A Realization of Poset Associahedra

Andrew Sack

andrewsack@math.ucla.edu
University of California, Los Angeles

Background: Tubes and Tubings

- A proper tube of a poset P is a connected, convex subset $\tau \subset P$ A proper tube of a poset P. such that $1<|\tau|<|P|$.
- For disjoint tubes σ, τ we say $\tau \prec \sigma$ if there exists $a \in \tau, b \in \sigma$ - For disjoint tubes

Such that $a \prec b$.

- A proper tubing T of P is a set of proper tubes of P such that any pair of tubes is nested or disjoint and that the relation \prec is any pair
acyclic.

Non-examples
Background: Maximal tubings as bracketings

$\left.\rightarrow\right|_{a b c} ^{e d f} \rightarrow \quad a b c e d f$
An evaluation of a poset along a tubing

Background: Poset Associahedra

Theorem (Galashin (2021)) For a finite, connected poset P, the poset associahedron $\mathscr{A}(P)$ is a simple, convex polytope of dimension $|P|-2$ whose face lattice is isomorphic to the set of proper tubings ordered by reverse inclusion.
Problem (Galashin (2021)) Provide an explicit realization of poset associahedra.

Shapiro's Catalan Convolution

Let $B_{n}=\binom{2 n}{n}$ and $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
Theorem (Shapiro (2002), Andrews (2011), Nagy (2012))

$$
\sum_{i=0}^{2 n} C_{2 i} C_{2(n-i)}=4^{n} C_{n} \text { and } \sum_{i=0}^{2 n} B_{2 i} C_{2(n-i)}=4^{n} B_{n} .
$$

This is trivial to prove with generating functions, but complicated to prove bijectively.

Main Result: A Realization

Definition Let P be a finite, connected poset and let $\tau \subseteq P$. We define:

$$
\begin{array}{ll}
\text { - The order cone } & \text { - The half-space } \\
\qquad \begin{array}{ll}
\mathscr{L}(P):=\left\{x \in \mathbb{R}_{\Sigma=0}^{P} \mid x_{i} \leq x_{j} \text { for all } i \preceq_{p j}\right\} & h_{\tau}:=\left\{x \in \mathbb{R}_{\Sigma=0}^{P} \mid \alpha_{\tau}(x) \geq n^{2|\tau|}\right\} \\
\text { - } \alpha_{\tau}: \mathscr{L}(P) \rightarrow \mathbb{R} \text { by } & \text { - The hyperplane } \\
\alpha_{\tau}(x):=\sum_{\substack{i \notin j}} x_{j}-x_{i} & H_{\tau}:=\left\{x \in \mathbb{R}_{\Sigma=0}^{P} \mid \alpha_{\tau}(x)=n^{2|\tau|}\right\}
\end{array}
\end{array}
$$

Theorem (S. (2022)) If P is a finite, connected poset, then the intersection of H_{P} with h_{τ} for all proper tubes τ gives a realization of $\mathscr{A}(P)$.

A Mysterious Example

Catalan Convolution: A Refinement
The vertices of $\mathrm{CFA}_{2 n}$ admit a refinement: orient the edges according to a generic direction. It is known that

$$
h_{\mathrm{CFA}_{2 n}}(t)=\sum_{v \in \text { Vertices }} t^{\text {outdegree }(v)}
$$

CBPs also admit a refinement. For a CBP P of length $2 n$, let $\operatorname{stat}(P)=n+\#$ red peaks $-\#$ blue peaks
Proposition (S. (2022))

$$
h_{\mathrm{CFA}_{2 n}}(t)=\sum_{P \in \mathrm{CBP}_{2 n}} t^{s \mathrm{tat}(P)}
$$

Proof Idea: Key Lemma

Definition For $S \subseteq P$ and $x \in \mathbb{R}^{P}$, define the diameter of x relative to S by

$$
\operatorname{diam}_{S}(x)=\max _{i, j \in S}\left|x_{i}-x_{j}\right| .
$$

Equivalently, $\operatorname{diam}_{S}(x)$ is the diameter of $\left\{x_{i}: i \in S\right\}$ as a subset of \mathbb{R}.
Lemma Let $\tau \subseteq P$ be a tube and let $x \in \mathscr{L}(P)$. Then

$$
\operatorname{diam}_{\tau}(x) \leq \alpha_{\tau}(x) \leq \frac{n^{2}}{4} \operatorname{diam}_{\tau}(x) .
$$

That is, α_{τ} is an approximation of diam $_{\tau}$.

Main Idea of Realization

Let $\sigma, \tau \subseteq P$ be tubes with $|\tau|<|\sigma|$. Then for $x \in H_{\tau}$ and $y \in H_{\sigma}, \operatorname{diam}_{\tau}(x)$ is exponentially smaller than $\operatorname{diam}_{\sigma}(y)$.

Let T be a maximal tubing and $x=\bigcap H_{T}$. Then if $\sigma \notin T$ is a tube, $\operatorname{diam}_{\sigma}(x)$ must be large. Hence $x \in T$ lies in the interior of h_{σ}.

Open Questions

1. Given a combinatorial interpretation of the h-vector of poset associahedron.
2. Are the h-polynomials of poset associahedron all real-rooted?
3. Can the refinement of the Catalan convolution be proven bijectively?
4. Is there a natural polytope that fills in missing box of the table?

References

[1] Satyan L Devadoss. A realization of graph associahedra. Discrete Mathematics,
309(1):271-276, 2000.
[2] Pavel Galashin. Poset associahedra. arXiv preprint arXi:2110.07257, 2021.
[3] Mark Haiman. Constructing the associahedron. Unpublished manuscript, MIT, 1984 .
[4] Peter Hainal and Gábor V. Nagy. A bijective proof of Shapirio's Catalan convolution. Electron.
J. Combin., 21(2):Paper $2.42,10,2014$.
J. Combin., 21(2):Paper 2.42, 10, 2014.
[5] Chiara Mantovani, Arrau Padrol, and Vincent Pilaud. Acyclonestohedra: when oriented
[6] Rodica Simion. A type-B associahedron. Advances in Applied Mathematics, 30(1):2-25, 2003.

