Inequalities for f^* -vectors of Lattice Polytopes

Definitions and Examples

- $P \subset \mathbb{R}^d$ is a d-dimensional **lattice polytope**, i.e., the convex hull of finitely many points in \mathbb{Z}^d .
- $nP := \{np : p \in P\}$ is the n-th **dilate** of P, $n \in \mathbb{N}$.
- $\operatorname{ehr}_P(n) := |nP \cap \mathbb{Z}^d|$ is the **Ehrhart polynomial** of P.
- Expressed in different bases,

$$\operatorname{ehr}_{P}(n) = \sum_{k=0}^{d} h_{k}^{*} \binom{n+d-k}{d} = \sum_{k=0}^{d} f_{k}^{*} \binom{n-1}{k}.$$

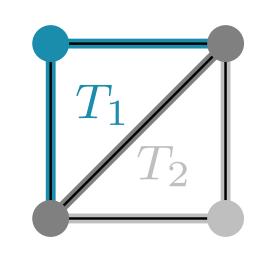
- h^* -vector of P: $h^*(P) = (h_0^*, h_1^*, \dots, h_d^*)$
- f^* -vector of P: $f^*(P) = (f_{-1}^*, f_0^*, f_1^*, \dots, f_d^*)$, where $f_{-1}^* = 1$.
- Advantage: $h^*(P)$ and $f^*(P)$ are **non-negative** for all P. [1,2]
- $f_d^* = \text{vol}(P) \cdot d!$ is the **normalized volume** of P
- The **degree** of P is the degree of $h^*(P;x) := \sum_{k=0}^d h_k^* x^k$.
- ullet For a unimodular triangulation T of P:

$$f_k^*(P) = f_k(T) := \#\{k \text{-dimensional faces in } T\}.$$

Example: The 6^{th} dilate of $P = [0, 1]^2$. [3]

- $ehr_P(n) = (n+1)^2$
- $\begin{cases} (h_0^*, h_1^*, h_2^*) = (1, 1, 0) \\ (f_{-1}^*, f_0^*, f_1^*, f_2^*) = (1, 4, 5, 2) \end{cases}$

Triangulation: $T = T_1 \cup T_2$



$$f(T) = (1, 4, 5, 2)$$

The Inequalities

Theorem 1

The f^* -vector of a d-dimensional lattice polytope satisfies

$$f_{-1}^* < f_0^* < f_1^* < \dots < f_{\lfloor \frac{d}{2} \rfloor - 1}^* \le f_{\lfloor \frac{d}{2} \rfloor}^* \quad \& \quad f_{\lfloor \frac{3d}{4} \rfloor}^* > \dots > f_d^*$$

and

$$f_k^* \le f_{d-1-k}^*$$

for $0 \le k \le \frac{(d-3)}{2}$ and $d \ge 2$.

Moreover, if $h_d^* \neq 0$ and $h^*(P) \neq (1,1,...,1)$ then for $0 < k < \frac{d}{2}$,

$$f_k^* < f_{d-k}^* \quad \& \quad f_0^* \le f_d^*.$$

Note that

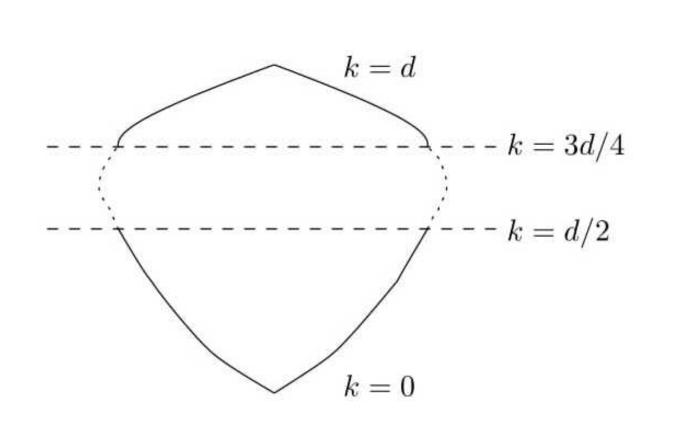
- $f^*_{\lfloor \frac{d}{2} \rfloor} > f^*_{\lfloor \frac{d}{2} \rfloor + 1}$ holds among the coefficients of the f^* -vector of the d-dimensional simplex Δ .
- $f^*_{\lfloor \frac{3d}{4} \rfloor 1} < f^*_{\lfloor \frac{3d}{4} \rfloor}$ holds among the coefficients of the f^* -vector of the d-dimensional cube $P = [-1,1]^d$ for d=2.

Similarities with f-vectors:

 $f_k(P) = \#\{k \text{-dimensional faces in } P\}$).

The f-vector of a **simplicial** (i.e., the faces are simplices) d-dimensional polytope satisfies all inequalities in Theorem 1 (Björner [5,6]).

In fact, the decrease starts from $\left|\frac{3(d-1)}{4}\right|-1$.

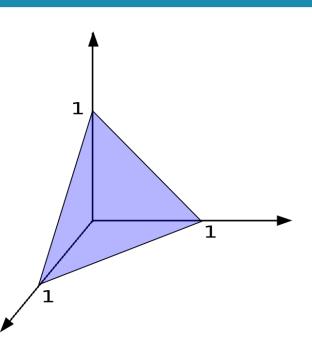


Poset visualisation [7]

About Symmetry

The standard simplex $\Delta := \text{conv}\{e_1, ..., e_{d+1}\}$ (and its lattice equivalents) is the **only** lattice d-dimensional polytope with symmetric f^* -vector:

$$f^*(\Delta) = \left(1, \binom{d+1}{1}, \binom{d+1}{2}, \dots, \binom{d+1}{d+1}\right).$$



About Unimodality

The f^* -vector of P is called **unimodal** if $f_{-1}^* \leq \cdots \leq f_{p-1}^* \leq f_p^* \geq f_{p+1}^* \geq \cdots \geq f_d^*$ for some p.

Unimodal examples

The f^* -vector of a d-dimensional polytope P of degree s is unimodal if:

 $ightharpoonup s \leq 5$ or

Proposition

- $ightharpoonup d \leq 13$ or
- ► $d \ge 2s^2 2s 2$.

Non-unimodal example

The f^* -vector of the simplex (introduced in [4]) $\Delta_w = \text{conv}\{0,e_1,e_2,...,e_{14},w\}$, where

$$w = (\underbrace{1, \dots, 1}_{\underline{}}, \underbrace{131, \dots, 131}_{\underline{}}, 132),$$

satisfies $f_8^* > f_9^* < f_{10}^* > f_{11}^*$. Here d=15.

Gorenstein Polytopes

P is **Gorenstein** of index g, $g \ge 1$, whenever $h^*(P;x)$ has degree d+1-g and is symmetric with respect to its degree.

Example: $h^*([0,1]^2;x) = 1+x$ hence $[0,1]^2$ is Gorenstein of index 2.

Theorem 2

The f^* -vector of a d-dimensional lattice polytope that is Gorenstein of index g satisfies

$$f_k^* > \dots > f_{\lfloor \frac{3d-1}{4} \rfloor}^* > \dots > f_d^*, \qquad \text{for } k = \frac{1}{2} \left(d - 1 + \left| \frac{d+1-g}{2} \right| \right).$$

Future Work

- ightharpoonup Compute more *examples* of f^* -vectors and look for a combinatorial interpretation.
- ▶ Is $f^*(P)$ unimodal when P admits a unimodular triangulation?
- ightharpoonup Are there polytopes with unimodal h^* -vector and nonunimodal f^* -vector? (The converse is not true.)
- ▶ Is there a polytope of dimension 14 with non-unimodal f^* -vector?
- \blacktriangleright What about log-concavity or real-rootedness of the f^* -polynomial of $\operatorname{Pyr}^n(P)$ for sufficiently large n?
- \blacktriangleright Can we understand the f^* -vector of the *interior* or the *boundary* of a polytope?

References

- [3] M.Beck & S.Robins, Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra, Second Edition. Undergraduate Texts in Mathematics. Springer, New York, 2015
- [4] A.Higashitani, "Counterexamples of the conjecture on roots of Ehrhart polynomials", *Disc. Comput. Geom.* 47.3 (2012)
- [5] A.Björner, "Partial unimodality for f-vectors of simplicial polytopes and spheres", Jerusalem combinatorics '93: an international conference in combinatorics (1993)
- [6] A.Björner, "The unimodality conjecture for convex polytopes", Bull. Am. Math. Soc., New Ser. 4 (1981)
- [7] G.M.Ziegler, Lectures on Polytopes, New York: Springer-Verlag, 1995

References [1] P. P. Stanlov

[1] R.P.Stanley, "Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen–Macaulay rings", *Duke Math. J.* 43.3 (1976)

Given a polytope $P \subset \mathbb{R}^d$, we denote by $\operatorname{Pyr}(P) \subset \mathbb{R}^{d+1}$ the convex hull of P and the unit vector e_{d+1} .

For any lattice polytope P, $\operatorname{Pyr}^n(P)$ has unimodal f^* -vector for sufficiently large n.

[2] F.Breuer, "Ehrhart f*-coefficients of polytopal complexes are non-negative integers", *Electron. J. Combin.* 19.4 (2012)