Invariant theory for the free left-regular band and a q-analogue

Sarah Brauner ${ }^{1}$ Patricia Commins ${ }^{2}$ Victor Reiner ${ }^{3}$

1.2. 3University of Minnesota. Twin Cities, ${ }^{1}$ Max Planck Institute for Mathematics in the Sciences

What are left-regular bands?

Definition. A left-regular band (LRB) is a semigroup S satisfying (i) $x^{2}=x$ and (ii) $x y x=x y$ for all $x, y \in S$.

Example. The free $L R B$ on n-letters, \mathcal{F}_{n}, is the set of words without repeated letters on the alphabet $\{1,2, \cdots, n\}$ under the operation

$$
\left(u_{1}, u_{2}, \cdots, u_{k}\right) \cdot\left(v_{1}, v_{2}, \cdots, v_{\ell}\right)=\left(u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{\ell}\right)^{\wedge}
$$

where \wedge denotes deleting any letter which has previously appeared, when reading left-to-right. For example, in \mathcal{F}_{6},

$$
(1,4,2,5) \cdot(2,1,6,3)=(1,4,2,5,6,3) .
$$

Example. The q-free LRB on n letters, $\mathcal{F}_{n}^{(q)}$, is the set of flags $\left(V_{1}, V_{2}, \cdots, V_{k}\right)$ of \mathbb{F}_{q}^{n} with $0 \leq k \leq n$ and $\operatorname{dim} V_{i}=i$, under the operation
$\left(U_{1}, \cdots, U_{k}\right) \cdot\left(V_{1}, \cdots, V_{\ell}\right)=\left(U_{1}, U_{2}, \cdots, U_{k}, U_{k}+V_{1}, U_{k}+V_{2}, \cdots, U_{k}+V_{\ell}\right)^{\wedge}$. Both $\mathcal{F}_{n}, \mathcal{F}_{n}^{(q)}$ are monoids; the identities are the empty word or flag, ().
History. Many popular shuffling operators can be realized in LRBs. The combinatorics of LRBs explains the eigenvalues of these operators (see [3]), which in turn reveals information about their long-term behaviors.
Example. The element

$$
x:=(1)+(2)+\cdots+(n) \in \mathbf{k} \mathcal{F}_{1}
$$

acts like random-to-top shuffling on words of length n in \mathcal{F}_{n}. For example, $((1)+(2)+(3)+(4)) \cdot(1,2,3,4)=(1,2,3,4)+(2,1,3,4)+(3,1,2,4)+(4,1,2,3)$.

Left-regular bands under symmetry

Many LRBs come equipped with natural group actions. In our cases,

- The symmetric group \mathfrak{S}_{n} acts on \mathcal{F}_{n} by

$$
\pi\left(u_{1}, u_{2}, \cdots, u_{k}\right)=\left(\pi\left(u_{1}\right), \pi\left(u_{2}\right), \cdots, \pi\left(u_{k}\right)\right) .
$$

- The finite general linear group $G L_{n}\left(\mathbb{F}_{q}\right)$ acts on $\mathcal{F}_{n}^{(q)}$ by

$$
g\left(U_{1}, \cdots, U_{k}\right)=\left(g\left(U_{1}\right), \cdots, g\left(U_{k}\right)\right) .
$$

Why LRBs under symmetry? In [1], Bidigare proved the invariant subalgebra of the face algebra of a reflection arrangement (an LRB algebra) is antiisomorphic to Solomon's descent algebra.

Our two questions

For both monoids $M=\mathcal{F}_{n}, \mathcal{F}_{n}^{(q)}$, we examine the algebra $\mathbf{k} M$, and answer the two main questions of invariant theory for the corresponding symmetry groups $G=\mathfrak{S}_{n}, G L_{n}\left(\mathbb{F}_{q}\right)$ acting on $\mathbf{k} M$:

1. What is the structure of the invariant subalgebra $(\mathbf{k} M)^{G}$?
2. What is the structure of $\mathbf{k} M$, simultaneously as a $(\mathbf{k} M)^{G}$-module and a G-representation?

Answer to question \# 1

Theorem. Let \mathbf{k} be a commutative ring with 1. Recall the random-to-top element $x \in \mathbf{k} \mathcal{F}_{n}$.
(i) The unique \mathbf{k}-algebra map $\mathbf{k}[X] \longrightarrow \mathbf{k} \mathcal{F}_{n}$ mapping $X \mapsto x$ induces an algebra isomorphism

$$
\left(\mathbf{k} \mathcal{F}_{n}\right)^{\mathfrak{S}_{n}} \cong \mathbf{k}[X] /(X(X-1)(X-2) \cdots(X-n)) .
$$

Hence $(\mathbf{k} M)^{\mathfrak{G}_{n}}$ is commutative and generated by x.
(ii) If furthermore \mathbf{k} is a field where n ! is invertible, then x acts semisimply on any finite-dimensional $\left(\mathbf{k} \mathcal{F}_{n}\right)^{\mathfrak{S}_{n}}$-module, with eigenvalues contained in the list $\{0,1,2, \cdots, n\}$
The q-analogous theorem. If $q \in \mathbf{k}^{\times}$, then $\left(\mathbf{k} \mathcal{F}_{n}^{(q)}\right)^{G L_{n}\left(\mathbb{F}_{q}\right)}$ is a commutative ring generated by $x^{(q)}$, a natural q-analogue of x. If furthermore \mathbf{k} is a field with $\left|G L_{n}\left(\mathbb{F}_{q}\right)\right| \in \mathbf{k}^{\times}$, then $x^{(q)}$ acts semisimply on any $\left(\mathbf{k} \mathcal{F}_{n}^{(q)}\right)^{G L_{n}\left(\mathbb{F}_{q}\right)}$-module, with eigenvalues in $\left\{[0]_{q},[1]_{q},[2]_{q}, \cdots,[n]_{q}\right\}$

The derangement symmetric function

Definition. The descent set, $\operatorname{Des}(Q)$, of a standard Young tableau Q is $\operatorname{Des}(Q):=\{i: i+1$ appears in a row strictly below i in $Q\}$

Example.

Definition. A standard Young tableau Q with n cells is a desarrangement tableau if the smallest element of $\{1,2, \ldots, n\} \backslash \operatorname{Des}(Q)$ is even.
The derangement symmetric function \mathfrak{o}_{n}, introduced by Désarménien-Wachs [4], can be defined in terms of Schur functions due to Reiner- Webb [5]:

$$
\mathfrak{d}_{n}:=\sum_{Q} s_{\lambda(Q)},
$$

where Q runs through the desarrangement tableaux of size n
Example. Since the desarrangement tableaux of size 5 are

the derangement symmetric function for $n=5$ is

$$
\mathfrak{d}_{5}=s_{(4,1)}+2 s_{(3,2)}+2 s_{(3,1,1)}+2 s_{(2,2,1)}+2 s_{(2,1,1,1)} .
$$

Terminology: Derangements are permutations in \mathfrak{S}_{n} without fixed points and desarrangements are permutations in \mathfrak{S}_{n} for which the first non-descent is even. These two sets are in bijec tion, having size the dimension of the \mathfrak{S}_{n}-representation corresponding to \mathfrak{J}_{n}

Answer to question \# 2

Theorem. Let \mathbf{k} be a field with $n!\in \mathbf{k}^{\times}$. Then x acts semisimply on $\mathbf{k} \mathcal{F}_{n}$, and for each $j=0,1,2, \ldots, n$, its j - eigenspace carries a \mathfrak{S}_{n}-representation with Frobenius image

$$
\begin{equation*}
\sum_{\ell=j}^{n} h_{(n-\ell, j)} \cdot \mathfrak{d}_{\ell-j} . \tag{1}
\end{equation*}
$$

The q-analogous theorem. There is a q-Frobenius ring isomorphism between unipotent representations of $G L_{n}\left(\mathbb{F}_{q}\right)$ and symmetric functions. When \mathbf{k} is a field with $\left|G L_{n}\left(\mathbb{F}_{q}\right)\right| \in \mathbf{k}^{\times}, x^{(q)}$ acts semisimply on $\mathbf{k} \mathcal{F}_{n}^{(q)}$ and the $[j]_{q}$-eigenspace of $x^{(q)}$ has q-Frobenius characteristic equal to (1).

Example. We compute the Frobenius image for each j-eigenspace of x on $\mathbf{k} \mathcal{F}_{3}$, and also the q-Frobenius image of each $[j]_{q}$-eigenspace of $x^{(q)}$ on $\mathbf{k} \mathcal{F}_{3}^{(q)}$.

	$\ell=0$	$\ell=1$	$\ell=2$	$\ell=3$
$j=0$	$h_{3} \cdot \mathfrak{d}_{0}+h_{2} \cdot \mathfrak{d}_{1}+h_{1} \cdot \mathfrak{d}_{2}+h_{0} \cdot \mathfrak{d}_{3}$			
$j=1$		$h_{(2,1)} \cdot \mathfrak{d}_{0}+h_{(1,1)} \cdot \mathfrak{d}_{1}+h_{1} \cdot \mathfrak{d}_{2}$		
$j=2$		$h_{(2,1)} \cdot \mathfrak{d}_{0}+h_{2} \cdot \mathfrak{d}_{1}$		
$j=3$		$h_{3} \cdot \mathfrak{d}_{0}$		

Ongoing Related Work

- General left-regular bands under symmetry (Commins, thesis work)
- Eigenvalues of a q-analogue of random-to-random shuffling (Brauner and Commins, with UMN REU 2022 students Ilani Axelrod-Freed, Judy Chiang, and Veronica Lang)

Acknowledgements

We thank Darij Grinberg, Franco Saliola, and Peter Webb for helpful conversations, and Michelle Wachs for helpful discussions on random-to-top shuffling. First and second authors were supported by NSF GRFP, and third author by NSF grant DMS-2053288.

References

[1] Thomas Patrick Bidigare. Hyperplane arrangement face algebras and their associated Markov chains. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)-University of Michigan.
[2] Sarah Brauner, Patricia Commins, and Victor Reiner. Invariant theory for the free left-regular band and a q-analogue. Pacific Journal of Mathematics, 322(2):251-280, 2023.
[3] Kenneth S. Brown. Semigroups, rings, and Markov chains. Journal of Theoretical Probability 13(3):871-938, 2000
[4] J. Désarménien and M. L. Wachs. Descentes des dérangements et mots circulaires. Séminaire Lotharingien de Combinatoire, 19:13-21, 1988.
[5] V. Reiner and P. Webb. The combinatorics of the bar resolution in group cohomology. Journal of Pure and Applied Algebra, 190, 2004.

