Introduction

- For positive integers r and s, the classical Ramsey number $R(r, s)$ is the smallest n such that every edge 2-coloring of the edges of K_{n} contains either a clique of size r in the first color or a clique of size s in the second color.

Example. $R(3,3)=6$

- Few values of $R(r, s)$ are known:

$$
\begin{aligned}
& \begin{array}{llllllllll}
s & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \\
& \begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{llllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \\
& 691418232836 \\
& 1825
\end{aligned}
$$

- Goal: use methods from algebraic geometry to study how difficult it is to certify Ramsey number bounds

Restricted Online Ramsey Numbers

Game between the two players Builder and Painter:

- Fix positive integers r and s
- Builder and Painter take turns where Builder selects an edge of K_{n} and Painter colors it either red or blue.
- Builder wins when there is a red K_{r} or blue K_{s}.
- The restricted online Ramsey number $\tilde{R}(r, s ; n)$ is the smallest number of turns for which Builder is guaranteed a victory.
- Builder always wins the game eventually if $n \geq R(r, s)$.

Example. $\tilde{R}(3,3 ; 6) \leq 8$

Polynomial Encoding

System of polynomial equations that has solution if and only if $R(r, s)>n$ - Variables $x_{e}, y_{e}, e \in E\left(K_{n}\right)$ take on $0 / 1$ values

- x_{e} set to 1 if and only if e colored red
- y_{e} set to 1 if and only if e colored blue
- We have $R(r, s) \leq n$ if and only if there is no solution to the following system over $\overline{\mathbb{F}_{2}}$, where $K_{n}=(V, E)$ is the complete graph on n vertices:

| $\prod_{e \in E(S)} x_{e}=0$ | | $\forall S \subseteq V,\|S\|=r$ |
| ---: | :--- | ---: | :--- |
| $\prod_{e \in E(S)} y_{e}=0$ | | $\forall S \subseteq V,\|S\|=s$ |
| $1+x_{e}+y_{e}=0$ | | $\forall e \in E$ |

Nullstellensatz Certificates

Theorem: Hilbert, 1893

Let K be an algebraically closed field, and let $f_{1}, \ldots, f_{m} \in K\left[x_{1}, \ldots, x_{n}\right]$. Then there is no solution to the system $f_{1}=\cdots=f_{m}=0$ if and only if there exist polynomials $\beta_{1}, \ldots, \beta_{m}$ such that $\sum_{i=1}^{m} \beta_{i} f_{i}=1$.
-The identity $\sum_{i=1}^{m} \beta_{i} f_{i}=1$ is called a Nullstellensatz certificate. The degree of the certificate is the maximum degree of the β_{i}.

- Nullstellensatz certificate degrees for combinatorial problems such as 3-coloring are often small "in practice" [1]

Main Result

Theorem: De Loera-Wesley

Using the previous encoding, there exists a Nullstellensatz certificate of degree at most $\tilde{R}(r, s ; n)-1$ for $n=R(r, s)$.

The restricted online Ramsey numbers are known to be strictly smaller than the number of edges in $K_{R(r, r)}$ [2]:

$$
\tilde{R}(r, r ; n) \leq\binom{ n}{2}-\Omega(n \log n) \text { when } n=R(r, r)
$$

Additional Results

Similar results hold for other Ramsey-type numbers:

- Multicolor Ramsey numbers: $R\left(r_{1}, \ldots, r_{k}\right)=$ smallest n such that every edge k-coloring of K_{n} contains a monochromatic $K_{r_{i}}$ in color i for some i.
- Rado numbers: $R_{k}(\mathcal{E})=$ smallest n such that every k-coloring of $\{1, \ldots, n\}$ contains a monochromatic solution to an equation \mathcal{E}.
- van der Waerden numbers: $w(k, \ell)=$ smallest n such that every k-coloring of $\{1, \ldots, n\}$ contains a monochromatic arithmetic progression of length ℓ.
- We define a Builder-Painter game and analogues of the restricted online Ramsey numbers for these other Ramsey-type numbers.
Example. Let \mathcal{E} be the equation $x+3 y=3 z$. The tree below describes an optimal strategy for Builder for two colors:

- The minimal degree of a Nullstellensatz certificate for the corre sponding encoding is therefore at most 4. Computations show the minimal degree is in fact 2 .
- The following inequalities are strict in general:
minimal Nullstellensatz degree \leq restricted online Rado number
\leq Rado number

References and Acknowledgements

[1] J. A. De Loera et al. "Expressing Combinatorial Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz'. In: Combinatorics, Probability and Computing 18.4 (2009), pp. 551-582.
[2] D. Gonzalez, X. He, and H. Zheng. "An upper bound for the restricted online Ramsey number". In: Discrete Math. 342.9 (2019), pp. 2564-2569.
This project was supported by National Science Foundation gran DMS-1818969.

