Interpolating between ordinary and bumpless pipe dreams with hybrid pipe dreams

Gabe Udell

Joint work with Allen Knutson

$$
\text { July 17, } 2023
$$

Outline

(1) Schubert Polynomials
(2) Pipe dreams compute Schubert polynomials
(0) Bumpless pipe dreams compute Schubert polynomials
(- Hybrid pipe dreams mix pipe dreams and bumpless pipe dreams and compute Schubert polynomials

- Bijecting pipe dreams and bumpless pipe dreams with and without hybrid pipe dreams

Schubert Polynomials

(1) For $\pi \in S_{n}, S_{\pi}(\mathbf{x}, \mathbf{y})$ is the double Schubert polynomial for π and $S_{\pi}(\mathbf{x}, 0)$ is the (single) Schubert polynomial for π
(2) Schubert polynomials have positive integer coefficients
(3) $\left\{S_{\pi}\right\}_{\pi \in S_{\infty}}$ is a \mathbb{Z}-basis for $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$
(-) The Schubert basis includes the Schur polynomials which give a basis for symmetric polynomials
(3) Schubert polynomials represent classes of Schubert varieties in the cohomology of the flag variety
(0) Double Schubert polynomials represent classes of Schubert varieties in the torus-equivariant cohomology of the flag variety

Schubert Polynomials

(1) For $\pi \in S_{n}, S_{\pi}(\mathbf{x}, \mathbf{y})$ is the double Schubert polynomial for π and $S_{\pi}(\mathbf{x}, 0)$ is the (single) Schubert polynomial for π
(2) Schubert polynomials have positive integer coefficients
(3) $\left\{S_{\pi}\right\}_{\pi \in S_{\infty}}$ is a \mathbb{Z}-basis for $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$
(9) The Schubert basis includes the Schur polynomials which give a basis for symmetric polynomials
(3) Schubert polynomials represent classes of Schubert varieties in the cohomology of the flag variety
© Double Schubert polynomials represent classes of Schubert varieties in the torus-equivariant cohomology of the flag variety

Schubert Polynomials

(1) For $\pi \in S_{n}, S_{\pi}(\mathbf{x}, \mathbf{y})$ is the double Schubert polynomial for π and $S_{\pi}(\mathbf{x}, 0)$ is the (single) Schubert polynomial for π
(2) Schubert polynomials have positive integer coefficients
(3) $\left\{S_{\pi}\right\}_{\pi \in S_{\infty}}$ is a \mathbb{Z}-basis for $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$
(4) The Schubert basis includes the Schur polynomials which give a basis for symmetric polynomials
(5) Schubert polynomials represent classes of Schubert varieties in the cohomology of the flag variety
(6) Double Schubert polynomials represent classes of Schubert varieties in the torus-equivariant cohomology of the flag variety

Pipe dreams by example

If $\pi=1426375$, then $\pi^{-1}=1352746$

Pipe dreams by example

If $\pi=1426375$, then $\pi^{-1}=1352746$

Not pipe dreams

Pipe dreams

Definition (Bergeron-Billey 1993)

An (ordinary) pipe dream for $\pi \in S_{n}$ is a filling of a square with

$$
\pm, \square, J, r, ~ J, \square \text { but not } \perp \text {, }
$$

so two 'pipes' never cross twice, each pipe connects some i on top to i on the left when top edges are labeled $\pi^{-1}(1), \ldots, \pi^{-1}(n)$ and left edges are labeled $1, \ldots, n$ from top to bottom.

Basic properties
(1) r, and $=$ provably never appearthe antidiagonal is all Jthe $S E$ triangle is allthe NW triangle is all + and ρ_{r}

Pipe dreams

Definition (Bergeron-Billey 1993)

An (ordinary) pipe dream for $\pi \in S_{n}$ is a filling of a square with

$$
\pm,-, \quad \Gamma, r, J, \square \text { but not } \perp \text {, }
$$

so two 'pipes' never cross twice, each pipe connects some i on top to i on the left when top edges are labeled $\pi^{-1}(1), \ldots, \pi^{-1}(n)$ and left edges are labeled $1, \ldots, n$ from top to bottom.

Basic properties

(1) r, and $=$ provably never appear
(2) the antidiagonal is all J
(3) the SE triangle is all
(4) the NW triangle is all \pm and

Computing (double) Schubert polynomials

Definition

The set of pipe dreams for π is $\operatorname{PD}(\pi)$.
Numbering rows and columns $1, \ldots, n$ from top to bottom and left to right, define weighty $(D)=\{(i, j)$: tile in ith row $\& j$ th column of D is \pm or $\square\}$.

Theorem (Fomin-Kirillov 1996)
 The double Schubert polynomial of π can be computed as

[^0]
Computing (double) Schubert polynomials

Definition

The set of pipe dreams for π is $\operatorname{PD}(\pi)$.
Numbering rows and columns $1, \ldots, n$ from top to bottom and left to right, define weighty $(D)=\{(i, j)$: tile in i th row $\& j$ th column of D is \pm or -$\}$.

Theorem (Fomin-Kirillov 1996)

The double Schubert polynomial of π can be computed as

$$
\mathcal{S}_{\pi}(\mathbf{x}, \mathbf{y})=\sum_{D \in \operatorname{PD}(\pi)} \prod_{(i, j) \in \text { weighty }(D)}\left(x_{i}-y_{j}\right)
$$

$\mathcal{S}_{\pi}(\mathbf{x}, 0)=\mathcal{S}_{\pi^{-1}}(0,-\mathbf{x})$ is the Schubert polynomial of π.

(Upside down) Bumpless pipe dreams by example

$\begin{array}{r}1 \begin{array}{r}23 \\ 4 \\ 4 \\ 2 \\ 4 \\ 4\end{array} \\ \hline\end{array}$

321
$\lcm{4} 3$
2
1

Bumpless pipe dreams

Definition (Lam-Lee-Shimozono 2018)

An (upside down) bumpless pipe dream for π is a filling of an $n \times n$ square with tiles

$$
\pm, \square, \neg, \sqcup, \square, \square \text { but not } \neg
$$

so that two pipes never cross twice and pipes connect i on top to i on the right when the top edges of the square are labeled $\pi^{-1}(1), \ldots, \pi^{-1}(n)$ and the right edges are labeled $1, \ldots, n$ from bottom to top.

Bumpless pipe dreams and Schubert polynomials

Definition

Write $\operatorname{BPD}(\pi)$ for the set of bumpless pipe dreams for π.
weighty $(D):=\{(i, j)$: the tile in ith row $\& j$ th column of D is $\square\}$.
Theorem (Lam-Lee-Shimozono 2018)

$$
S_{\pi}(\mathbf{x}, \mathbf{y})=\sum_{D \in \operatorname{BPD}(\pi)} \prod_{(i, j) \in \text { weighty }(D)}\left(x_{i}-y_{j}\right)
$$

Hybrid pipe dreams by example

Hybrid pipe dreams defined

The ordinary tiles are

$$
\pm, \square, \square, \square, \widetilde{\square}, \square \text { but not } \square
$$

and the bumpless tiles are

$$
\pm, \square, \square, \square, \square, \square \text { but not } \downarrow
$$

Definition (Knutson)

A hybrid pipe dream is a filling of a square with ordinary and bumpless tiles such that
(1) each row is either ordinary or bumpless
(2) pipes connect top edges to left and right edges
(3) no two pipes cross twice

Hybrid types

Definition

A hybrid pipe dream is of type $\tau=\tau_{1} \tau_{2} \ldots \tau_{n} \in\{O, B\}^{n}$ if (its ith physical row is ordinary if $\tau_{i}=O$ and bumpless if $\tau_{i}=B$).

Labels are left of ordinary rows and right of bumpless $1 \mid 0$ rows. Ordinary rows labeled $1, \ldots, k$ from the top. Bumpless rows labeled $k \ldots, n$ from the bottom.

Definition

A hybrid pipe dream for π has labels $\pi^{-1}(1), \ldots, \pi^{-1}(n)$ across the top so pipes connect rows and columns with the same label.

Definition

$\operatorname{HPD}(\pi, \tau)$ is the set of hybrid pipe dreams for π with type τ.

More hybrid examples

Pipe dreams are the hybrid pipe dreams of type O^{n}, bumpless pipe dreams are the hybrid pipe dreams of type B^{n}. Hybrid pipe dreams for $\pi=132$ and some choices of τ.

000 :

OOB :

$O B O$:

$O B B$

$B O B$:

Schubert polynomials from hybrid pipe dreams

- and \pm are the two weighty ordinary tiles.
\square is the only weighty bumpless tile.

Definition

$$
\text { weighty }(D)=\{(i, j):
$$

tile in the row labeled i and j th physical column of D is weighty $\}$.

Theorem (Knutson)

For any $\tau \in\{O, B\}^{n}$,

$$
S_{\pi}=\sum_{D \in \operatorname{HPD}(\pi, \tau)} \prod_{(i, j) \in \text { weighty }(D)}\left(x_{i}-y_{j}\right)
$$

Single Schubert polynomials are slightly simpler

Definition

$$
\operatorname{mon}_{x}(D)=\prod_{(i, j) \in \text { weighty }(D)} x_{i} \text {, and } \quad \operatorname{mon}_{y}(D)=\prod_{(i, j) \text { weighty }(D)}-y_{j} .
$$

Lemma

$$
S_{\pi}(\mathbf{x}, 0)=\sum_{D \in \operatorname{HPD}(\pi, \tau)} \operatorname{mon}_{x}(D)=\sum_{D \in \operatorname{HPD}\left(\pi^{-1}, \tau\right)} \operatorname{mon}_{y}(D)\left(-x_{1}, \ldots,-x_{n}\right)
$$

If D^{T} is the transpose of a pipe dream (or the transpose about the antidiagonal of a bumpless pipe dream) then

$$
\operatorname{mon}_{x}\left(D^{T}\right)\left(-y_{1}, \ldots,-y_{n}\right)=\operatorname{mon}_{y}(D), \text { and }
$$

Single Schubert polynomials are slightly simpler

Definition

$$
\operatorname{mon}_{x}(D)=\prod_{(i, j) \in \text { weighty }(D)} x_{i}, \text { and } \quad \operatorname{mon}_{y}(D)=\prod_{(i, j) \in \text { weighty }(D)}-y_{j}
$$

Lemma

$S_{\pi}(\mathbf{x}, 0)=\sum_{D \in \operatorname{HPD}(\pi, \tau)} \operatorname{mon}_{x}(D)=\sum_{D \in \operatorname{HPD}\left(\pi^{-1}, \tau\right)} \operatorname{mon}_{y}(D)\left(-x_{1}, \ldots,-x_{n}\right)$
If D^{T} is the transpose of a pipe dream (or the transpose about the antidiagonal of a bumpless pipe dream) then

$$
\begin{gathered}
\operatorname{mon}_{x}\left(D^{T}\right)\left(-y_{1}, \ldots,-y_{n}\right)=\operatorname{mon}_{y}(D), \text { and } \\
\operatorname{mon}_{y}\left(D^{T}\right)\left(-x_{1}, \ldots,-x_{n}\right)=\operatorname{mon}_{x}(D)
\end{gathered}
$$

Connecting ordinary and bumpless pipe dreams

Theorem (Monk's rule)

Let π be a permutation and α be a positive integer, then

$$
x_{\alpha} S_{\pi}(\mathbf{x}, 0)+\sum_{s<\alpha, \pi t_{s, \alpha} \gtrdot \pi} S_{\pi t_{s, \alpha}}(\mathbf{x}, 0)=\sum_{1>\alpha, \pi t_{\alpha, / \gg}} S_{\pi t_{\alpha, l}}(\mathbf{x}, 0)
$$

- Huang 2020 gave a bijective proof of Monk's rule with BPDs
- Gao-Huang 2021 gave a bijective proof of this Monk's rule with PDs (based on Billey-Holroyd-Young 2019)

By weight preserving we mean

Connecting ordinary and bumpless pipe dreams

Theorem (Monk's rule)

Let π be a permutation and α be a positive integer, then

$$
x_{\alpha} S_{\pi}(\mathbf{x}, 0)+\sum_{s<\alpha, \pi t_{s, \alpha} \gg} S_{\pi t_{s, \alpha}}(\mathbf{x}, 0)=\sum_{1>\alpha, \pi t_{\alpha, l>}>} S_{\pi t_{\alpha, l}}(\mathbf{x}, 0)
$$

- Huang 2020 gave a bijective proof of Monk's rule with BPDs
- Gao-Huang 2021 gave a bijective proof of this Monk's rule with PDs (based on Billey-Holroyd-Young 2019)

Theorem (Gao-Huang 2021)

There is a (non-equivariant) weight preserving bijection between pipe dreams and bumpless pipe dreams $\phi_{G H}$ which is canonical in the sense that it commutes with Monk's rule.

By weight preserving we mean $\operatorname{mon}_{x}(D)=\operatorname{mon}_{x}\left(\phi_{G H}(D)\right)$

Special cases of a more general result

Hybrid pipe dreams prove the equivalence of formulæ for double Schubert polynomials

Special cases of a more general result

Hybrid pipe dreams prove the equivalence of formulæ for double Schubert polynomials

Theorem (Knutson-U)

For $\tau_{1}, \tau_{2} \in\{O, B\}^{n}$, and any $\pi \in S_{n}$, there exists a bijection $\phi_{x}: \operatorname{HPD}\left(\pi, \tau_{1}\right) \rightarrow \operatorname{HPD}\left(\pi, \tau_{2}\right)$ such that $\operatorname{mon}_{x}\left(\phi_{x}(D)\right)=\operatorname{mon}_{x}(D)$

Special cases of a more general result

Hybrid pipe dreams prove the equivalence of formulæ for double Schubert polynomials

Theorem (Knutson-U)

For $\tau_{1}, \tau_{2} \in\{O, B\}^{n}$, and any $\pi \in S_{n}$, there exists a bijection $\phi_{x}: \operatorname{HPD}\left(\pi, \tau_{1}\right) \rightarrow \operatorname{HPD}\left(\pi, \tau_{2}\right)$ such that $\operatorname{mon}_{x}\left(\phi_{x}(D)\right)=\operatorname{mon}_{x}(D)$

Theorem (Knutson-U)

For $\tau_{1}, \tau_{2} \in\{O, B\}^{n}$, and any $\pi \in S_{n}$, there exists a bijection $\phi_{y}: \operatorname{HPD}\left(\pi, \tau_{1}\right) \rightarrow \operatorname{HPD}\left(\pi, \tau_{2}\right)$ such that $\operatorname{mon}_{y}\left(\phi_{y}(D)\right)=\operatorname{mon}_{y}(D)$

[^1]
Special cases of a more general result

Hybrid pipe dreams prove the equivalence of formulæ for double Schubert polynomials

Theorem (Knutson-U)

For $\tau_{1}, \tau_{2} \in\{O, B\}^{n}$, and any $\pi \in S_{n}$, there exists a bijection $\phi_{x}: \operatorname{HPD}\left(\pi, \tau_{1}\right) \rightarrow \operatorname{HPD}\left(\pi, \tau_{2}\right)$ such that $\operatorname{mon}_{x}\left(\phi_{x}(D)\right)=\operatorname{mon}_{x}(D)$

Theorem (Knutson-U)

For $\tau_{1}, \tau_{2} \in\{O, B\}^{n}$, and any $\pi \in S_{n}$, there exists a bijection $\phi_{y}: \operatorname{HPD}\left(\pi, \tau_{1}\right) \rightarrow \operatorname{HPD}\left(\pi, \tau_{2}\right)$ such that $\operatorname{mon}_{y}\left(\phi_{y}(D)\right)=\operatorname{mon}_{y}(D)$

Work in Progress (Knutson-U)

$$
\text { For } \tau_{1}=O^{n}, \tau_{2}=B^{n}, \phi_{x}=\phi_{G H}
$$

Plan for constructing hybrid bijections

Part 1: switch the last row

Define $\phi_{y}: \operatorname{HPD}(\pi, \tau) \rightarrow \operatorname{HPD}\left(\pi, \tau^{\prime}\right)$ for

$$
\tau=\tau_{1} \tau_{2} \ldots \tau_{n-1} O, \quad \tau^{\prime}=\tau_{1} \tau_{2} \ldots \tau_{n-1} B
$$

Only change the last row of the hybrid pipe dream.
Part 2: swap adjacent rows
Define $\phi_{y}: \operatorname{HPD}(\pi, \tau) \rightarrow \operatorname{HPD}\left(\pi, \tau^{\prime}\right)$ for

$$
\tau=\tau_{1} \tau_{2} \ldots \tau_{k-1} O B \tau_{k} \ldots \tau_{n} \quad \tau^{\prime}=\tau_{1} \tau_{2} \ldots \tau_{k-1} B O \tau_{k} \ldots \tau_{n}
$$

Modify only the physical k th, $(k+1)$ st rows.
E.g. $\mathrm{OOO} \xrightarrow{1} \mathrm{OOB} \xrightarrow{2} \mathrm{OBO} \xrightarrow{2} \mathrm{BOO} \xrightarrow{1} \mathrm{BOB} \xrightarrow{2} \mathrm{BBO} \xrightarrow{1} \mathrm{BBB}$

Switching the type of the last row

Switching two adjacent rows

The row swapping bijection ϕ_{y} (Page 1 of 2)

$\stackrel{\emptyset}{\emptyset} \underset{\emptyset}{\square} \stackrel{\square}{\emptyset} \mapsto_{1}^{\emptyset} \begin{aligned} & \emptyset \\ & \emptyset\end{aligned}$

The row swapping bijection ϕ_{y} (Page 2 of 2)

$\underset{\emptyset}{1} \stackrel{1}{C_{\emptyset}^{2}}{ }_{2}^{2} \mapsto{ }_{1}^{\emptyset} \int_{\emptyset}^{1} \emptyset$

$\stackrel{\emptyset}{\square}{\underset{\emptyset}{\square}}_{1}^{\square} \mapsto \stackrel{1}{\emptyset}-1$

A third approach to an x-weight preserving

 bijection from ordinary to bumpless pipe dreamsSuppose $\phi_{y}: \operatorname{HPD}\left(\pi, O^{n}\right) \rightarrow \operatorname{HPD}\left(\pi, B^{n}\right)$ is a bijection and commutes with mon $_{y}$.

$$
\begin{aligned}
\operatorname{mon}_{x}\left(\left(\phi_{y}\left(D^{\top}\right)\right)^{\top}\right) & =\operatorname{mon}_{y}\left(\phi_{y}\left(D^{\top}\right)\right) \\
& =\operatorname{mon}_{y}\left(D^{\top}\right) \\
& =\operatorname{mon}_{x}(D)
\end{aligned}
$$

Therefore $D \mapsto\left(\phi_{y}\left(D^{\top}\right)\right)^{\top}$ gives a bijection between ordinary pipe dreams and bumpless pipe dreams that commutes with mon $_{x}$

A third approach to an x-weight preserving

 bijection from ordinary to bumpless pipe dreamsSuppose $\phi_{y}: \operatorname{HPD}\left(\pi, O^{n}\right) \rightarrow \operatorname{HPD}\left(\pi, B^{n}\right)$ is a bijection and commutes with mon $_{y}$.

$$
\begin{aligned}
\operatorname{mon}_{x}\left(\left(\phi_{y}\left(D^{\top}\right)\right)^{\top}\right) & =\operatorname{mon}_{y}\left(\phi_{y}\left(D^{\top}\right)\right) \\
& =\operatorname{mon}_{y}\left(D^{\top}\right) \\
& =\operatorname{mon}_{x}(D)
\end{aligned}
$$

Therefore $D \mapsto\left(\phi_{y}\left(D^{\top}\right)\right)^{\top}$ gives a bijection between ordinary pipe dreams and bumpless pipe dreams that commutes with mon $_{x}$

Work in progress (Knutson-U)
$\left(\phi_{y}\left(D^{\top}\right)\right)^{\top}=\phi_{x}(D)=\phi_{G H}(D)$

Decorated hybrid pipe dreams

Definition (Huang 2020)

$\widetilde{\operatorname{HPD}}(\pi, \tau)=\{(D, f): D \in \operatorname{HPD}(\pi, \tau), f:$ weighty $(D) \rightarrow\{x,-y\}\}$

$$
\operatorname{mon}(D, f)=\prod_{\substack{(i, j) \in \text { weighty }(D) \\ f(i, j)=x}} x_{i} \prod_{\substack{(i, j) \in \text { weighty }(D) \\ f(i, j)=-y}}-y_{j}
$$

$$
S_{\pi}(\mathbf{x}, \mathbf{y})=\sum_{(D, f) \in \widetilde{\operatorname{HPD}}(\pi, \tau)} \operatorname{mon}(D, f)
$$

Theorem (Knutson-U)

For $\tau_{1}, \tau_{2} \in\{O, B\}$, and $\pi \in S_{n}$ there exists a bijection $\phi: \widetilde{\operatorname{HPD}}\left(\pi, \tau_{1}\right) \rightarrow \widetilde{\operatorname{HPD}}\left(\pi, \tau_{2}\right)$ such that $\operatorname{mon}(\phi(D, f))=\operatorname{mon}(D, f)$

Examples of decorated bumpless pipe dreams

There is lots to do!

Further questions

- Describe (equivariant) Monk's rule maps on decorated hybrid pipe dreams
- Describe the bijection between decorated PDs and decorated BPDs without using hybrid pipe dreams

Acknowledgements

We thank Daoji Huang and Paul Zinn-Justin for many pertinent conversations.
We are grateful to Adam Gregory/Zachary Hamaker/Hugh Dennin for writing LTTEX macros used in this talk.
We are extremely grateful to Tianyi $Y u$, who was instrumental in finding the (mostly finished) proof that $\phi_{y}\left(D^{\top}\right)^{\top}=\phi_{G H}(D)$

Bonus slides

There is no equivariant weight preserving bijection

(Impossible) Goal

Find a weight preserving bijection between any two types of hybrids. Hope: Factoring the PD to BPD bijection through HPDs is insightful

Ordinary and bumpless pipe dreams for $\pi=132$

$B B B$

There is no equivariant weight preserving bijection

(Impossible) Goal

Find a weight preserving bijection between any two types of hybrids. Hope: Factoring the PD to BPD bijection through HPDs is insightful

Ordinary and bumpless pipe dreams for $\pi=132$.

000 :

$B B B$:

$$
\left(x_{2}-y_{1}\right) \quad\left(x_{1}-y_{2}\right)
$$

$$
\left(x_{2}-y_{2}\right) \quad\left(x_{1}-y_{1}\right)
$$

$$
S_{132}=\left(x_{2}-y_{1}\right)+\left(x_{1}-y_{2}\right)=\left(x_{2}-y_{2}\right)+\left(x_{1}-y_{1}\right)=x_{1}+x_{2}-y_{1}-y_{2}
$$

There are non-equivariant weight preserving bijections

Ordinary and bumpless pipe dreams for $\pi=132$.

000 :

weight
$\operatorname{mon}_{x}(D)$
$\operatorname{mon}_{y}(D)$

$$
\begin{array}{cc}
\left(x_{2}-y_{1}\right) & \left(x_{1}-y_{2}\right) \\
x_{2} & x_{1} \\
-y_{1} & -y_{2}
\end{array}
$$

$B B B$:

$$
\begin{array}{cc}
\left(x_{2}-y_{2}\right) & \left(x_{1}-y_{1}\right) \\
x_{2} & x_{1} \\
-y_{2} & -y_{1}
\end{array}
$$

$S_{132}\left(x_{1}, x_{2}, 0,0\right)$
$=x_{2}+x_{1}$
$=\left(-y_{1}\right)+\left(-y_{2}\right)=\left(-y_{2}\right)+\left(-y_{1}\right)$

Getting a weight preserving bijection for decorated hybrid pipe dreams

Plan:

- Break up a strip of n dominos into a strip of k dominos and a strip of $(n-k)$ dominos
- Understand the bijection on the irreducible pieces

Irreducible chunks

Irreducible chunks 2

J

[^0]: $\mathcal{S}_{\pi}(\mathrm{x}, 0)=\mathcal{S}_{\pi^{-1}}(0,-\mathrm{x})$ is the Schubert polynomial of π

[^1]: For $\tau_{1}=O^{n}, \tau_{2}=B^{n}, \phi_{x}=\phi_{G H}$

