

Introduction

• For positive integers r and s, the classical **Ramsey number** R(r, s)is the smallest n such that every edge 2-coloring of the edges of K_n contains either a clique of size r in the first color or a clique of size sin the second color.

Example. R(3,3) = 6:

• Few values of R(r, s) are known:

r	1	2	3	4	5	6	7	8	9	
1	1				1					• • •
2		2	3	4	5	6	7	8	9	• • •
3			6	9	14	18	23	28	36	
4				18	25					

• Goal: use methods from algebraic geometry to study how difficult it is to **certify** Ramsey number bounds

Restricted Online Ramsey Numbers

Game between the two players **Builder** and **Painter**:

- Fix positive integers r and s.
- Builder and Painter take turns where Builder selects an edge of K_n and Painter colors it either red or blue.
- Builder wins when there is a red K_r or blue K_s .
- The restricted online Ramsey number R(r, s; n) is the smallest number of turns for which Builder is guaranteed a victory.
- Builder always wins the game eventually if $n \ge R(r, s)$.

Example. $\tilde{R}(3, 3; 6) \le 8$

AN ALGEBRAIC PERSPECTIVE ON RAMSEY NUMBERS

Jesús A. De Loera and William J. Wesley University of California, Davis

Polynomial Encoding

System of **polynomial equations** that has solution if and only if R(r, s) > n.

- Variables $x_e, y_e, e \in E(K_n)$ take on 0/1 values
- x_e set to 1 if and only if e colored red
- y_e set to 1 if and only if e colored blue
- We have $R(r, s) \leq n$ if and only if there is no solution to the following system over $\overline{\mathbb{F}_2}$, where $K_n = (V, E)$ is the complete graph on n vertices:

$$\prod_{e \in E(S)} x_e = 0 \qquad \forall S \subseteq V, |S| = r$$

$$\prod_{e \in E(S)} y_e = 0 \qquad \forall S \subseteq V, |S| = s$$

$$+ x_e + y_e = 0 \qquad \forall e \in E$$

Nullstellensatz Certificates

Theorem: Hilbert, 1893

Let K be an algebraically closed field, and let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then there is no solution to the system $f_1 = \cdots = f_m = 0$ if and only if there exist polynomials β_1, \ldots, β_m such that $\sum_{i=1}^m \beta_i f_i = 1$.

- The identity $\sum_{i=1}^{m} \beta_i f_i = 1$ is called a Nullstellensatz certificate. The degree of the certificate is the maximum degree of the β_i .
- Nullstellensatz certificate degrees for combinatorial problems such as 3-coloring are often small "in practice" [1]

Main Result

Theorem: De Loera-Wesley

Using the previous encoding, there exists a Nullstellensatz certificate of degree at most R(r, s; n) - 1 for n = R(r, s).

The restricted online Ramsey numbers are known to be strictly smaller than the number of edges in $K_{R(r,r)}$ [2]:

$$\tilde{R}(r,r;n) \le \binom{n}{2} - \Omega(n\log n)$$
 when $n = R(r,r)$

Additional Results

Similar results hold for other Ramsey-type numbers:

- Multicolor Ramsey numbers: $R(r_1, \ldots, r_k) = \text{smallest } n \text{ such}$ that every edge k-coloring of K_n contains a monochromatic K_{r_i} in color i for some i.
- Rado numbers: $R_k(\mathcal{E}) = \text{smallest } n \text{ such that every } k \text{-coloring of}$ $\{1, \ldots, n\}$ contains a monochromatic solution to an equation \mathcal{E} .
- van der Waerden numbers: $w(k, \ell) = \text{smallest } n \text{ such that every}$ k-coloring of $\{1, \ldots, n\}$ contains a monochromatic arithmetic progression of length ℓ .
- We define a Builder-Painter game and analogues of the restricted online Ramsey numbers for these other Ramsey-type numbers.

Example. Let \mathcal{E} be the equation x+3y=3z. The tree below describes an optimal strategy for Builder for two colors:

- The minimal degree of a Nullstellensatz certificate for the corresponding encoding is therefore at most 4. Computations show the minimal degree is in fact 2.
- The following inequalities are strict in general:

minimal Nullstellensatz degree \leq restricted online Rado number \leq Rado number

References and Acknowledgements

[1] J. A. De Loera et al. "Expressing Combinatorial Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz". In: Combinatorics, Probability and *Computing* 18.4 (2009), pp. 551–582.

[2] D. Gonzalez, X. He, and H. Zheng. "An upper bound for the restricted online Ramsey number". In: Discrete Math. 342.9 (2019), pp. 2564–2569.

This project was supported by National Science Foundation grant DMS-1818969.