Inequalities for f^{*}-vectors of Lattice Polytopes

Matthias Beck (San Francisco State University), Danai Deligeorgaki (KTH Royal Institute of Technology, danaide@kth.se), Max Hlavacek (UC Berkeley) and Jerónimo Valencia-Porras (University of Waterloo). We thank the organizers of Research Encounters in Algebraic and Combinatorial Topics (REACT 2021), where our collaboration got initiated.

Definitions and Examples

- $P \subset \mathbb{R}^{d}$ is a d-dimensional lattice polytope, i.e., the convex hull of finitely many points in \mathbb{Z}^{d}
- $n P:=\{n p: p \in P\}$ is the n-th dilate of $P, n \in \mathbb{N}$.
- $\operatorname{ehr}_{P}(n):=\left|n P \cap \mathbb{Z}^{d}\right|$ is the Ehrhart polynomial of P
- Expressed in different bases,

$$
\operatorname{ehr}_{P}(n)=\sum_{k=0}^{d} h_{k}^{*}\binom{n+d-k}{d}=\sum_{k=0}^{d} f_{k}^{*}\binom{n-1}{k} .
$$

- h^{*}-vector of $P: \quad h^{*}(P)=\left(h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}\right)$
- f^{*}-vector of $P: \quad f^{*}(P)=\left(f_{-1}^{*}, f_{0}^{*}, f_{1}^{*}, \ldots, f_{d}^{*}\right)$, where $f_{-1}^{*}=1$.
- Advantage: $h^{*}(P)$ and $f^{*}(P)$ are non-negative for all P. [1,2]
- $f_{d}^{*}=\operatorname{vol}(P) \cdot d!$ is the normalized volume of P
- The degree of P is the degree of $h^{*}(P ; x):=\sum_{k=0}^{d} h_{k}^{*} x^{k}$.
- For a unimodular triangulation T of P :

$$
f_{k}^{*}(P)=f_{k}(T):=\#\{k \text {-dimensional faces in } T\}
$$

- $\operatorname{ehr}_{P}(n)=(n+1)^{2}$
$\left\{\begin{array}{l}\left(h_{0}^{*}, h_{1}^{*}, h_{2}^{*}\right)=(1,1,0)\end{array}\right.$ $\left\{\left(f_{-1}^{*}, f_{0}^{*}, f_{1}^{*}, f_{2}^{*}\right)=(1,4,5,2)\right.$

Triangulation:
$T=T_{1} \cup T_{2}$

- $\quad f(T)=(1,4,5,2)$

About Symmetry

The standard simplex $\Delta:=\operatorname{conv}\left\{e_{1}, \ldots, e_{d+1}\right\}$ (and its lattice equivalents) is the only lattice d-dimensional polytope with symmetric f^{*}-vector:

$$
f^{*}(\Delta)=\left(1,\binom{d+1}{1},\binom{d+1}{2}, \ldots,\binom{d+1}{d+1}\right)
$$

About Unimodality

The f^{*}-vector of P is called unimodal if $f_{-1}^{*} \leq \cdots \leq f_{p-1}^{*} \leq f_{p}^{*} \geq f_{p+1}^{*} \geq \cdots \geq f_{d}^{*}$ for some p.

Unimodal examples
The f^{*}-vector of a d-dimensional polytope P of degree s is unimodal if:

- $s \leq 5$ or
- $d \leq 13$ or
- $d \geq 2 s^{2}-2 s-2$.

Non-unimodal example

The f^{*}-vector of the simplex (introduced in [4]) $\Delta_{w}=\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{14}, w\right\}$, where $w=(\underbrace{1, \ldots, 1}_{7}, \underbrace{131, \ldots, 131}_{7}, 132)$,
satisfies $f_{8}^{*}>f_{9}^{*}<f_{10}^{*}>f_{11}^{*}$. Here $d=15$.

Given a polytope $P \subset \mathbb{R}^{d}$, we denote by $\operatorname{Pyr}(P) \subset \mathbb{R}^{d+1}$ the convex hull of P and the unit vector e_{d+1}. Proposition

For any lattice polytope $P, \operatorname{Pyr}^{n}(P)$ has unimodal f^{*}-vector for sufficiently large n.

References

[1] R.P.Stanley, "Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings", Duke Math. J. 43.3 (1976)
[2] F.Breuer, "Ehrhart f^{*}-coefficients of polytopal complexes are non-negative integers", Electron. J. Combin. 19.4 (2012)

The Inequalities

Theorem 1

The f^{*}-vector of a d-dimensional lattice polytope satisfies
$f_{-1}^{*}<f_{0}^{*}<f_{1}^{*}<\cdots<f_{\left\lfloor\frac{d}{2}\right\rfloor-1}^{*} \leq f_{\left\lfloor\frac{d}{2}\right\rfloor}^{*} \quad \& \quad f_{\left\lfloor\frac{3 d}{4}\right\rfloor}^{*}>\cdots>f_{d}^{*}$
and

$$
f_{k}^{*} \leq f_{d-1-k}^{*}
$$

for $0 \leq k \leq \frac{(d-3)}{2}$ and $d \geq 2$.
Moreover, if $h_{d}^{*} \neq 0$ and $h^{*}(P) \neq(1,1, \ldots, 1)$ then for $0<k<\frac{d}{2}$,

$$
f_{k}^{*}<f_{d-k}^{*} \quad \& \quad f_{0}^{*} \leq f_{d}^{*}
$$

Similarities with f-vectors:

$f_{k}(P)=\#\{k$-dimensional faces in $\left.P\}\right)$.

- The f-vector of a simplicial (i.e. the faces are simplices) d-dimensional polytope satisfies all inequalities in Theorem 1 (Björner [5,6]).
In fact, the decrease starts from $\left\lfloor\frac{3(d-1)}{4}\right\rfloor-1$.

- $f_{\left\lfloor\frac{d}{2}\right\rfloor}^{*}>f_{\left\lfloor\frac{d}{2}\right\rfloor+1}^{*}$ holds among the coefficients of the f^{*}-vector of the d-dimensional simplex Δ.
- $f_{\left\lfloor\frac{3 d}{4}\right\rfloor-1}^{*}<f_{\left\lfloor\frac{3 d}{4}\right\rfloor}^{*}$ holds among the coefficients of the f^{*}-vector of the d-dimensional cube $P=[-1,1]^{d}$ for $d=2$.

Poset visualisation [7]

Gorenstein Polytopes

P is Gorenstein of index $g, g \geq 1$, whenever $h^{*}(P ; x)$ has degree
Example: $h^{*}\left([0,1]^{2} ; x\right)=1+x$ $d+1-g$ and is symmetric with respect to its degree.

$$
\text { hence }[0,1]^{2} \text { is Gorenstein of index } 2 \text {. }
$$

Theorem 2

The f^{*}-vector of a d-dimensional lattice polytope that is Gorenstein of index g satisfies

$$
f_{k}^{*}>\cdots>f_{\left\lfloor\frac{3 d-1}{4}\right\rfloor}^{*}>\cdots>f_{d}^{*}, \quad \text { for } k=\frac{1}{2}\left(d-1+\left\lfloor\frac{d+1-g}{2}\right\rfloor\right)
$$

Future Work

- Compute more examples of f^{*}-vectors and look for a combinatorial interpretation
- Is $f^{*}(P)$ unimodal when P admits a unimodular triangulation?
- Are there polytopes with unimodal h^{*}-vector and nonunimodal f^{*}-vector? (The converse is not true.)
- Is there a polytope of dimension 14 with non-unimodal f^{*}-vector?
- What about log-concavity or real-rootedness of the f^{*}-polynomial of $\operatorname{Pyr}^{n}(P)$ for sufficiently large n ?
- Can we understand the f^{*}-vector of the interior or the boundary of a polytope?

References

[3] M.Beck \& S.Robins, Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra, Second Edition. Undergraduate Texts in Mathematics. Springer, New York, 2015
[4] A.Higashitani, "Counterexamples of the conjecture on roots of Ehrhart polynomials", Disc. Comput. Geom. 47.3 (2012)
[5] A.Björner, "Partial unimodality for f-vectors of simplicial polytopes and spheres", Jerusalem combinatorics '93: an international conference in combinatorics (1993)
[6] A.Björner, "The unimodality conjecture for convex polytopes", Bull. Am. Math. Soc., New Ser. 4 (1981)
[7] G.M.Ziegler, Lectures on Polytopes, New York: Springer-Verlag, 1995

