Pop, Crackle, Snap (and Pow): Some Facets of Shards

Colin Defant (MIT) & Nathan Williams (UTD)

A hyperplane H is a linear codimension-1 subspace of \mathbb{R}^n . A central hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes.

Central ⊃ Simplicial ⊃ Reflection

Write \mathcal{R} for the set of connected components (the regions) of the complement $\mathbb{R}^n \setminus \mathcal{H}$. Fix B a base region in \mathcal{R} .

Edelman's Regions

For $C \in \mathcal{R}$, define $\operatorname{inv}_{\mathcal{H},B}(C)$ to be the hyperplanes in \mathcal{H} separating B from C.

The map $C \mapsto \operatorname{inv}_{\mathcal{H},B}(C) \subseteq \mathcal{H}$ is injective.

The poset of regions $\operatorname{Weak}(\mathcal{H},B)$ has elements $\mathcal R$ and relations

 $C \leq D \text{ iff } \operatorname{inv}_{\mathcal{H},B}(C) \subseteq \operatorname{inv}_{\mathcal{H},B}(D).$

Weak (\mathcal{H}, B) is a lattice for every $B \in \mathcal{R}$ iff \mathcal{H} is simplicial.

The pop-stack sorting operator $\operatorname{Pop}:\mathcal{R}\to\mathcal{R}$ is $\operatorname{Pop}(C):=\bigwedge_{D\in C}D.$

Reading's Shards

Reading cut the hyperplanes in an arrangement $\mathcal H$ into pieces called shards. Write $\operatorname{inv}_{\mathrm{III},R}(C)$ to be the shards in $\mathcal H$ separating $\mathsf{Pop}(C)$ from C.

The map $C\mapsto \mathrm{inv}_{\coprod,B}(C)\subseteq \coprod$ is injective.

The shard intersection order $\operatorname{Shard}(\mathcal{H},B)$ has elements $\mathcal R$ and relations

$$C \leq D \text{ iff } \operatorname{inv}_{\coprod,B}(C) \subseteq \operatorname{inv}_{\coprod,B}(D).$$

Salvetti's Loops

The Salvetti complex $\operatorname{Sal}(\mathcal{H})$ is defined by gluing together oriented dual zonotopes for \mathcal{H} along compatible faces—one zonotope for each choice of base region B, oriented from B to B. Write $\mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}$ for the complexified hyperplane complement of \mathcal{H} .

Theorem (Salvetti) $\pi_1(\operatorname{Sal}(\mathcal{H}), B) = \pi_1(\mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}, x_B).$

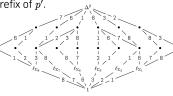
 $\text{If } C \overset{e}{\to} C' \text{ is a cover in Weak}(\mathcal{H}, B), \text{ define a loop } \ell_e \in \pi_1(\operatorname{Sal}(\mathcal{H}), B) \text{ by } \ell_e := \operatorname{gal}(B, C) \cdot ee^* \cdot \operatorname{gal}(B, C)^{-1} \in \pi_1(\operatorname{Sal}(\mathcal{H}), B).$

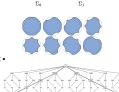
 $\pi_1(\mathrm{Sal}(\mathcal{H}), B)$ is generated by the loops $\mathcal{L}_{\mathrm{edge}}$, the set of all such ℓ_{ℓ} . One family of relations for each 2-cell.

For a real central arrangement \mathcal{H} , $\ell_e \simeq \ell_f$ iff $\Sigma(e) = \Sigma(f)$.

The pure shard monoid $\mathbf{P}^+(\mathcal{H}, B)$ is generated by $\mathcal{L}_{\mathrm{III}}$. $\mathbf{P}^+(\mathcal{H}, B)$ is ordered by $p \leq p'$ if p is a prefix of p'. The full twist Δ^2 lies in the center of $\pi_1(\mathrm{Sal}(\mathcal{H}), B)$.

Claim: the interval $[1,\Delta^2]_{\mathbf{P}^+}$ is an analogue of $\mathrm{Weak}(\mathcal{H},B)$ and $\mathrm{Shard}(\mathcal{H},B)$





Pow: Weak Embedding

Fix ${\mathcal H}$ central. For $C\in {\mathcal R}$ and a positive minimal gallery

$$B = C_0 \xrightarrow{e_1} C_1 \xrightarrow{e_2} \cdots \xrightarrow{e_{k-1}} C_{k-1} \xrightarrow{e_k} C_k = C,$$

define $\operatorname{Pow}(C) := \ell_{\Sigma(e_k)} \ell_{\Sigma(e_{k-1})} \cdots \ell_{\Sigma(e_1)}$.

Pow is a poset embedding of Weak(\mathcal{H}, B) in $[1, \Delta^2]_{\mathbf{P}^+}$.

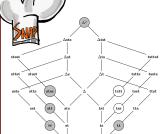
Crackle: Shard Embedding

Fix ${\mathcal H}$ simplicial. For $C\in {\mathcal R}$ and a positive minimal gallery

$$\mathsf{Pop}(\mathit{C}) = \mathit{E}_0 \xrightarrow{\mathit{e}_1} \mathit{E}_1 \xrightarrow{\mathit{e}_2} \cdots \xrightarrow{\mathit{e}_{k-1}} \mathit{E}_{k-1} \xrightarrow{\mathit{e}_k} \mathit{E}_k = \mathit{C}$$

define $\operatorname{Crackle}(C) := \ell_{\Sigma(e_k)} \ell_{\Sigma(e_{k-1})} \cdots \ell_{\Sigma(e_1)}.$

Crackle is a poset embedding of $\operatorname{Shard}(\mathcal{H},B)$ into the interval $[1,\Delta^2]_{\mathbf{P}^+}$



Snap = Crackle · Pop

Fix ${\mathcal H}$ a reflection arrangement of a finite Coxeter group $\,W.\,$

$$1 \to \mathbf{P}(W) \to \mathbf{B}(W) \to W \to 1$$

 $\mathsf{Snap}(w) := \mathsf{Pop}(\mathbf{w}) \cdot (\mathbf{w}_{\circ}(\mathrm{des}(w)))^{2}.$

 $\mathbf{P}(W) := \pi_1(\mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}, x_B)$ is the pure braid group of W $\mathbf{B}(W) := \pi_1((\mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}})/W, x_B)$ is the braid group of WWrite \mathbf{w} for the usual lift of $w \in W$ to $\mathbf{B}^+(W)$.

The map Snap is a poset embedding from $\operatorname{Shard}(W)$ into $[1, \Delta^2]_{\mathbf{B}^+}$.

Interpret everything in $\mathbf{B}(W)$ (since $\mathbf{P}^{+}(W) \subseteq \mathbf{B}(W)$):

 $\mathsf{Pop}(\mathbf{w}) = \mathbf{w} \cdot \mathbf{w}_{\circ}(\mathrm{des}(w))^{-1}$

 $Crackle(w) = Pop(\mathbf{w}) \cdot (\mathbf{w}_{o}(des(w)))^{2} \cdot Pop(\mathbf{w})^{-1}$

 $\mathsf{Snap}(w) = \mathsf{Crackle}(w) \cdot \mathsf{Pop}(\mathbf{w})$