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Definitions and Examples
• P ⊂ Rd is a d-dimensional lattice polytope, i.e., the convex hull

of finitely many points in Zd.

• nP := {np : p ∈ P} is the n-th dilate of P , n ∈ N.

• ehrP (n) := |nP ∩ Zd| is the Ehrhart polynomial of P .

• Expressed in different bases,

ehrP (n) =
d∑

k=0

h∗
k

(
n+ d− k
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)
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(
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• h∗-vector of P : h∗(P ) = (h∗
0, h

∗
1, . . . , h

∗
d)

• f∗-vector of P : f∗(P ) = (f∗
−1, f

∗
0 , f

∗
1 , . . . , f

∗
d ), where f∗

−1 = 1.

• Advantage: h∗(P ) and f∗(P ) are non-negative for all P . [1,2]

• f∗
d = vol(P ) · d! is the normalized volume of P

• The degree of P is the degree of h∗(P ;x) :=
∑d

k=0 h
∗
k x

k.

• For a unimodular triangulation T of P :

f∗
k (P ) = fk(T ) := #{k-dimensional faces in T}.

Example: The

6th dilate of
P = [0, 1]2. [3]

▶ ehrP (n) = (n+ 1)2

▶
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Triangulation:

T = T1 ∪ T2

T1

T2

▶ f(T ) = (1, 4, 5, 2)

About Symmetry

The standard simplex ∆ := conv{e1, ..., ed+1} (and its lattice equivalents) is the only
lattice d-dimensional polytope with symmetric f∗-vector:

f∗(∆) =
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About Unimodality

The f∗-vector of P is called unimodal if f∗
−1 ≤ · · · ≤ f∗

p−1 ≤ f∗
p ≥ f∗

p+1 ≥ · · · ≥ f∗
d for some p.

Unimodal examples

The f∗-vector of a d-dimensional polytope P
of degree s is unimodal if:

▶ s ≤ 5 or

▶ d ≤ 13 or

▶ d ≥ 2s2 − 2s− 2.

Non-unimodal example

The f∗-vector of the simplex (introduced in
[4]) ∆w = conv

{
0, e1, e2, ..., e14, w

}
, where

w = (1, . . . , 1︸ ︷︷ ︸
7

, 131, . . . , 131︸ ︷︷ ︸
7

, 132),

satisfies f∗
8 > f∗

9 < f∗
10 > f∗

11. Here d = 15.

Given a polytope P ⊂ Rd, we denote by Pyr(P ) ⊂ Rd+1 the convex hull of P and the unit vector ed+1.

Proposition

For any lattice polytope P , Pyrn(P ) has unimodal f∗-vector for sufficiently large n.
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Lemma 2.3. For integers d � 1 and n � 2,

n�1X

k=0

kd�1 =
1

d
(Bd(n) � Bd) .

Proof. We play with the generating function of Bd(n)�Bd

d! :

X

d�0

Bd(n) � Bd

d!
zd = z

enz � 1

ez � 1
= z

n�1X

k=0

ekz = z
n�1X

k=0

X

j�0

(kz)j

j!

=
X

j�0

 
n�1X

k=0

kj

!
zj+1

j!
=
X

j�1

 
n�1X

k=0

kj�1

!
zj

(j � 1)!
.

Now compare coe�cients on both sides. ut

Consider a (d � 1)-dimensional unit cube embedded into Rd and form a
d-dimensional pyramid by adjoining one more vertex at (0, 0, . . . , 0, 1), as
depicted in Figure 2.3. More precisely, this geometric object has the following
hyperplane description:

P =
�
(x1, x2, . . . , xd) 2 Rd : 0  x1, x2, . . . , xd�1  1 � xd  1

 
. (2.9)

By definition, P is contained in the unit d-cube; in fact, its vertices are a
subset of the vertices of the d-cube.

Fig. 2.3 The pyramid P
in dimension 3.
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We now count lattice points in integer dilates of P. This number equals

#
�
(m1, m2, . . . , md) 2 Zd : 0  mk  t � md  t for k = 1, 2, . . . , d � 1
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The Inequalities

Theorem 1

The f∗-vector of a d-dimensional lattice polytope satisfies

f∗
−1 < f∗

0 < f∗
1 < · · · < f∗

⌊ d
2 ⌋−1

≤ f∗
⌊ d

2 ⌋
& f∗

⌊ 3d
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d

and
f∗
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d−1−k

for 0 ≤ k ≤ (d−3)
2 and d ≥ 2.

Moreover, if h∗
d ̸= 0 and h∗(P ) ̸= (1, 1, ..., 1) then for 0 < k < d

2 ,

f∗
k < f∗

d−k & f∗
0 ≤ f∗

d .

Note that

• f∗
⌊ d

2 ⌋
> f∗

⌊ d
2 ⌋+1

holds among the coefficients of the f∗-vector of
the d-dimensional simplex ∆.

• f∗
⌊ 3d

4 ⌋−1
< f∗

⌊ 3d
4 ⌋ holds among the coefficients of the f∗-vector of

the d-dimensional cube P = [−1, 1]d for d = 2.

Similarities with f -vectors:

fk(P ) = #{k-dimensional faces in P}).

▶ The f -vector of a simplicial (i.e.,
the faces are simplices) d-dimensional
polytope satisfies all inequalities in
Theorem 1 (Björner [5,6]).

In fact, the decrease starts from
⌊ 3(d−1)

4 ⌋ − 1.

Poset visualisation [7]

Gorenstein Polytopes

P is Gorenstein of index g, g ≥ 1, whenever h∗(P ;x) has degree
d+ 1− g and is symmetric with respect to its degree.

Example: h∗([0, 1]2;x) = 1 + x

hence [0, 1]2 is Gorenstein of index 2.

Theorem 2

The f∗-vector of a d-dimensional lattice polytope that is Gorenstein of index g satisfies
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Future Work

▶ Compute more examples of f∗-vectors and look for a combinatorial interpretation.

▶ Is f∗(P ) unimodal when P admits a unimodular triangulation?

▶ Are there polytopes with unimodal h∗-vector and nonunimodal f∗-vector? (The converse is not true.)

▶ Is there a polytope of dimension 14 with non-unimodal f∗-vector?

▶ What about log-concavity or real-rootedness of the f∗-polynomial of Pyrn(P ) for sufficiently large n?

▶ Can we understand the f∗-vector of the interior or the boundary of a polytope?
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Corrections:
1) explain pyramid and add picture
2) explain Pyrn

3) Is poset visualization clear?
5)dimension 14?
6) remove reference second title
7) add volume fd

8) Remind yourself how volume and Volume (discrete volume) are related, also of all proofs and of boundary
paper by Beck


