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Associative spectrum

•A groupoid is a set 𝐺 with a binary operation ∗. Let P∗(𝑛) be the set of all 𝑛-ary
term operations on (𝐺, ∗) induced by bracketings of 𝑛 variables. Example:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
((𝑥1∗𝑥2)∗𝑥3)∗𝑥4 (𝑥1∗𝑥2)∗(𝑥3∗𝑥4) (𝑥1∗(𝑥2∗𝑥3))∗𝑥4 𝑥1∗((𝑥2∗𝑥3)∗𝑥4) 𝑥1∗(𝑥2∗(𝑥3∗𝑥4))

•We have 1 ≤ |P∗(𝑛) | ≤ 𝐶𝑛−1, where 𝐶𝑛 := 1
𝑛+1

(2𝑛
𝑛

)
is the ubiquitous Catalan

number. The equality |P∗(𝑛) | = 1 holds for all 𝑛 ≥ 1 if and only if ∗ is
associative. Thus |P∗(𝑛) | measures the failure of ∗ to be associative.
•Csákány and Waldhauser defined the associative spectrum of the binary

operation ∗ to be the sequence 𝑠a
𝑛(∗) := |P∗(𝑛) |, while Braitt and Silberger

called it the subassociativity type of the groupoid (𝐺, ∗). It has been
determined for many binary operations.
• It turns out that the associative spectrum has connections with the operad

theory. We have a non-symmetric operad P∗ := {P∗(𝑛)}𝑛≥1 which has an
identity element 1 ∈ P∗(1) and a composition function satisfying some
coherence axioms. The Hilbert series of P∗ is

∑∞
𝑛=1|P∗(𝑛) |𝑡𝑛.

Associative-commutative spectrum

• Let P∗(𝑛) be the set of all 𝑛-ary operations induced on (𝐺, ∗) by the
bracketings of all permutations of 𝑛 variables 𝑥1, . . . , 𝑥𝑛. This gives a
symmetric operad P∗ := {P∗(𝑛)}𝑛≥1 with Hilbert series

∑∞
𝑛=1
|P∗(𝑛) |

𝑛! 𝑡𝑛.

•We define the associative-commutative spectrum (in brief, ac-spectrum) of the
binary operation ∗ to be the sequence 𝑠ac

𝑛 (∗) := |P∗(𝑛) |, which measures the
nonassociativity and noncommutativity of ∗. It is clear that 𝑠ac

𝑛 (∗) ≥ 1; the
equality holds for all 𝑛 ≥ 1 if and only if ∗ is both commutative and associative.
• For an arbitrary binary operation ∗, we have 𝑠ac

𝑛 (∗) ≤ 𝑛!𝐶𝑛−1, and the equality
holds for all 𝑛 ≥ 1 when (𝐺, ∗) is the free groupoid on one generator.
• If ∗ is associative, then 𝑠ac

𝑛 (∗) ≤ 𝑛!, and the equality holds when (𝐺, ∗) is the
free associative groupoid (i.e., the free semigroup) on two generators or any
associative noncommutative groupoid with a neutral (i.e., identity) element.

Two-element groupoids

• Every two-element groupoid must be (anti-)isomorphic to ({0, 1}, ∗) with 𝑥 ∗ 𝑦
defined as one of the following: (1) 1, (2) 𝑥, (3) min{𝑥, 𝑦}, (4) 𝑥 + 𝑦 (mod 2),
(5) 𝑥 + 1 (mod 2), (6) 𝑥 ↓ 𝑦 (negated disjunction, NOR) or (7) 𝑥 → 𝑦

(implication). Csákány and Waldhauser found the associative spectra of all
two-element groupoids.
•We have 𝑠ac

𝑛 (∗) = 1 for all 𝑛 ≥ 1 if ∗ defined by (1), (3), or (4) since ∗ is both
associative and commutative in these three cases.
• The operation ∗ defined by (2) is associative but not commutative, and we have
𝑠ac
𝑛 (∗) = 𝑛 for all 𝑛 ≥ 1, which is much smaller than the upper bound 𝑛! for the

ac-spactrum of an associative operation.
• The operation ∗ defined by (5) is neither associative nor commutative, and we

have 𝑠ac
1 (∗) = 1, 𝑠ac

2 (∗) = 2, and 𝑠ac
𝑛 (∗) = 2𝑛 for all 𝑛 ≥ 3.

•We will discuss the groupoids defined by (6) and (7) later.

Commutative groupoids

• If (𝐺, ∗) is commutative, then 𝑠ac
𝑛 (∗) ≤ 𝐷𝑛−1, where 𝐷𝑛 := (2𝑛)!/(2𝑛𝑛!) is the

number of unordered binary trees with 𝑛 labeled leaves. This upper bound is
achieved when (𝐺, ∗) is the free commutative groupoid on one generator.
•Given a commutative groupoid (𝐺, ∗), if 𝑠ac

𝑛 (∗) = 𝐷𝑛−1 for all 𝑛 ≥ 1, then ∗
must be totally nonassociative, i.e., 𝑠a

𝑛(∗) = 𝐶𝑛−1 for all 𝑛 ≥ 1.
• The converse of the above does not hold: If ∗ is the arithmetic mean on R or the

geometric/harmonic mean on R+ then 𝑠a
𝑛(∗) = 𝐶𝑛−1 for all 𝑛 ≥ 1 by Csákány

and Waldhauser, but we show that 𝑠ac
𝑛 (∗) equals the number of ways to write 1

as an ordered sum of 𝑛 powers of 2 for all 𝑛 ≥ 1 (OEIS A007178).
•Define ∗ on {rock, paper, scissors} by 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 := 𝑥 if 𝑥 beats 𝑦 or 𝑥 = 𝑦.

Then 𝑠ac
𝑛 (∗) = 𝐷𝑛−1 and 𝑠a

𝑛(∗) = 𝐶𝑛−1 for all 𝑛 ≥ 1.
• Let (𝐺, ∗) be a commutative groupoid with a neutral element 𝑒. Then either

(i) ∗ is associative, in which case 𝑠a
𝑛(∗) = 𝑠ac

𝑛 (∗) = 1 for all 𝑛 ≥ 1, or
(ii) 𝑠a

𝑛(∗) = 𝐶𝑛−1 and 𝑠ac
𝑛 (∗) = 𝐷𝑛−1 for all 𝑛 ≥ 1.

• Example: The Jordan algebra of 𝑛 × 𝑛 self-adjoint matrices over R,C, or H
(the algebra of quaternions) with a product defined by 𝑥 ◦ 𝑦 := (𝑥𝑦 + 𝑦𝑥)/2 is a
nonassociative commutative groupoids with a neutral element 𝐼𝑛.

Anticommutative algebras

•An algebra over a field F of characteristic not 2 is anticommutative if it satisfies
the identity 𝑥𝑦 ≈ −𝑦𝑥, which implies the identity 𝑥𝑥 ≈ 0 since 𝑥𝑥 ≈ −𝑥𝑥.
• The cross product × is anticommutative and has a “commutative version” Z

defined on R3 by i Z i = j Z j = k Z k = 0, i Z j = k, j Z k = i, and k Z i = j.
•Recently, the first author studied Z in connection with the Norton algebras of

certain distance regular graphs. Now we show that the ac-spectrum
distinguishes × and Z, although the associative spectrum does not:
(i) 𝑠ac

𝑛 (Z) = 𝐷𝑛−1 for all 𝑛 ≥ 1,
(ii) 𝑠ac

𝑛 (×) = 2𝐷𝑛−1 for all 𝑛 ≥ 2, and
(iii) 𝑠a

𝑛(×) = 𝑠a
𝑛(Z) = 𝐶𝑛−1 for all 𝑛 ≥ 1.

•A triple (𝑒, 𝑓 , ℎ) of nonzero elements of a Lie algebra is called an 𝔰𝔩2-triple if
[𝑒, 𝑓 ] = ℎ, [ℎ, 𝑒] = 2𝑒, and [ℎ, 𝑓 ] = −2 𝑓 . It is well known that 𝔰𝔩2-triples exist
in every semisimple Lie algebra over a field of characteristic zero.
•Given a Lie algebra over a field of characteristic distinct from 2 with an
𝔰𝔩2-triple, its Lie bracket [−,−] satisfies 𝑠ac

𝑛 ( [−,−]) = 2𝐷𝑛−1 for all 𝑛 ≥ 2 and
𝑠a
𝑛( [−,−]) = 𝐶𝑛−1 for all 𝑛 ≥ 1.

Some totally nonassociative operations

• Let (𝐺, ∗) be a groupoid satisfying the identity (𝑥𝑦)𝑧 ≈ (𝑥𝑧)𝑦. Then
𝑠ac
𝑛 (∗) ≤ 𝑛𝑛−1 (the number of unordered rooted trees with 𝑛 labeled vertices),

and if the equality holds for all 𝑛, then 𝑠a
𝑛(∗) = 𝐶𝑛−1.

• The exponentiation 𝑎 ∗ 𝑏 := 𝑎𝑏 for all 𝑎, 𝑏 ∈ R≥0 satisfies the above identity and
its ac-spectrum reaches the upper bound: 𝑠ac

𝑛 (∗) = 𝑛𝑛−1 for all 𝑛 ≥ 1.
• For the implication→ defined on {0, 1} by 𝑥 → 𝑦 := 0 if (𝑥, 𝑦) = (1, 0) or
𝑥 → 𝑦 := 1 otherwise, we also have 𝑠ac

𝑛 (→) = 𝑛𝑛−1 for all 𝑛 ≥ 1. Hint: use←.
• The negated disjunction ↓ defined on {0, 1} by the rule 𝑥 ↓ 𝑦 = 1 if and only if
𝑥 = 𝑦 = 0 is commutative and 𝑠ac

𝑛 (↓) = 𝐷𝑛−1 for all 𝑛 ≥ 1.

𝑘-associativity and associative spectrum

•A groupoid (𝐺, ∗) is right 𝑘-associative if it satisfies the identity
( [𝑥1𝑥2 · · · 𝑥𝑘+1]R𝑥𝑘+2) ≈ (𝑥1[𝑥2 · · · 𝑥𝑘+2]R), where [· · · ]R is a shorthand for the
rightmost bracketing of the variables occurring between the square brackets.
• Example: 𝑎 ∗ 𝑏 := 𝑎 + 𝑒2𝜋𝑖/𝑘𝑏, which reduces to addition and subtraction if
𝑘 = 1, 2. Another example: 𝑓 ∗ 𝑔 := 𝑥 𝑓 + 𝑦𝑔 for all 𝑥, 𝑦 ∈ C[𝑥, 𝑦]/(𝑦𝑘 − 1).
•One can also define the left 𝑘-associativity similarly. The left or right
𝑘-associativity becomes the usual associativity when 𝑘 = 1.
• Previously, Hein and the first author showed that the equivalence relation on

binary trees induced by the left 𝑘-associativity is the same as the congruence
relation on the left depth sequences of binary trees modulo 𝑘 . The number of
equivalence classes is called the 𝑘-modular Catalan number, which counts
many restricted families of Catalan objects and has interesting closed formulas.

𝑘-associativity and associative-commutative spectrum

•We determine the ac-spectra of 𝑘-associative binary operations like
𝑎 ∗ 𝑏 := 𝑎 + 𝑒2𝜋𝑖/𝑘𝑏 and 𝑓 ∗ 𝑔 := 𝑥 𝑓 + 𝑦𝑔 for all 𝑥, 𝑦 ∈ C[𝑥, 𝑦]/(𝑦𝑘 − 1).
• If 𝑘 = 1 then we clearly have 𝑠ac

𝑛 (∗) = 1 for all 𝑛 ≥ 1. For 𝑘 ≥ 2, we have

𝑠ac
𝑛 (∗) = 𝑘!𝑆(𝑛, 𝑘) + 𝑛

∑︁
0≤𝑖≤𝑘−2

𝑖!𝑆(𝑛 − 1, 𝑖), ∀𝑛 ≥ 1

where the Stirling number of the second kind 𝑆(𝑛, 𝑘) counts partitions of the set
[𝑛] = {1, 2, . . . , 𝑛} into 𝑘 (unordered) blocks.
•When 𝑘 = 2 we have 𝑠ac

𝑛 (∗) = 2𝑛 − 2 for 𝑛 ≥ 2 (the 𝑛-ary operations obtained by
bracketing and permuting 𝑥1 − 𝑥2 − · · · − 𝑥𝑛 are precisely those of the form
±𝑥1 ± 𝑥2 · · · ± 𝑥𝑛 with at least one plus sign and at least one minus sign).
•When 𝑘 = 3 we have 𝑛

∑
1≤𝑖≤𝑘−2 𝑖!𝑆(𝑛 − 1, 𝑖) = 𝑛 for all 𝑛 ≥ 2.

•When 𝑘 = 4, the sequence 𝑛
∑

1≤𝑖≤𝑘−2 𝑖!𝑆(𝑛 − 1, 𝑖) has simple closed formulas
(OEIS A058877) 𝑛2𝑛−1 − 𝑛 =

∑
1≤ 𝑗≤𝑛(𝑛 − 2 + 𝑗)2𝑛− 𝑗−1 =

∑
1≤ 𝑗≤𝑛−1

(𝑛
𝑗

)
(𝑛 − 𝑗).

• The first author, Mickey, and Xu (also Csákány and Waldhauser) studied the
double minus operation defined by 𝑎 ⊖ 𝑏 := −𝑎 − 𝑏 and determined 𝑠a

𝑛(⊖)
(OEIS A000975). Now we show that 𝑠ac

𝑛 (⊖) = (2𝑛 − (−1)𝑛)/3 for all 𝑛 ≥ 1,
which is the well-known Jacobsthal sequence (OEIS A001045).

Remarks and questions

•Csákány and Waldhauser found the associative spectra of some of the 3330
distinct three-element groupoids. What are their ac-spectra?
• Find the ac-spectra of groupoids with properties weaker than associativity, e.g.,

(i) alternative: (𝑥 ∗ 𝑥) ∗ 𝑦 ≈ 𝑥 ∗ (𝑥 ∗ 𝑦) and 𝑦 ∗ (𝑥 ∗ 𝑥) = (𝑦 ∗ 𝑥) ∗ 𝑥 hold;
(ii) power associative: any element generates an associative subgroupoid;
(iii) flexible: 𝑥 ∗ (𝑦 ∗ 𝑥) ≈ (𝑥 ∗ 𝑦) ∗ 𝑥 holds (e.g., a Lie algebra).
• The Jordan algebra is commutative (hence flexible) and power associative.
• The Okubo algebra, which consists of all 3-by-3 trace-zero complex matrices

with a product 𝑥 ◦ 𝑦 := 𝑎𝑥𝑦 + 𝑏𝑦𝑥 − tr(𝑥𝑦)𝐼3/3 for some 𝑎, 𝑏 ∈ C satisfying
𝑎 + 𝑏 = 3𝑎𝑏 = 1, is also flexible and power associative but not alternative.
• The multiplication of octonions is alternative, power associative, and flexible.
• The multiplication of sedenions is power associative and flexible but not

alternative.
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