Lancaster Studying triangulations of even-dimensional cyclic polytopes via directed graphs University Nicholas Williams, Lancaster University, nicholas.williams@lancaster.ac.uk

Summary

Motivated by understanding
higher-dimensional cluster structures, we study triangulations of even-dimensional cyclic polytopes by associating directed graphs to them, inspired by [OT12].
We prove two results, one characterising a certain class of triangulations in terms of their graphs, and another giving a criterion for when a certain muation operation called a bistellar flip can be performed.

Cyclic polytopes

In even dimensions, the cyclic polytope $C(n+2 d+1,2 d)$ is the convex hull of the images of the points

$$
\left\{\frac{i}{n+2 d+1} 2 \pi\right\}_{1 \leqslant i \leqslant n+2 d+1}
$$

on the curve in $\mathbb{R}^{2 d}$ given by $t \mapsto$ $(\cos t, \sin t, \cos 2 t, \sin 2 t, \ldots, \cos d t, \sin d t)$.

Triangulations of cyclic polytopes

A triangulation of $C(n+2 d+1,2 d)$ is a subdivision of it into $2 d$-simplices.
Just as 2D triangulations are determined by their diagonals, triangulations of
$C(n+2 d+1,2 d)$ are determined by their d-simplices which lie inside the polytope [OT12]. These are called internal d-simplices.

Bistellar flips

The higher-dimensional version of a flip of triangulations is a bistellar flip. They are given by replacing one internal d-simplex by another internal d-simplex.
For $d>1$, not every internal d-simplex can be replaced using a bistellar flip, unlike for $d=1$.

Figure 1: Triangulations of polygons with and without interior triangles

Directed graphs from triangulations

There is a well-known recipe from the theory of cluster algebras [FZ02] for associating a directed graph to a two-dimensional triangulation. The vertices of the graph are the diagonals of the triangulation, with an arrow $A \rightarrow B$ if B is clockwise from A in a triangle T.
For a triangulation of an arbitrary cyclic polytope, one can define the graph as follows. The vertices of the graph are the internal d-simplices of the triangulation.
Then there are arrows $\left(a_{0}, a_{1}, \ldots, a_{d}\right) \rightarrow$ $\left(a_{0}, \ldots, a_{i-1}, a_{i}+r, a_{i+1}, \ldots, a_{d}\right)$ between internal d-simplices (where r is minimal).

Figure 2: Constructing the directed graph for a triangulation of $C(8,4)$

4-simplices of $\quad\{12345,12356,12367,12378,13456$, triangulation $13467,13478,14567,14578,15678\}$

Internal

 2-simplices$\{135,136,137,146,147,157\}$

$135146 \quad 157$

Triangulations with no interior $(d+1)$-simplices

The graph of a triangulation of $C(n+2 d+1,2 d)$ detects whether or not there are interior $(d+1)$-simplices, i.e., one whose facets are all internal d-simplices (Figure 1).

Theorem ([Wil])

A triangulation of $C(n+2 d+1,2 d)$ has no interior (d $d+1$-simplices iff its directed graph is a cut.
We do not define cuts explicitly here. They are obtained from the directed graphs in Figure 3
by removing exactly one arrow from each cycle. Corollary ([Wil])
Triangulations of $C(n+2 d+1,2 d)$ with no interior $(d+1)$-simplices form a connected subgraph of the flip graph of $C(n+2 d+1,2 d)$.
Here the flip graph of a polytope is the undirected graph with triangulations of the polytope as vertices and bistellar flips as edges.

Figure 3: Cuts are obtained by removing exactly one arrow from each $(d+1)$-cycle of graphs such as the following

Figure 4: Triangulations of $C(8,4)$ with and without interior 3 -simplices

137
Without an interior 3-simplex

> With an interior 3-simplex

Criterion for bistellar flips

Secondly, the graph of a triangulation allows one to detect where bistellar flips can be performed.
We show that the directed graph of a triangulation can be decomposed into certain paths which we call retrograde paths.
Theorem ([Wil])
A internal d-simplex can be replaced in a bistellar flip iff it does not occur in the middle of a retrograde path.
In Figure 5 we illustrate the retrograde paths in the directed graph by drawing each retrograde path in a single colour.

Figure 5: Performing a bistellar flip at 1368

References

[FZ02] Sergey Fomin and Andrei Zelevinsky. "Cluster algebras. I Foundations". In: J. Amer Math Soc 152 (2000)
[OT12] Steffen Oppermann and Hugh Thomas. "Higher dimensional cluster combinatorics and representation theory". In: J. Eur. Math. Soc. (JEMS) 14.6 (2012).
[Wil] Nicholas J. Williams. Quiver combinatorics and triangu-
lations of cyclic polytopes. To appear in Algebraic Combinatorics. arXiv: 2112.09189 [math. Co]

