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Summary

Motivated by understanding

higher-dimensional cluster structures, we study

triangulations of even-dimensional cyclic

polytopes by associating directed graphs to

them, inspired by [OT12].

We prove two results, one characterising a

certain class of triangulations in terms of their

graphs, and another giving a criterion for when

a certain muation operation called a bistellar

flip can be performed.

Cyclic polytopes

In even dimensions, the cyclic polytope

C(n + 2d + 1, 2d) is the convex hull of the

images of the points{
i

n + 2d + 1
2π

}
1⩽i⩽n+2d+1

on the curve in R2d given by t 7→
(cos t, sin t, cos 2t, sin 2t, . . . , cos dt, sin dt).

Triangulations of cyclic
polytopes

A triangulation of C(n + 2d + 1, 2d) is a

subdivision of it into 2d-simplices.

Just as 2D triangulations are determined by

their diagonals, triangulations of

C(n + 2d + 1, 2d) are determined by their

d-simplices which lie inside the polytope

[OT12]. These are called internal d-simplices.

Bistellar flips

The higher-dimensional version of a flip of

triangulations is a bistellar flip. They are

given by replacing one internal d-simplex by

another internal d-simplex.

For d > 1, not every internal d-simplex can be

replaced using a bistellar flip, unlike for d = 1.

Figure 1: Triangulations of polygons with and without
interior triangles
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Directed graphs from
triangulations

There is a well-known recipe from the theory

of cluster algebras [FZ02] for associating a

directed graph to a two-dimensional

triangulation. The vertices of the graph are

the diagonals of the triangulation, with an

arrow A → B if B is clockwise from A in a

triangle T .

For a triangulation of an arbitrary cyclic

polytope, one can define the graph as follows.

The vertices of the graph are the internal

d-simplices of the triangulation.

Then there are arrows (a0, a1, . . . , ad) →
(a0, . . . , ai−1, ai + r, ai+1, . . . , ad) between

internal d-simplices (where r is minimal).

Figure 2: Constructing the directed graph for a
triangulation of C(8, 4)
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Triangulations with no
interior (d + 1)-simplices

The graph of a triangulation of

C(n + 2d + 1, 2d) detects whether or not there

are interior (d + 1)-simplices, i.e., one whose

facets are all internal d-simplices (Figure 1).

Theorem ([Wil])

A triangulation of C(n + 2d + 1, 2d) has no interior
(d + 1)-simplices iff its directed graph is a cut.

We do not define cuts explicitly here. They are

obtained from the directed graphs in Figure 3

by removing exactly one arrow from each cycle.

Corollary ([Wil])

Triangulations of C(n + 2d + 1, 2d) with no interior
(d + 1)-simplices form a connected subgraph of the
flip graph of C(n + 2d + 1, 2d).

Here the flip graph of a polytope is the

undirected graph with triangulations of the

polytope as vertices and bistellar flips as edges.

Figure 3: Cuts are obtained by removing exactly one
arrow from each (d + 1)-cycle of graphs such as the
following
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Figure 4: Triangulations of C(8, 4) with and without
interior 3-simplices
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Criterion for bistellar flips

Secondly, the graph of a triangulation allows

one to detect where bistellar flips can be

performed.

We show that the directed graph of a

triangulation can be decomposed into certain

paths which we call retrograde paths.

Theorem ([Wil])

A internal d-simplex can be replaced in a bistellar
flip iff it does not occur in the middle of a retrograde
path.

In Figure 5 we illustrate the retrograde paths

in the directed graph by drawing each

retrograde path in a single colour.

Figure 5: Performing a bistellar flip at 1368
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