

Background: Tubes and Tubings

- A proper tube of a poset P is a connected, convex subset $\tau \subset P$ such that $1 < |\tau| < |P|$.
- For disjoint tubes σ, τ we say $\tau \prec \sigma$ if there exists $a \in \tau, b \in \sigma$ such that $a \prec b$.
- A proper tubing T of P is a set of proper tubes of P such that any pair of tubes is nested or disjoint and that the relation \prec is acyclic.

Background: Maximal tubings as bracketings

An evaluation of a poset along a tubing

Background: Poset Associahedra

Theorem (Galashin (2021)) For a finite, connected poset P, the poset associated ron $\mathscr{A}(P)$ is a simple, convex polytope of dimension |P| - 2 whose face lattice is isomorphic to the set of proper tubings ordered by reverse inclusion.

Problem (Galashin (2021)) Provide an explicit realization of poset associahedra.

Shapiro's Catalan Convolution

Let $B_n = \binom{2n}{n}$ and $C_n = \frac{1}{n+1}\binom{2n}{n}$. **Theorem** (Shapiro (2002), Andrews (2011), Nagy (2012))

$$\sum_{i=0}^{2n} C_{2i}C_{2(n-i)} = 4^n C_n \text{ and } \sum_{i=0}^{2n} B_{2i}C_{2(n-i)} = 4^n B_n.$$

This is trivial to prove with generating functions, but complicated to prove bijectively.

A Realization of Poset Associahedra

Andrew Sack andrewsack@math.ucla.edu University of California, Los Angeles

Main Result: A Realization

Definition Let P be a finite, connected poset and let $\tau \subseteq P$. We define:

• The order cone $\mathscr{L}(P) := \left\{ x \in \mathbb{R}^{P}_{\Sigma=0} \mid x_{i} \leq x_{j} \text{ for all } i \preceq_{P} j \right\}$ • $\alpha_{\tau}: \mathscr{L}(P) \to \mathbb{R}$ by

$$lpha_{ au}(\mathbf{x}) := \sum_{\substack{i \prec j \\ i, j \in au}} \mathbf{x}_j - \mathbf{x}_i$$

Theorem (S. (2022)) If P is a finite, connected poset, then the intersection of H_P with $h_{ au}$ for all proper tubes au gives a realization of $\mathscr{A}(P).$

W

Catalan Convolution: A Refinement

The vertices of CFA_{2n} admit a refinement: orient the edges according to a generic direction. It is known that

$$h_{\mathsf{CFA}_{2n}}(t) = \sum_{v \in \mathsf{Vertices}} t^{\mathsf{outdegree}(v)}$$

CBPs also admit a refinement. For a CBP P of length 2n, let stat(P) = n + #red peaks - #blue peaks

Proposition (S. (2022))

$$h_{\mathsf{CFA}_{2n}}(t) = \sum_{P \in \mathsf{CBP}_{2n}} t^{\mathsf{stat}(P)}$$

The cyclohedron \mathscr{C}_n is a cyclic version of the associahedron \mathscr{A}_n . This raises the question: What if we color Dyck paths instead? Defining stat(P) similarly, we get:

The half-space

$$h_ au:=\left\{x\in \mathbb{R}^P_{\Sigma=0}\mid lpha_ au(x)\geq n^{2| au|}
ight\}$$

 The hyperplane

$$\mathcal{H}_{ au} := \left\{ x \in \mathbb{R}^{P}_{\Sigma=0} \mid lpha_{ au}(x) = n^{2| au|}
ight\}$$

CFA: A type A analogue?

f_0 h_i γ_i	Path Type			
$_{+1} C_n N(n,i)$	Dyck			
$4^n C_n \qquad 4^i N(n,i)$	Colored Dyck			
$_{+1} B_n {\binom{n}{i}}^2$	Balanced			
$A_{2n} \left 4^n B_n \right \qquad \left 4^i {n \choose i}^2 \right $	Colored Balanced			
here $N(n, i) = \frac{1}{n} {n \choose i} {n \choose i-1}$ are the Narayana numb				

to S by

of $\mathbb R.$

1.	Given
	associ
2.	Are th
3.	Can t
	bijecti
4.	ls the

[1]	Satyan L 309(1):27

Proof Idea: Key Lemma

Definition For $S \subseteq P$ and $x \in \mathbb{R}^{P}$, define the *diameter* of x relative

$$\mathsf{diam}_S(x) = \max_{i,j\in S} |x_i - x_j|.$$

Equivalently, diam_S(x) is the diameter of $\{x_i : i \in S\}$ as a subset

Lemma Let $\tau \subseteq P$ be a tube and let $x \in \mathscr{L}(P)$. Then

$$\operatorname{diam}_{ au}(x) \leq lpha_{ au}(x) \leq rac{n^2}{4}\operatorname{diam}_{ au}(x).$$

That is, α_{τ} is an approximation of diam_{τ}.

Main Idea of Realization

Let $\sigma, \tau \subseteq P$ be tubes with $|\tau| < |\sigma|$. Then for $x \in H_{\tau}$ and $y \in H_{\sigma}$, diam_{τ}(x) is exponentially smaller than diam_{σ}(y).

Let T be a maximal tubing and $x = \bigcap H_{\tau}$. Then if $\sigma \notin T$ is a tube, diam_{σ}(x) must be large. Hence x lies in the interior of h_{σ} .

Open Questions

a combinatorial interpretation of the *h*-vector of poset iahedron.

the *h*-polynomials of poset associahedron all real-rooted? the refinement of the Catalan convolution be proven ively?

ere a natural polytope that fills in missing box of the table?

References

. Devadoss. A realization of graph associahedra. *Discrete Mathematics*, 71–276, 2009.

[2] Pavel Galashin. Poset associahedra. arXiv preprint arXiv:2110.07257, 2021.

[3] Mark Haiman. Constructing the associahedron. Unpublished manuscript, MIT, 1984.

[4] Péter Hajnal and Gábor V. Nagy. A bijective proof of Shapiro's Catalan convolution. *Electron*. *J. Combin.*, 21(2):Paper 2.42, 10, 2014.

[5] Chiara Mantovani, Arnau Padrol, and Vincent Pilaud. Acyclonestohedra: when oriented matroids meet nestohedra. in prep.

[6] Rodica Simion. A type-B associahedron. *Advances in Applied Mathematics*, 30(1):2–25, 2003.