Invariant theory for the free left-regular band and a q-analogue

What are left-regular bands?

Definition. A left-regular band (LRB) is a semigroup S satisfying (i) $x^2 = x$ and (ii) xyx = xy for all $x, y \in S$.

Example. The free LRB on *n*-letters, \mathcal{F}_n , is the set of words without repeated letters on the alphabet $\{1, 2, \cdots, n\}$ under the operation

 $(u_1, u_2, \cdots, u_k) \cdot (v_1, v_2, \cdots, v_\ell) = (u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_\ell)^{\wedge},$

where \wedge denotes deleting any letter which has previously appeared, when reading left-to-right. For example, in \mathcal{F}_6 ,

 $(1, 4, 2, 5) \cdot (2, 1, 6, 3) = (1, 4, 2, 5, 6, 3).$

Example. The *q*-free LRB on *n* letters, $\mathcal{F}_n^{(q)}$, is the set of flags (V_1, V_2, \cdots, V_k) of \mathbb{F}_q^n with $0 \le k \le n$ and dim $V_i = i$, under the operation

 $(U_1, \cdots, U_k) \cdot (V_1, \cdots, V_\ell) = (U_1, U_2, \cdots, U_k, U_k + V_1, U_k + V_2, \cdots, U_k + V_\ell)^{\wedge}.$

Both $\mathcal{F}_n, \mathcal{F}_n^{(q)}$ are monoids; the identities are the empty word or flag, ().

History. Many popular shuffling operators can be realized in LRBs. The combinatorics of LRBs explains the eigenvalues of these operators (see [3]), which in turn reveals information about their long-term behaviors.

Example. The element

$$\boldsymbol{x} := (1) + (2) + \dots + (n) \in \mathbf{k}\mathcal{F}_n$$

acts like random-to-top shuffling on words of length n in \mathcal{F}_n . For example, $((1) + (2) + (3) + (4)) \cdot (1, 2, 3, 4) = (1, 2, 3, 4) + (2, 1, 3, 4) + (3, 1, 2, 4) + (4, 1, 2, 3).$

Left-regular bands under symmetry

Many LRBs come equipped with natural group actions. In our cases,

• The symmetric group \mathfrak{S}_n acts on \mathcal{F}_n by

$$\pi(u_1, u_2, \cdots, u_k) = (\pi(u_1), \pi(u_2), \cdots, \pi(u_k)).$$

• The finite general linear group $GL_n(\mathbb{F}_q)$ acts on $\mathcal{F}_n^{(q)}$ by

$$g(U_1,\cdots,U_k)=(g(U_1),\cdots,g(U_k)).$$

Why LRBs under symmetry? In [1], Bidigare proved the invariant subalge*bra* of the face algebra of a reflection arrangement (an LRB algebra) is antiisomorphic to Solomon's descent algebra.

Our two questions

For both monoids $M = \mathcal{F}_n, \mathcal{F}_n^{(q)}$, we examine the algebra $\mathbf{k}M$, and answer the two main questions of invariant theory for the corresponding symmetry groups $G = \mathfrak{S}_n$, $GL_n(\mathbb{F}_q)$ acting on $\mathbf{k}M$:

- 1. What is the structure of the invariant subalgebra $(\mathbf{k}M)^G$?
- 2. What is the structure of $\mathbf{k}M$, simultaneously as a $(\mathbf{k}M)^G$ -module and a G-representation?

Sarah Brauner¹ **Patricia Commins**²

^{1, 2, 3}University of Minnesota, Twin Cities, ¹Max Planck Institute for Mathematics in the Sciences

Answer to question #1

Theorem. Let \mathbf{k} be a commutative ring with 1. Recall the random-to-top element $x \in \mathbf{k}\mathcal{F}_n.$

(i) The unique \mathbf{k} -algebra map $\mathbf{k}[X] \longrightarrow \mathbf{k}\mathcal{F}_n$ mapping $X \mapsto x$ induces an algebra isomorphism

 $(\mathbf{k}\mathcal{F}_n)^{\mathfrak{S}_n} \cong \mathbf{k}[X] / (X(X-1))(X)$

Hence $(\mathbf{k}M)^{\mathfrak{S}_n}$ is commutative and generated by x.

(ii) If furthermore **k** is a field where n! is invertible, then x acts semisimply on any finite-dimensional $(\mathbf{k}\mathcal{F}_n)^{\mathfrak{S}_n}$ -module, with eigenvalues contained in the list $\{0, 1, 2, \cdots, n\}$.

The q-analogous theorem. If $q \in \mathbf{k}^{\times}$, then $(\mathbf{k}\mathcal{F}_n^{(q)})^{GL_n(\mathbb{F}_q)}$ is a commutative ring generated by $x^{(q)}$, a natural q-analogue of x. If furthermore **k** is a field with $|GL_n(\mathbb{F}_q)| \in \mathbf{k}^{\times}$, then $x^{(q)}$ acts semisimply on any $(\mathbf{k}\mathcal{F}_n^{(q)})^{GL_n(\mathbb{F}_q)}$ -module, with eigenvalues in $\{[0]_q, [1]_q, [2]_q, \cdots, [n]_q\}$.

The derangement symmetric function

Definition. The descent set, Des(Q), of a standard Young tableau Q is

 $Des(Q) := \{i : i + 1 \text{ appears in a row strictly below } i \text{ in } Q\}.$

Example.

 $\implies \text{Des}(Q) = \{1, 2, 4, 6, 7\}.$

Definition. A standard Young tableau Q with n cells is a *desarrangement* tableau if the smallest element of $\{1, 2, \ldots, n\} \setminus Des(Q)$ is even.

The *derangement symmetric function* \mathfrak{d}_n , introduced by Désarménien–Wachs [4], can be defined in terms of Schur functions due to Reiner- Webb [5]:

$$\mathfrak{d}_n := \sum_Q s_{\lambda(Q)},$$

where Q runs through the desarrangement tableaux of size n. **Example.** Since the desarrangement tableaux of size 5 are

the derangement symmetric function for n = 5 is

Terminology: Derangements are permutations in \mathfrak{S}_n without fixed points and desarrangements are permutations in \mathfrak{S}_n for which the first non-descent is even. These two sets are in bijection, having size the dimension of the \mathfrak{S}_n -representation corresponding to \mathfrak{d}_n .

Contact Information: commi010@umn.edu

Victor Reiner³

$$(-2)\cdots(X-n)$$
).

 $\mathfrak{d}_5 = s_{(4,1)} + 2s_{(3,2)} + 2s_{(3,1,1)} + 2s_{(2,2,1)} + 2s_{(2,1,1,1)}.$

Frobenius image

$$\sum_{\ell=j}^{n} h_{(n-\ell,j)} \cdot \mathfrak{d}_{\ell-j}.$$
 (1)

The *q***-analogous theorem.** There is a *q*-Frobenius ring isomorphism between *unipotent* representations of $GL_n(\mathbb{F}_q)$ and symmetric functions. When **k** is a field with $|GL_n(\mathbb{F}_q)| \in \mathbf{k}^{\times}$, $x^{(q)}$ acts semisimply on $\mathbf{k}\mathcal{F}_n^{(q)}$ and the $[j]_q$ -eigenspace of $x^{(q)}$ has q-Frobenius characteristic equal to (1).

	$\ell = 0$
j = 0	$h_3 \cdot \mathfrak{d}_0 +$
j = 1	7
j = 2	
j = 3	

Ongoing Related Work

- Chiang, and Veronica Lang)

Acknowledgements

We thank Darij Grinberg, Franco Saliola, and Peter Webb for helpful conversations, and Michelle Wachs for helpful discussions on random-to-top shuffling. First and second authors were supported by NSF GRFP, and third author by NSF grant DMS-2053288.

- [1] Thomas Patrick Bidigare. Hyperplane arrangement face algebras and their associated Markov chains. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–University of Michigan.
- [2] Sarah Brauner, Patricia Commins, and Victor Reiner. Invariant theory for the free left-regular band and a q-analogue. Pacific Journal of Mathematics, 322(2):251–280, 2023.
- [3] Kenneth S. Brown. Semigroups, rings, and Markov chains. Journal of Theoretical Probability, 13(3):871-938, 2000.
- J. Désarménien and M. L. Wachs. Descentes des dérangements et mots circulaires. Séminaire Lotharingien de Combinatoire, 19:13–21, 1988.
- V. Reiner and P. Webb. The combinatorics of the bar resolution in group cohomology. *Journal of Pure* and Applied Algebra, 190, 2004.

Answer to question # 2

Theorem. Let \mathbf{k} be a field with $n! \in \mathbf{k}^{\times}$. Then x acts semisimply on $\mathbf{k}\mathcal{F}_n$, and for each j = 0, 1, 2, ..., n, its j- eigenspace carries a \mathfrak{S}_n -representation with

Example. We compute the Frobenius image for each j-eigenspace of x on $\mathbf{k}\mathcal{F}_3$, and also the q-Frobenius image of each $[j]_q$ -eigenspace of $x^{(q)}$ on $\mathbf{k}\mathcal{F}_3^{(q)}$.

• General left-regular bands under symmetry (Commins, thesis work) • Eigenvalues of a q-analogue of random-to-random shuffling (Brauner and Commins, with UMN REU 2022 students Ilani Axelrod-Freed, Judy

References