Noncrossing partitions of an annulus

Laura Brestensky and Nathan Reading
NC State University

FPSAC 2023
UC Davis
18 July 2023
(reporting on joint work, much of which appeared in Laura Brestensky's thesis)

The noncrossing partition poset

Let W be a Coxeter group with simple reflections S and reflections T.

Coxeter element: a product $c=s_{1} s_{2} \cdots s_{n}$ of the elements of S in any order.

Absolute order $u \leq_{T} w$ is prefix/suffix/subword order relative to the alphabet T.

The noncrossing partition poset: the interval $[1, c]_{T}$.

Noncrossing partition poset (lattice) prototypical example

W : the symmetric group S_{n+1}. (This is "Type A".)
S : adjacent transpositions $s_{i}=(i i+1)$ for $i=1, \ldots, n$.
T : arbitrary transpositions ($i j$).
c is an $(n+1)$-cycle.
$[1, c]_{T}$ is modeled by noncrossing partitions of that cycle.
Example: $c=s_{3} s_{5} s_{2} s_{1} s_{6} s_{4}=\left(\begin{array}{lllllll}1 & 4 & 6 & 7 & 5 & 3\end{array}\right)$

$(1)(245)(3)(67)$

Other finite types

Type B: W is the group of signed permutations and $[1, c]_{T}$ is modeled by centrally symmetric noncrossing partitions.

Type D: W is even-signed permutations and $[1, c]_{T}$ is centrally symmetric noncrossing partitions with a double point at the center.

Type B

Type D

All three constructions ($\mathrm{A}, \mathrm{B}, \mathrm{D}$) can be understood in terms of "projecting a small orbit to the Coxeter plane".

Connections to Artin groups

The defining presentation of a Coxeter group has

- braid relations of the form stst $=t s t s$ for $s, t \in S$, and
- $s^{2}=1$ for each $s \in S$.

The Artin group associated to W has only the braid relations.
When W is finite, $[1, c]_{T}$ serves as a Garside structure for the corresponding Artin group. This gives a dual presentation of the Artin group, generated by T and proving desirable properties

Crucial: $[1, c]_{T}$ is a lattice when W is finite.
Outside of finite type, the interval $[1, c]_{T}$ need not be a lattice.
Work of McCammond (variously with Brady and Sulway) extends the affine Coxeter group W to a larger group, thus extending $[1, c]_{T}$ to a lattice. The lattice is a Garside structure for a supergroup of the Artin group, which inherits desirable properties from the supergroup.

Noncrossing partitions of classical affine types

Goal: Planar diagrams for $[1, c]_{T}$ and the larger lattice.
Where to start: Project a "small" orbit to the "Coxeter plane". Mod out by some or all of the symmetries in the Coxeter plane.

In every case, the orbit is a collection of vectors \mathbf{e}_{i} for integers i and the projection is an infinite strip with translational symmetry. This becomes an annulus.
Example: Affine type \widetilde{A}_{6}
$c=s_{6} s_{5} s_{2} s_{1} s_{3} s_{4} s_{7}$
$\begin{array}{rrrrrrrrrrrr}-6 & -5 & -2 & -1 & 1 & 2 & 5 & 6 & 8 & 9 & 12 & 13 \\ \bullet & \bullet\end{array}$
$\begin{array}{ccccccccc}\bullet- & \bullet \\ -4 & 0 & 3 & 4 & 7 & 10 & 11 & 14\end{array}$

Type $\widetilde{A}:$ Affine permutations and periodic permutations

Type \widetilde{A}_{n-1} affine Coxeter group \widetilde{S}_{n} is affine permutations π of \mathbb{Z} :

- $\pi(i+n)=\pi(i)+n$ for all $i \in \mathbb{Z}$
- $\sum_{i=1}^{n} \pi(i)=\binom{n+1}{2}$.

Larger group $S_{\mathbb{Z}}(\bmod n): \pi(i+n)=\pi(i)+n \quad \forall i$.
Cycle notation:
$\left(a_{1} a_{2} \cdots a_{k}\right)_{n}$ means $\prod_{q \in \mathbb{Z}}\left(a_{1}+q n a_{2}+q n \cdots a_{k}+q n\right)$. Infinite cycles are $\left(\cdots a_{1} a_{2} \cdots a_{k} a_{i}+q n \cdots\right), \quad q \neq 0$.

Reflections: $T=\left\{(i j)_{n}: i<j, i \not \equiv j(\bmod n)\right\}$.
Loops: $\quad \ell_{i}=(\cdots i \quad i+n \cdots) \quad L=\left\{\ell_{i}^{ \pm 1}: i \in 1, \ldots, n\right\}$
Generators: $\quad \widetilde{S}_{n}$ generated by $T . \quad S_{\mathbb{Z}}(\bmod n)$ generated by $T \cup L$.

Affine type \widetilde{A} : Coxeter elements

The Coxeter diagram for \widetilde{S}_{n} is an n-cycle.
Choosing a Coxeter element means choosing, for each i, whether s_{i} is before or after s_{i-1}. Record by placing of numbers on the annulus:

Place $1, \ldots, n$ in clockwise order.

- i on the outer boundary iff s_{i-1} is before s_{i}.
- i on the inner boundary iff s_{i-1} is after s_{i}.

Example: $n=6 \quad c=s_{6} s_{5} s_{2} s_{1} s_{3} s_{4} s_{7}$

Noncrossing partitions of an annulus

Start with an annulus with inner points and outer points.
An embedded block is

- a disk block, a closed disk containing at least one numbered point. (It may be a degenerate disk, i.e. just one point or a curve connecting two points.)
- a dangling annular block, a closed annulus with one boundary component containing numbered points, the other "free".
- a nondangling annular block, a closed annulus with each component of its boundary containing numbered points.

Noncrossing partitions: Set partitions plus additional topology. $\mathcal{P}=\left\{E_{1}, \ldots, E_{k}\right\}$ disjoint embedded blocks, every numbered point is in some E_{i}, at most one annular block. Considered up to isotopy.

Noncrossing partitions of an annulus (continued)

\mathcal{P}_{2}

\mathcal{P}_{3}

Noncrossing partition lattice $\widetilde{N C}_{c}^{A}: \mathcal{P} \leq \mathcal{Q}$ iff there are embeddings of \mathcal{P} and \mathcal{Q} with every block of \mathcal{P} contained in a block of \mathcal{Q}.
Theorem. $\widetilde{N C}_{c}^{A}$ is a graded lattice, with rank function given by n minus the number of non-annular blocks.

Proof idea. Show that the partial order is containment of curve sets. Given \mathcal{P} and \mathcal{Q}, explicitly construct a noncrossing partition whose curve set is curve $(\mathcal{P}) \cap \operatorname{curve}(\mathcal{Q})$.

The lattice property needs dangling annular blocks

Isomorphisms

Define a map perm : $\widetilde{N C_{c}^{A}} \rightarrow S_{\mathbb{Z}}(\bmod n)$:
Read each component of each block as a cycle, keeping the interior of the block on the right.

Date line: Radial segment between 1 and n. Add n each time it is crossed clockwise, $-n$ when it is crossed counterclockwise.

Disks give finite cycles, annuli give infinite cycles.

$$
\begin{aligned}
& \operatorname{perm}\left(\mathcal{P}_{1}\right)=(1-7-4)_{7}(2-3)_{7}(5)_{7}(6)_{7} \\
& \operatorname{perm}\left(\mathcal{P}_{2}\right)=(\cdots 1-5-6 \cdots)(\cdots 34710 \cdots)(56)_{7} \\
& \operatorname{perm}\left(\mathcal{P}_{3}\right)=(1-1-2)_{7}(2)_{7}(3)_{7}(\cdots 4711 \cdots)
\end{aligned}
$$

Theorem. The map perm : $\widetilde{N C}_{c}^{A} \rightarrow S_{\mathbb{Z}}(\bmod n)$ is an isomorphism from $\widetilde{N C}_{c}^{A}$ to the interval $[1, c]_{T \cup L}$ in $S_{\mathbb{Z}}(\bmod n)$. It restricts to an isomorphism from $\widetilde{N C}_{c}^{A, \circ}$ to the interval $[1, c]_{T}$ in \widetilde{S}_{n}.
$\widetilde{N C}{ }_{c}^{A, o}$: Noncrossing partitions with no dangling annular blocks.

Cover relations in $\widetilde{N C}_{c}^{A}$

Proving the isomorphisms involves understanding cover relations in $\widetilde{N C}_{c}^{A}$ and $[1, c]_{T \cup L}$.
Covers in $\widetilde{N C}_{c}^{A}$ are described by simple connectors

or by cutting curves.

Kreweras complements

Kreweras complementation is an antiautomorphism of $\widetilde{N C}_{c}^{A}$ that restricts to an antiautomorphism of $\widetilde{N C}_{c}^{A, 0}$.

\downarrow Krew

Factored translations and dangling annular blocks

McCammond and Sulway build their larger interval (in their larger group) by factoring the translations in $[1, c]_{T}$.
Recall $\widetilde{N C}_{c}^{A, \circ}$ is noncrossing partitions, no dangling annular blocks. We know $[1, c]_{T} \cong \widetilde{N C}_{C}^{A, \circ}$.
The translations in $[1, c]_{T}$ are $(\cdots i i+n \cdots)(\cdots j j-n \cdots)$ for i outer and j inner. These correspond to the noncrossing partitions with only one nontrivial block-an annulus with one numbered point on each boundary component.
What is the obvious way to factor a translation? As $\ell_{i} \cdot \ell_{j}^{-1}$.
ℓ_{i} corresponds to the dangling annular block containing only i.
ℓ_{j}^{-1} corresponds to the dangling annular block containing only j.

Noncrossing partitions of a marked surface

Planar models for in types A and \widetilde{A} generalize to noncrossing partitions of a marked surface (\mathbf{S}, \mathbf{M}) with no punctures, in the sense of the marked surfaces model for cluster algebras.

Theorem. $\mathrm{NC}(\mathbf{S}, \mathbf{M})$ is a graded lattice.
The rank function is simple and topological.
Punctures don't seem to work well, but are replaced by symmetry and "double points".

Affine type \widetilde{C} :

The lattice $[1, c]_{T}$ is modeled by symmetric noncrossing partitions of an annulus

or noncrossing partitions of a disk with 2 orbifold points.

Affine type \widetilde{D}

Symmetric n.c. partitions of an annulus with two double points

Affine type \widetilde{D} (continued)

