conjugates jλ := ω(gλT )
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j21 =
∑

T∈BT(21)
(−β)∗xwt(T ) = (−β)x21 + x21x2 + x1x

2
2 + · · ·

summing over “valued-set tableaux” or bar tableaux (with wt(T ) recording the number of
bars in which each entry appears); recover sλ on setting β = 0 (Lam–Pylyavskyy)



Second variation: Schur P- and Q-functions

Schur Q-functions correspond to Schubert varieties in some orthogonal Grassmannian

For a strict partition λ, Qλ is the generating function for shifted, marked tableaux:

tableaux of shifted shape λ filled with 1′ < 1 < 2′ < 2 < . . . such that both
i

i
and

j ′ j ′ are forbidden
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Q21 = 4x21x2 + 4x1x
2
2 + 8x1x2x3 + · · ·



Second variation: Schur P- and Q-functions

Schur Q-functions correspond to Schubert varieties in some orthogonal Grassmannian

For a strict partition λ, Qλ is the generating function for shifted, marked tableaux:

tableaux of shifted shape λ filled with 1′ < 1 < 2′ < 2 < . . . such that both
i

i
and

j ′ j ′ are forbidden

The Schur P-functions are the same but with no ′ on diagonal
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P21 = x21x2 + x1x
2
2 + 2x1x2x3 + · · ·

so Pλ = 2−ℓ(λ)Qλ



Second variation: Schur P- and Q-functions

Schur Q-functions correspond to Schubert varieties in some orthogonal Grassmannian

For a strict partition λ, Qλ is the generating function for shifted, marked tableaux:

tableaux of shifted shape λ filled with 1′ < 1 < 2′ < 2 < . . . such that both
i

i
and

j ′ j ′ are forbidden

The Schur P-functions are the same but with no ′ on diagonal so Pλ = 2−ℓ(λ)Qλ

Shifted Cauchy identity ∑
λ strict

Qλ(x)Pλ(y) =
∏
i ,j

1 + xiyj
1− xiyj



Putting everything together
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Putting everything together

Ikeda–Naruse introduced the K -theoretic Schur P- and Q-functions GPλ and GQλ in their
study of the K -theory ring of coherent sheaves on the Lagrangian Grassmannian (again
corresponding to Schubert classes)

They showed that these functions are given by generating functions for shifted, marked
set-valued tableaux:
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GQ421 =
∑

T∈ShSVT(421)
β∗xwt(T ) = · · ·+ β3x1x

3
2x

4
3x4x5 + β3x1x

3
2x

4
3x4x5 + · · ·

(and GPλ the same with no ′ on the diagonal)

Note that GPλ ̸= 2−ℓ(λ)GQλ !!

Recover Qλ and Pλ on setting β = 0



Putting everything together

Ikeda–Naruse introduced the K -theoretic Schur P- and Q-functions GPλ and GQλ in their
study of the K -theory ring of coherent sheaves on the Lagrangian Grassmannian (again
corresponding to Schubert classes)

They showed that these functions are given by generating functions for shifted, marked
set-valued tableaux

Recover Qλ and Pλ on setting β = 0

Nakagawa–Naruse defined dual K -theoretic Schur P- and Q-functions gpλ and gqλ by the
following Cauchy identity:∑

λ

GQλ(x)gpλ(y) =
∑
λ

GPλ(x)gqλ(y) =
∏
i ,j≥1

1− xiyj
1− xiyj

where x :=
−x

1 + βx
.

They conjectured formulas for gpλ and gqλ as generating functions for shifted, marked
reverse plane partitions, and Chiu–Marberg conjectured formulas for ω(gpλ) and ω(gqλ)
as generating functions for shifted, marked bar tableaux



Main theorem

GQλ, GPλ are generating functions for shifted, marked set-valued tableaux
gpλ and gqλ defined by Cauchy identity

∑
λ GQλ(x)gpλ(y) =

∑
λ GPλ(x)gqλ(y) =

∏
(· · · )

Theorem (L–Marberg)

gqλ and gpλ are generating functions for shifted, marked reverse plane partitions
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gq21 = 4(−β)x21 + 4(−β)x1x2 + 4x21x2 + · · ·

(gp requires all diagonal entries primed)



Main theorem

GQλ, GPλ are generating functions for shifted, marked set-valued tableaux
gpλ and gqλ defined by Cauchy identity

∑
λ GQλ(x)gpλ(y) =

∑
λ GPλ(x)gqλ(y) =

∏
(· · · )

Theorem (L–Marberg)

gqλ and gpλ are generating functions for shifted, marked reverse plane partitions
gqλ =

∑
T∈ShRPP(21)

(−β)∗xwt(T ), and their conjugates jpλ = ω(gpλ) and jqλ = ω(gqλ) are

generating functions for shifted, marked bar tableaux
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jq421 =
∑

T∈ShBT(421)
(−β)∗xwt(T ) = · · ·+ (−β)3x1x2x23 + (−β)x1x32x23 + · · ·

(jp requires all diagonal entries unprimed)



Proof ideas
GQλ, GPλ are generating functions for shifted, marked set-valued tableaux
gpλ and gqλ defined by Cauchy identity

∑
λ GQλ(x)gpλ(y) =

∑
λ GPλ(x)gqλ(y) =

∏
(· · · )

Theorem (L–Marberg)

gqλ and gpλ are generating functions for shifted, marked reverse plane partitions, and their
conjugates jpλ = ω(gpλ) and jqλ = ω(gqλ) are generating functions for shifted, marked bar
tableaux.

Generalize to skew (shifted) shapes SDλ \ SDµ, polynomials gqλ/µ, gpλ/µ, jqλ/µ, jpλ/µ
Totally unclear that the combinatorial formulas define symmetric functions; we prove this
by an appropriate version of Bender–Knuth involutions, one piece of which looks like this:

2 2 2

1 1
←→ 2 2 2

1 1 1

Do everything explicitly when λ = (r) is a one-part partition

Establish Pieri rules by a combination of combinatorial and algebraic reasoning (using the
Cauchy identity), and then declare victory by induction



A consequence

As generating functions for shifted, marked set-valued tableaux
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β∗xwt(T ) = · · ·+ β3x1x
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GQλ, GPλ have terms of arbitrarily large x-degree. Consequently it is not clear that
GQλ · GQµ is a finite linear combination of GQνs (and ditto for GP). In other words: not
clear that the linear span is a ring. Conjecture (Ikeda–Naruse): they are rings

Case of GP (but not GQ) done by Clifford–Thomas–Yong, including explicit
Littlewood–Richardson rule for multiplying GPλ · GPµ

Combined with work of Chiu–Marberg, our theorem implies GQλ generate a ring

However, it does not give a Littlewood–Richardson rule for multiplying GQs. Eric’s paper
Shifted combinatorial Hopf algebras from K-theory arXiv:2211.01092 gives a
comprehensive account of all these objects, and open questions
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As generating functions for shifted, marked set-valued tableaux
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β∗xwt(T ) = · · ·+ β3x1x
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GQλ, GPλ have terms of arbitrarily large x-degree. Consequently it is not clear that
GQλ · GQµ is a finite linear combination of GQνs (and ditto for GP). In other words: not
clear that the linear span is a ring. Conjecture (Ikeda–Naruse): they are rings

Case of GP (but not GQ) done by Clifford–Thomas–Yong, including explicit
Littlewood–Richardson rule for multiplying GPλ · GPµ

Combined with work of Chiu–Marberg, our theorem implies GQλ generate a ring

However, it does not give a Littlewood–Richardson rule for multiplying GQs. Eric’s paper
Shifted combinatorial Hopf algebras from K-theory arXiv:2211.01092 gives a
comprehensive account of all these objects, and open questions



4

2 3 3

1 1 2 2

4

3 34 56

12 2 234 4

2

1 2 2

1 1 2 3

3

2 3′ 4

1 1 3′ 3

Thanks for listening!
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