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Introduction

•For positive integers r and s, the classical Ramsey number R(r, s)
is the smallest n such that every edge 2-coloring of the edges of Kn

contains either a clique of size r in the first color or a clique of size s
in the second color.

Example. R(3, 3) = 6 :

•Few values of R(r, s) are known:

r
s
1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 . . .
2 2 3 4 5 6 7 8 9 . . .
3 6 9 14 18 23 28 36
4 18 25

•Goal: use methods from algebraic geometry to study how difficult it
is to certify Ramsey number bounds

Restricted Online Ramsey Numbers

Game between the two players Builder and Painter:

•Fix positive integers r and s.

•Builder and Painter take turns where Builder selects an edge of Kn

and Painter colors it either red or blue.

•Builder wins when there is a red Kr or blue Ks.

•The restricted online Ramsey number R̃(r, s;n) is the smallest
number of turns for which Builder is guaranteed a victory.

•Builder always wins the game eventually if n ≥ R(r, s).

Example. R̃(3, 3; 6) ≤ 8

Polynomial Encoding

System of polynomial equations that has solution if and only if R(r, s) > n.

•Variables xe, ye, e ∈ E(Kn) take on 0/1 values

• xe set to 1 if and only if e colored red

• ye set to 1 if and only if e colored blue

•We have R(r, s) ≤ n if and only if there is no solution to the following system
over F2, where Kn = (V,E) is the complete graph on n vertices:

∏
e∈E(S)

xe = 0 ∀S ⊆ V, |S| = r∏
e∈E(S)

ye = 0 ∀S ⊆ V, |S| = s

1 + xe + ye = 0 ∀e ∈ E

Nullstellensatz Certificates

Theorem: Hilbert, 1893

Let K be an algebraically closed field, and let f1, . . . , fm ∈ K[x1, . . . , xn].
Then there is no solution to the system f1 = · · · = fm = 0 if and only if there
exist polynomials β1, . . . , βm such that

∑m
i=1 βifi= 1.

•The identity
∑m

i=1 βifi= 1 is called a Nullstellensatz certificate. The degree
of the certificate is the maximum degree of the βi.

•Nullstellensatz certificate degrees for combinatorial problems such as 3-coloring
are often small “in practice” [1]

Main Result

Theorem: De Loera-Wesley

Using the previous encoding, there exists a Nullstellensatz certificate of degree
at most R̃(r, s;n)− 1 for n = R(r, s).

The restricted online Ramsey numbers are known to be strictly smaller than the
number of edges in KR(r,r) [2]:

R̃(r, r;n) ≤
(
n

2

)
− Ω(n log n) when n = R(r, r).

Additional Results

Similar results hold for other Ramsey-type numbers:

•Multicolor Ramsey numbers: R(r1, . . . , rk) = smallest n such
that every edge k-coloring of Kn contains a monochromatic Kri in
color i for some i.

•Rado numbers: Rk(E) = smallest n such that every k-coloring of
{1, . . . , n} contains a monochromatic solution to an equation E .

• van der Waerden numbers: w(k, ℓ) = smallest n such that every
k-coloring of {1, . . . , n} contains a monochromatic arithmetic pro-
gression of length ℓ.

•We define a Builder-Painter game and analogues of the restricted
online Ramsey numbers for these other Ramsey-type numbers.

Example. Let E be the equation x+3y = 3z. The tree below describes
an optimal strategy for Builder for two colors:

•The minimal degree of a Nullstellensatz certificate for the corre-
sponding encoding is therefore at most 4. Computations show the
minimal degree is in fact 2.

•The following inequalities are strict in general:

minimal Nullstellensatz degree ≤ restricted online Rado number

≤ Rado number
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