Combinatorial formulas for shifted dual stable Grothendieck polynomials

Joel Brewster Lewis (George Washington University) joint work with Eric Marberg (HKUST)

FPSAC Davis July 17, 2023

"Isn't it time for you to start studying middle-aged tableaux?" - my wife, last Tuesday

In this talk, we believe:

- all symmetric functions have coefficients in \mathbb{Z} (or maybe $\mathbb{Z}[\beta]$)
- all Young diagrams & tableaux (straight or shifted) are in French notation

• it's ok to give motivation from geometry, even if the speaker doesn't really understand what "*K*-theory of the Lagrangian Grassmannian" means

Schur functions

Schur functions s_{λ} are a very special basis for the ring Sym of symmetric functions, with many different (but ultimately equivalent) definitions:

- they are the unique orthonormal \mathbb{Z} -basis for Sym under the Hall inner product; equiv. the unique basis that satisfies the Cauchy identity $\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) = \prod_{i \ i} \frac{1}{1 x_i y_j}$
- they are the generating functions for semistandard Young tableaux of a fixed shape

$$s_{21} = \sum_{T \in SSYT(21)} \mathbf{x}^{wt(T)} = \begin{array}{ccc} 2 \\ 1 \\ 1 \\ x_1^2 \\ x_2 \end{array} + \begin{array}{ccc} 2 \\ 1 \\ x_1 \\ x_2^2 \end{array} + \begin{array}{ccc} 2 \\ 1 \\ x_1 \\ x_2^2 \end{array} + \begin{array}{ccc} 2 \\ 1 \\ x_1 \\ x_2 \\ x_3 \end{array} + \begin{array}{ccc} \cdots \\ \cdots \\ \cdots \end{array}$$

- they correspond to the representatives of Schubert classes in the cohomology ring of the (complex) Grassmannian
- bilaternants, representation theory, etc.

Variations on Schur functions

Take your favorite definition and tweak it:

- instead of considering cohomology, you could consider the *K*-theory of structure sheaves of the Grassmannian, or torus-equivariant *K*-theory, or other Grassmannians, etc.
- instead of considering semistandard Young tableaux, you could consider generating

etc., with appropriate interpretations of wt(T) for tableaux of each type

These often go together: e.g., the generating functions for shifted, marked tableaux (Schur Q-functions) are also representatives of cohomology classes dual to Schubert cycles in orthogonal Grassmannians and characters of irreducible representations of the queer Lie super-algebra Q(n)

What is lost, what is gained

One thing that is lost is self-duality: in

$$\sum_\lambda s_\lambda({f x}) s_\lambda({f y}) = \prod_{i,j} rac{1}{1-x_i y_j}$$

we have the same basis twice

but when we replace Schur functions with another family, we tend to get formulas like

$$\sum_\lambda \mathcal{G}_\lambda({f x}) g_\lambda({f y}) = \prod \Big(ext{ something } \Big)$$

where G_{λ} are a basis for one Hopf algebra of symmetric function-like things and g_{λ} are a basis for a different Hopf algebra, dual to the first

(whereas Sym is self-dual)

First variation: (conjugate) (dual) (stable) Grothendieck polynomials

- <u>Grothendieck polynomials</u> are *K*-theory representatives for Schubert varieties (Lascoux–Schützenberger)
- Stable Grothendieck polynomials G_{λ} are certain limits of G. polys (Fomin–Kirillov)
- Stable G. polynomials are generating functions for set-valued tableaux (Buch)

$$G_{21} = \sum_{T \in \text{SVT}(21)} \beta^{|T| - |\lambda|} \mathbf{x}^{\text{wt}(T)} = \begin{array}{ccc} 2 \\ 1 \\ x_1^2 x_2 \end{array} + \begin{array}{ccc} 3 \\ \beta x_1^2 x_2^2 \end{array} + \begin{array}{ccc} 3 \\ 1 \\ \beta x_1^2 x_2^2 \end{array} + \begin{array}{ccc} 3 \\ 1 \\ \beta x_1 x_2^2 x_3 \end{array} + \begin{array}{ccc} 2 \\ 1 \\ 1 \\ \beta x_1 x_2^2 x_3 \end{array}$$

recover s_{λ} on setting $\beta = 0$

• Dual stable G. polynomials g_{λ} are defined by $\sum_{\lambda} G_{\lambda}(\mathbf{x})g_{\lambda}(\mathbf{y}) = \prod_{i,j} \frac{1}{1 - x_i y_j}$

First variation: (conjugate) (dual) (stable) Grothendieck polynomials

- Grothendieck polynomials are *K*-theory representatives for Schubert varieties (Lascoux–Schützenberger)
- <u>Stable Grothendieck polynomials</u> G_{λ} are certain limits of G. polys (Fomin–Kirillov)
- Stable G. polynomials are generating functions for set-valued tableaux (Buch) $G_{\lambda} = \sum_{T \in SVT(\lambda)} \beta^{|T| - |\lambda|} \mathbf{x}^{wt(T)}$; recover s_{λ} on setting $\beta = 0$
- Dual stable G. polynomials g_{λ} are defined by $\sum_{\lambda} G_{\lambda}(\mathbf{x})g_{\lambda}(\mathbf{y}) = \prod_{i,j} \frac{1}{1 x_i y_j}$
- The g_{λ} are given by a combinatorial formula

$$g_{21} = \sum_{T \in \mathsf{RPP}(21)} (-\beta)^* \mathbf{x}^{\mathsf{wt}(T)} = (-\beta)x_1^2 + x_1^2x_2 + (-\beta)x_1x_2 + x_1x_2^2 + \cdots$$

summing over reverse plane partitions (with wt(T) recording the number of columns in which each entry appears) ...

First variation: (conjugate) (dual) (stable) Grothendieck polynomials

- Grothendieck polynomials are *K*-theory representatives for Schubert varieties (Lascoux–Schützenberger)
- Stable Grothendieck polynomials G_{λ} are certain limits of G. polys (Fomin–Kirillov)
- Stable G. polynomials are generating functions for set-valued tableaux (Buch) $G_{\lambda} = \sum_{T \in SVT(\lambda)} \beta^{|T| - |\lambda|} \mathbf{x}^{wt(T)}$; recover s_{λ} on setting $\beta = 0$; $\omega(G_{\lambda}(\mathbf{x})) = G_{\lambda}\tau(\frac{\mathbf{x}}{1-\beta\mathbf{x}})$
- Dual stable G. polynomials g_{λ} are defined by $\sum_{\lambda} G_{\lambda}(\mathbf{x})g_{\lambda}(\mathbf{y}) = \prod_{i,j} \frac{1}{1 x_i y_j}$

• The g_λ are given by a combinatorial formula, as are their conjugates $j_\lambda := \omega(g_{\lambda} \tau)$

summing over "valued-set tableaux" or <u>bar tableaux</u> (with wt(T) recording the number of bars in which each entry appears); recover s_{λ} on setting $\beta = 0$ (Lam–Pylyavskyy)

Second variation: Schur P- and Q-functions

- Schur Q-functions correspond to Schubert varieties in some orthogonal Grassmannian
- For a strict partition λ , Q_{λ} is the generating function for shifted, marked tableaux:

tableaux of shifted shape λ filled with $1' < 1 < 2' < 2 < \dots$ such that both $\frac{i}{i}$ and

Second variation: Schur P- and Q-functions

- Schur Q-functions correspond to Schubert varieties in some orthogonal Grassmannian
- For a strict partition λ , Q_{λ} is the generating function for shifted, marked tableaux:

tableaux of shifted shape λ filled with $1' < 1 < 2' < 2 < \dots$ such that both 1' and

 $j' \mid j'$ are forbidden

• The Schur *P*-functions are the same but with no ' on diagonal

so $P_\lambda = 2^{-\ell(\lambda)} Q_\lambda$

Second variation: Schur P- and Q-functions

- Schur Q-functions correspond to Schubert varieties in some orthogonal Grassmannian
- For a strict partition λ , Q_{λ} is the generating function for shifted, marked tableaux:

tableaux of shifted shape λ filled with $1' < 1 < 2' < 2 < \dots$ such that both 1' and

 $j' \mid j'$ are forbidden

- The Schur *P*-functions are the same but with no ' on diagonal so $P_{\lambda} = 2^{-\ell(\lambda)}Q_{\lambda}$
- Shifted Cauchy identity

$$\sum_{\lambda ext{ strict }} \mathcal{Q}_{\lambda}(\mathbf{x}) \mathcal{P}_{\lambda}(\mathbf{y}) = \prod_{i,j} rac{1 + x_i y_j}{1 - x_i y_j}$$

Putting everything together

Putting everything together

- Ikeda–Naruse introduced the <u>K-theoretic Schur P- and Q-functions</u> GP_λ and GQ_λ in their study of the K-theory ring of coherent sheaves on the Lagrangian Grassmannian (again corresponding to Schubert classes)
- They showed that these functions are given by generating functions for <u>shifted</u>, <u>marked</u> set-valued tableaux:

$$GQ_{421} = \sum_{T \in ShSVT(421)} \beta^* \mathbf{x}^{wt(T)} = \dots + \beta^3 x_1 x_2^3 x_3^4 x_4 x_5 + \beta^3 x_1 x_2^3 x_3^4 x_4 x_5 + \dots$$

(and GP_{λ} the same with no ' on the diagonal)

- Note that $GP_{\lambda} \neq 2^{-\ell(\lambda)}GQ_{\lambda}$!!
- Recover Q_{λ} and P_{λ} on setting $\beta = 0$

Putting everything together

- Ikeda–Naruse introduced the <u>K-theoretic Schur P- and Q-functions</u> GP_λ and GQ_λ in their study of the K-theory ring of coherent sheaves on the Lagrangian Grassmannian (again corresponding to Schubert classes)
- They showed that these functions are given by generating functions for <u>shifted</u>, <u>marked</u> set-valued tableaux
- Recover Q_{λ} and P_{λ} on setting $\beta = 0$
- Nakagawa–Naruse defined <u>dual</u> K-theoretic Schur P- and Q-functions gp_λ and gq_λ by the following Cauchy identity:

$$\sum_{\lambda} GQ_{\lambda}(\mathbf{x})gp_{\lambda}(\mathbf{y}) = \sum_{\lambda} GP_{\lambda}(\mathbf{x})gq_{\lambda}(\mathbf{y}) = \prod_{i,j\geq 1} \frac{1-\overline{x_i}y_j}{1-x_iy_j} \quad \text{where } \overline{x} := \frac{-x}{1+\beta x}$$

They conjectured formulas for gp_{λ} and gq_{λ} as generating functions for shifted, marked reverse plane partitions, and Chiu–Marberg conjectured formulas for $\omega(gp_{\lambda})$ and $\omega(gq_{\lambda})$ as generating functions for shifted, marked bar tableaux

Main theorem

 GQ_{λ} , GP_{λ} are generating functions for shifted, marked set-valued tableaux gp_{λ} and gq_{λ} defined by Cauchy identity $\sum_{\lambda} GQ_{\lambda}(\mathbf{x})gp_{\lambda}(\mathbf{y}) = \sum_{\lambda} GP_{\lambda}(\mathbf{x})gq_{\lambda}(\mathbf{y}) = \prod(\cdots)$

Theorem (L-Marberg)

 gq_{λ} and gp_{λ} are generating functions for shifted, marked reverse plane partitions

(gp requires all diagonal entries primed)

Main theorem

 GQ_{λ} , GP_{λ} are generating functions for shifted, marked set-valued tableaux gp_{λ} and gq_{λ} defined by Cauchy identity $\sum_{\lambda} GQ_{\lambda}(\mathbf{x})gp_{\lambda}(\mathbf{y}) = \sum_{\lambda} GP_{\lambda}(\mathbf{x})gq_{\lambda}(\mathbf{y}) = \prod(\cdots)$

Theorem (L–Marberg)

 gq_{λ} and gp_{λ} are generating functions for shifted, marked reverse plane partitions $gq_{\lambda} = \sum_{T \in ShRPP(21)} (-\beta)^* \mathbf{x}^{wt(T)}$, and their conjugates $jp_{\lambda} = \omega(gp_{\lambda})$ and $jq_{\lambda} = \omega(gq_{\lambda})$ are generating functions for shifted, marked bar tableaux

$$jq_{421} = \sum_{T \in \mathsf{ShBT}(421)} (-\beta)^* \mathbf{x}^{\mathsf{wt}(T)} = \dots + (-\beta)^3 x_1 x_2 x_3^2 + (-\beta) x_1 x_2^3 x_3^2 + \dots$$

(jp requires all diagonal entries unprimed)

Proof ideas

 GQ_{λ} , GP_{λ} are generating functions for shifted, marked set-valued tableaux gp_{λ} and gq_{λ} defined by Cauchy identity $\sum_{\lambda} GQ_{\lambda}(\mathbf{x})gp_{\lambda}(\mathbf{y}) = \sum_{\lambda} GP_{\lambda}(\mathbf{x})gq_{\lambda}(\mathbf{y}) = \prod(\cdots)$

Theorem (L–Marberg)

 gq_{λ} and gp_{λ} are generating functions for shifted, marked reverse plane partitions, and their conjugates $jp_{\lambda} = \omega(gp_{\lambda})$ and $jq_{\lambda} = \omega(gq_{\lambda})$ are generating functions for shifted, marked bar tableaux.

- Generalize to skew (shifted) shapes $SD_{\lambda} \setminus SD_{\mu}$, polynomials $gq_{\lambda/\mu}$, $gp_{\lambda/\mu}$, $jq_{\lambda/\mu}$, $jp_{\lambda/\mu}$
- Totally unclear that the combinatorial formulas define symmetric functions; we prove this by an appropriate version of Bender–Knuth involutions, one piece of which looks like this:

- Do everything explicitly when $\lambda = (r)$ is a one-part partition
- Establish Pieri rules by a combination of combinatorial and algebraic reasoning (using the Cauchy identity), and then declare victory by induction

A consequence

• As generating functions for shifted, marked set-valued tableaux

 GQ_{λ} , GP_{λ} have terms of arbitrarily large **x**-degree. Consequently it is not clear that $GQ_{\lambda} \cdot GQ_{\mu}$ is a finite linear combination of $GQ_{\nu}s$ (and ditto for GP). In other words: not clear that the linear span is a ring. Conjecture (Ikeda–Naruse): they are rings

A consequence

• As generating functions for shifted, marked set-valued tableaux

- GQ_{λ} , GP_{λ} have terms of arbitrarily large x-degree. Consequently it is not clear that $GQ_{\lambda} \cdot GQ_{\mu}$ is a finite linear combination of $GQ_{\nu}s$ (and ditto for GP). In other words: not clear that the linear span is a ring. Conjecture (Ikeda–Naruse): they are rings
- Case of *GP* (but *not GQ*) done by Clifford–Thomas–Yong, including explicit Littlewood–Richardson rule for multiplying $GP_{\lambda} \cdot GP_{\mu}$
- Combined with work of Chiu–Marberg, our theorem implies GQ_{λ} generate a ring
- However, it does *not* give a Littlewood-Richardson rule for multiplying *GQs*. Eric's paper *Shifted combinatorial Hopf algebras from K-theory* arXiv:2211.01092 gives a comprehensive account of all these objects, and open questions

4			
2	3	3	
1	1	2	2

4			
3	34	56	
12	2	234	4

2			
1	2	2	
1	1	2	3

		3		
	2	3′	4	
1	1	3′	3	

Thanks for listening!

		345	
	2′	3′	45
1	2′	2	3′3

