Hook length bias in odd versus distinct partitions

Cristina Ballantine, Hannah Burson, William Craig, Amanda Folsom, Boya W/en

College of the Holy Cross, University of Minnesota, University of Cologne, Amherst College, University of Wisconsin - Madison

Background

Partitions, Young diagrams and hook lengths

Apartion $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)$ of size $n \in \mathbb{N}_{0}$ is a non-increasing sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{j}$ called parts that add up to n. For example, for $n=$, hne ist of partitions are: (5), (4, 1), (3,2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), ($1,1,1,1,1$). Each partition is naturally equipped with a Young diagram, a left-justified vertical array of boxes with rows corresponding to parts. Each box in a Young diagram of λ may be labeled with a hook number, also called hook length, which, informally, is the number of boxes in the upside-down-L-shaped portion of the diagram with the box appearing as its corner. For example, the partition $\lambda=(5,4,4,2,1)$ of size
16 has the following Young diagram, with the hook length of each box marked.

| 9 | 7 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 5 | 4 | 4 |

| 3 |
| :--- | :--- |
| 1 |
| 1 |

Euler's identity and Beck's conjecture

Our work involves the following two types of partitions: partition into odd parts (odd partitions) and partitions into distinct parts (distinct partitions). We denote by $\mathcal{O}(n)$, respectively $\mathcal{D}(n)$, the set of odd, respectively distinct, partitions of n.

- Euler's identity [1] states that $|\mathcal{O}(n)|=|\mathcal{D}(n)|$ for all $n \geq 0$.
- Euler's identity can be proved combinatorially via the Glaisher's bijection [5] $\mathcal{D}(n) \rightarrow \mathcal{O}(n)$, which splits each even part in a distinct partition into two equal parts recursively until all parts are odd.
The total number of parts in all odd partitions of n minus the total number of parts in all distinct partitions of n is equal to the number of partitions of n where exactly one part size is even.
For example, when $n=5$, we have

	odd partitions	distinct partitions	partitions with one even part size
	$\begin{gathered} \left.\begin{array}{c} (5) \\ (3,1,1) \\ (1,1,1,1,1) \end{array}\right) \end{gathered}$	$\begin{aligned} & (5) \\ & (3,2) \\ & (4,1) \end{aligned}$	$\begin{aligned} & (4,1) \\ & (3,2) \\ & (2,2) \\ & (2,2,1,1) \end{aligned}$
count	3	3	$4(=9-5)$

Our question

nstead of tracking the total number of parts, we are interested in tracking the total number of hooks of a given length in odd versus distinct partitions.
For a positive integer t, let $a_{t}(n)$ (respectively $b_{t}(n)$) be the total number of hooks of length t in all odd (respectively distinct) partitions of n.
Question: How does $a_{t}(n)$ compare with $b_{t}(n)$ for a fixed t ? Is one always greater han or equal to the other (for sufficiently large n)? If so, does the difference count some other combinatorial data?

Previous result: the $t=1$ case

any given partition, the number of hooks of length 1 is precisely the number of different part sizes. (See the Young diagrams above for an example.)
Beck [7] conjectured and Andrews [2] proved the following result. The total number of parts in all distinct partitions of n minus the total number of aifferent part sizes in all odd partitions of n is equal to $c(n)$, the number of partitions of n with exactly one part occurring three times while all other parts occur only once.
In other words, for $n \geq 0, b_{1}(n)-a_{1}(n)=c(n) \geq 0$. This answers our question
completely for the $t=1$ case. completely for the $t=1$ case.

Our Conjecture

or $t=1$ we showed in the previous block that $b_{1}(n) \geq a_{1}(n)$. On the other hand, Euler's identity yields \sum $|\mathcal{O}(n)|=n|\mathcal{D}(n)|=\sum_{t \geq 1} b_{t}(n)$, which indicates that the hook length bias reverses (compared to the $t=1$ case) for some $t \geq 2$. In fact, we conjecture such reversal for all $t \geq 2$ for large enough n. More specifically:

Conjecture. For every integer $t \geq 2$, there exists an integer N_{t} such that for all $n>N_{t}$, we have $a_{t}(n) \geq b_{t}(n)$, and $a_{t}(n)-b_{t}(n) \rightarrow \infty$ as $n \rightarrow \infty$. Moreover, for $2 \leq t \leq 10$, we conjecture the following values of N_{t}.

Data supporting this conjecture was obtained by enumerating partitions and not from generating functions; this is because the generating functions for $a_{t}(n)$ and $b_{t}(n)$ are difficult to derive explicitly. We are, however, able to write down generating functions for $t=2$ and $t=3$, which we use to prove the conjecture for $t=2$ and $t=3$.

Main Results and outline of proof

Theorem 1. The above conjecture is true for $t=2$ and $t=3$ with $N_{2}=0$ and $N_{3}=7$, respectively

Proof outline and remarks.

- We first find the generating functions $a_{2}(n), b_{2}(n), a_{3}(n), b_{3}(n)$
- The generating function for $a_{2}(n)-b_{2}(n)$ leads to a new combinatorial interpretation of $a_{2}(n)-b_{2}(n)$ (see the The previ sus two steps were demstron-negative, showing $a_{2}(n) \geq b_{2}(n)$ for all $n \geq 0$.
- From the generating functions, to show that $a_{3}(n) \geq b_{3}(n)$ for all $n>7$, and to show of this poster.
as $n \rightarrow \infty$ for $t=2$, 3, we need additional tools from analytic number theory, in particular the circle method. This was outlined in [3] and completed in [4], and we will not focus on this part in the poster.

The $t=2$ case
There are precisely two ways in which hooks of length 2 can occur in a Young diagram:

Let $h_{t}(\lambda)$ denote the number of hooks of length t in a partition λ. Let

$$
a_{t}(m, n):=\#\left\{\lambda \in \mathcal{O}(n): h_{t}(\lambda)=m\right\} \quad \text { and } \quad b_{t}(m, n):=\#\left\{\lambda \in \mathcal{D}(n): h_{t}(\lambda)=m\right\}
$$

Odd Partitions. In an odd partition, the part 1 contributes one hook of length 2 if and only if it occurs at least twice part ≥ 3 contributes one hook of length 2 if occurring only once, two if occurring at least twice. We have

$$
\sum_{n, m \geq 0} a_{2}(m, n) z^{m} q^{n}=\left(1+q+\frac{z q^{2}}{1-q}\right) \prod_{n=1}^{\infty}\left(1+z q^{2 n+1}+\frac{z^{2} q^{2(2 n+1)}}{1-q^{2 n+1}}\right),
$$

where $\left(1+q+\frac{z q^{2}}{1-q}\right)=1+q+z q^{2}+z q^{3}+\cdots$ keeps track of parts of size 1 , and $\left(1+z q^{2 n+1}+\frac{z^{2} q^{2(2 n+1)}}{1-q^{2 n+1}}\right)=1+$ $z q^{2 n+1}+z^{2} q^{2(2 n+1)}+z^{2} q^{3(2 n+1)}+\cdots$ keeps track of parts of size $2 n+1 \geq 3$. Note that $a_{2}(n)=\sum_{m \geq 0} m \cdot a_{2}(m, n)$ therefore

$$
\sum_{n \geq 0} a_{2}(n) q^{n}=\left.\frac{\partial}{\partial z}\left(\sum_{n, m \geq 0} a_{2}(m, n) z^{m} q^{n}\right)\right|_{z=1}=\frac{1}{\left(q ; q^{2}\right) \infty}\left(q^{2}+\sum_{n \geq 1}\left(q^{2 n+1}+q^{2(2 n+1)}\right)\right) .
$$

Here and throughout, the q-Pochhammer symbol is defined for $n \in \mathbb{N}_{0} \cup\{\infty\}$ by $(a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)$. Distinct Partitions. In a distinct partition, the number of hooks of length 2 equals the number of gaps of size ≥ 2, which, after removing a staircase from the Young diagram, is the number of different part sizes in what remains.

Therefore, $\sum_{n, m \geq 0} b_{2}(m, n) z^{m} q^{n}=\sum_{n \geq 1} q^{n(n+1) / 2} \prod_{j=1}^{n}\left(1+\frac{z q^{j}}{1-q^{j}}\right)$

Then, differentiating with respect to z, evaluating at $z=1$, and using some well-known q-series identities, we obtain

$$
\sum_{n \geq 0} b_{2}(n) q^{n}=\left.\frac{\partial}{\partial z}\left(\sum_{n, m \geq 0} b_{2}(m, n) z^{m} q^{n}\right)\right|_{z=1}=\frac{q^{2}}{1-q}\left(-q^{2} ; q\right)_{\infty}
$$

Hook bias for $t=2$. After simplifications we get

$$
\sum_{n \geq 0}\left(a_{2}(n)-b_{2}(n)\right) q^{n}=\frac{q^{3}}{1-q^{2}}\left(\left(-q^{3} ; q\right)_{\infty}+q^{1+2}\left(-q^{3} ; q\right)_{\infty}\right)
$$

which clearly has non-negative coefficients. To see a combinatorial interpretation:

- $\left(-q^{3} ; q\right) \infty=\left(1+q^{3}\right)\left(1+q^{4}\right)\left(1+q^{5}\right) \cdots$ is the generating function for the number of
distinct partitions of n that do not have 1 and 2 as parts - Equivelently (via Glaisher's bijection), odd partitions of n where 1 has multiplicity $0(\bmod 4)$ - $q^{1+2}\left(-q^{3} ; q\right) \infty$ is the generating function for the number of distinct partitions of n that
- Equivalently (via Glaisher's biection), odd partitions of n where 1 has multiplicity 3 (mod 4). - $q^{3} /\left(1-q^{2}\right)=q^{3}+q^{5}+\cdots$ is the generating function of the number of partitions of n consisting of a single odd part ≥ 3.
$a_{2}(n)-b_{2}(n)$ is the number of odd partitions of n where the part 1 has multiplicity 0 or $3(\bmod 4)$ and one part ≥ 3 is marked.

The $t=3$ case, how we obtain generating functions There are three types of hooks of length 3 that can occur in the partition.

In an odd partition, the part 1, if occurring at least three times, contributes one hook of Type III. A part ≥ 3 contributes one hook of Type I, unless it has a gap exactly 2 with the part below; a second occurrence of a part ≥ 3 contributes one hook of Type II while a third occurrence contributes one hook of Type III. In a distinct partition, each part ≥ 2 contributes one hook of length 3 unless it has a gap exactly 2 with the part below. (If the gap ≥ 3, then we have a hook of Type l ; if the gap is 1 , then Type II.)
We then construct the bivariate generating functions, differentiate, and evaluate at $z=1$ to obtain the generating functions for $a_{3}(n)$ and $b_{3}(n)$, similar to the $t=2$ case.

Further results and future directions

In the process of proving the $t=3$ case, we [4] proved the following general linear inequalities for partitions into distinct parts, which are of independent interest:
Theorem 2. Let $q(n)=|\mathcal{D}(n)|$. Suppose $\sum_{k=1}^{r} \alpha_{k}<\sum_{\ell=1}^{s} \beta_{\ell}$ where α_{k} 's and β_{ℓ} 's are positive integers. Then given any $\left\{\mu_{k}\right\}_{k=1}^{r} \in \mathbb{N}_{0}^{r}$, and $\left\{\nu=\nu_{\ell}\right\}_{\ell=1} \in \sum_{\mathbb{N}_{0}^{s}, \text {, }}$ here exists an N lexplicitly depending on the given sequences) such that for $n>N$,

$$
\sum_{k=1} \alpha_{k} q\left(n+\mu_{k}\right) \leq \sum_{\ell=1}^{s} \beta_{\ell} q\left(n+\nu_{\ell}\right) .
$$

Future Problems: It would be nice to give an evidently-nonnegative combinatorial interpre tation of $a_{3}(n)-b_{3}(n)$ for $n>7$. Also, our conjecture in the $t \geq 4$ cases is widely open

References

[^0]
[^0]: [1] George E. Andrews. The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998.1 Reprit of the 1976 original
 R.
 [2] George E.Andrews. Euer's partition identity and two problems of George Beck. Math. Student, 86(1-2):115-119, 2017.
 13] Cristina Balantine. Hannan Burson. William Criag. Amandaf Folsom, and Bova Wen. Hook length bias in odd versus distinct Partitions. Seminairit Lotharingien
 Algebraic Combinatorics, 2023.
 partition inequalities. artiv preperint arxiv:2303. 16512 , 2023.
 5] James Whitbread Lee Glaisher. A theorem in partitions. Messenger of Math. 12:158-170, 1883
 IV OEIS Foundation. Entry A090867 in The On-Line Encyclopedia of Integer Sequences. http: //oeis . org/A090887, 2017.

