CM regularity for 321-avoiding Kazhdan-Lusztig varieties

Colleen Robichaux ${ }^{\dagger}$ Universiliy of Calliomia, Los Angeles robichausuauccla . edu
UCLA

INTRODUCTION

We introduce an algorithm to compute the degrees of 321avoiding unspecialized Grothendieck polynomials. Our result provides an algorithm to compute the CM regularity of 321avoiding Kazhdan-Lusztig ideals. This extends the work of an earlier paper of Rajchgot, the author, and Weigandt (2023) which gives a formula in the Grassmannian case.

Kazhdan-Lusztig varieties

Consider the Schubert variety \boldsymbol{X}_{u} and the opposite Schubert cell Ω_{w}° in $\mathbf{G L}_{n}(\mathbb{C})$.
Theorem 1 (Kazhdan-Lusztig, '79)

$$
\boldsymbol{X}_{u} \cap w \Omega_{i d}^{\circ} \cong\left(X_{u} \cap \Omega_{w}^{\circ}\right) \times \mathbb{C}^{\ell(w)}
$$

Of particular interest is the Kazhdan-Lusztig variety

$$
\mathcal{N}_{u, w}=\boldsymbol{X}_{u} \cap \Omega_{w}^{\circ}
$$

defined by Woo-Yong '06. For $\boldsymbol{w} \leq \boldsymbol{u}, \boldsymbol{\mathcal { N }}_{u, w}$ has defining ideal $I_{u, w}=\left\langle r_{w}(i, j)+1\right.$ minors of $\left.\mathrm{z}_{i \times j}(u)\right\rangle$.

Example 2 Consider $w=4132, u=4231$.

$$
\begin{aligned}
& \begin{array}{c}
\\
\square \\
\square
\end{array} \stackrel{\square}{r_{w}}\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 2 \\
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 4
\end{array}\right) \xrightarrow{z(u)}\left(\begin{array}{cc|c|c}
\begin{array}{ccc}
z_{11} & z_{12} & z_{13} \\
\hline z_{21} & 1 & 0 \\
z_{31} & 0 & 1 \\
\hline 1 & 0 & 0 \\
\hline
\end{array} & 0 \\
\hline
\end{array}\right) \\
& I_{u, w}=\left\langle z_{11}, z_{12}, z_{13}, z_{11}-z_{12} z_{21},-z_{12} z_{31},-z_{31}\right\rangle
\end{aligned}
$$

For coordinate ring S / I, where S is standard graded, consider its minimal free resolution

$$
0 \rightarrow \bigoplus_{j} S(-j)^{\beta_{l, j}} \rightarrow \cdots \rightarrow \bigoplus_{j} S(-j)^{\beta_{0, j}} \rightarrow S / I \rightarrow 0
$$

The algebraic invariant CM regularity of S / I is given by

$$
\operatorname{reg}(S / I):=\max \left\{j-i \mid \beta_{i, j} \neq 0\right\}
$$

Using Benedetti-Varbaro '15 and Woo-Yong'12:
Proposition 3 (Rajchgot-R.-Weigandt '23) For $u, w \in S_{n}$ 321-avoiding

$$
\operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u, w}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{u, w}\right)-\ell(\boldsymbol{w})
$$

where $\mathfrak{G}_{u, w}$ is the unspecialized Grothendieck polynomial.

Connection to Excited Young Diagrams

Let $u \geq w \in S_{n}$ be 321-avoiding. Define \mathcal{R}_{u} as the skew Young diagram associated to u. Place +'s in $\boldsymbol{\mathcal { R }}_{u}$ marking the earliest subword of w in u. Call this diagram $D_{\text {top }}(u, w)$.
A K-excited move on a diagram D in \mathcal{R}_{u} is the local operation on a 2×2 subsquare of D such that

A K-skew excited Young diagram of w in u is a diagram obtainable via successive K-excited moves on $D_{\text {top }}(u, w)$.

Example 4 Below are the diagrams corresponding to $u=$ 47128356 and $w=14273568$.

Call the collection of these diagrams for $u, w \overline{\operatorname{SEYD}}(u, w)$.
Proposition 5 (R., '23) For $u \geq w \in S_{n} 321$-avoiding

$$
\operatorname{deg}\left(\mathfrak{G}_{u, w}\right)=\max \{\# D \mid D \in \overline{\operatorname{SEYD}}(u, w)\}
$$

We give an algorithm to construct $D \in \overline{\operatorname{SEYD}}(u, w)$ to maximize $\# \boldsymbol{D}$, the number of + 's in \boldsymbol{D}. This algorithm computes a statistic $\Delta_{u, w}$ in terms of maximal antidiagonals in D.

Example 6 Below we illustrate our algorithm for particular $u, w \in S_{15}$,

Then $\operatorname{deg}\left(\mathfrak{G}_{u, w}\right)=\ell(w)+(3+4)=14+7=21$.
Combining Propositions 3 and 5 with our algorithm:
Theorem 7 (R., '23) Let $u \geq w \in S_{n}$ be 321 -avoiding. Suppose $D_{\text {top }}(u, w)$ has s connected components. Then

$$
\operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u, w}\right]\right)=\sum_{q \in[s]}\left|\Delta_{u, w}(q)\right|
$$

Thus for $\boldsymbol{u}, \boldsymbol{w}$ as in Example 6, $\operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u, w}\right]\right)=7$.

APPLICATION

A two-sided ladder L is a skew-Young diagram filled with indeterminates. The ideal I_{L} is generated by the northwest r_{i} minors of L and defines the two-sided mixed ladder determinantal variety $\mathbb{C}[L] / I_{L}$.

Escobar-Fink-Rajchgot-Woo '23+ prove that $\mathbb{C}[\boldsymbol{L}] / \boldsymbol{I}_{\boldsymbol{L}} \cong$ $\mathbb{C}\left[\mathcal{N}_{u(L), w(L)}\right]$ where $u(L), w(L) \in S_{n}$ are 321-avoiding.

Corollary 8 (R., '23) For a two-sided ladder L,

$$
\operatorname{reg}\left(\mathbb{C}[L] / I_{L}\right)=\sum_{q \in[s]}\left|\Delta_{u(L), w(L)}(q)\right|
$$

