The associative-commutative spectrum of a binary operation

Jia Huang
University of Nebraska at Kearney
huangj2@unk.edu

Associative spectrum

- A groupoid is a set G with a binary operation $*$. Let $\mathcal{P}_{*}(n)$ be the set of all n-ary term operations on $(G, *)$ induced by bracketings of n variables. Example:

$\left.\left(\left(x_{1} * x_{2}\right) * x_{3}\right) * x_{4} \quad\left(x_{1} * x_{2}\right) *\left(x_{3} * x_{4}\right) \quad\left(x_{1} *\left(x_{2} * x_{3}\right)\right) * x_{4} \quad x_{1} *\left(x_{2} * x_{3}\right) * x_{4}\right) \quad x_{1} *\left(x_{2} *\left(x_{3} * x_{4}\right)\right)$
- We have $1 \leq\left|\mathcal{P}_{*}(n)\right| \leq C_{n-1}$, where $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$ is the ubiquitous Catalan number. The equality $\left|\mathcal{P}_{*}(n)\right|=1$ holds for all $n \geq 1$ if and only if $*$ is associative. Thus $\left|\mathcal{P}_{*}(n)\right|$ measures the failure of $*$ to be associative.
- Csákány and Waldhauser defined the associative spectrum of the binary operation $*$ to be the sequence $s_{n}^{\mathrm{a}}(*):=\left|\mathcal{P}_{*}(n)\right|$, while Braitt and Silberger called it the subassociativity type of the groupoid ($G, *$). It has been determined for many binary operations.
- It turns out that the associative spectrum has connections with the operad theory. We have a non-symmetric operad $\mathcal{P}_{*}:=\left\{\mathcal{P}_{*}(n)\right\}_{n>1}$ which has an identity element $1 \in \mathcal{P}_{*}(1)$ and a composition function satisfying some coherence axioms. The Hilbert series of \mathcal{P}_{*} is $\sum_{n=1}^{\infty}\left|\mathcal{P}_{*}(n)\right| t^{n}$.

Associative-commutative spectrum

- Let $\overline{\mathcal{P}}_{*}(n)$ be the set of all n-ary operations induced on $(G, *)$ by the bracketings of all permutations of n variables x_{1}, \ldots, x_{n}. This gives a symmetric operad $\overline{\mathcal{P}}_{*}:=\left\{\overline{\mathcal{P}}_{*}(n)\right\}_{n \geq 1}$ with Hilbert series $\sum_{n=1}^{\infty} \frac{\left|\bar{P}_{n}(n)\right|}{n!} t^{n}$. - We define the associative-commutative spectrum (in brief, ac-spectrum) of the binary operation $*$ to be the sequence $s_{n}^{\mathrm{ac}}(*):=\left|\overline{\mathcal{P}}_{*}(n)\right|$, which measures the binary operation $*$ to be the sequence $s_{n}^{\mathrm{ac}}(*):=\left(\overline{\mathcal{P}}_{*}(n)\right.$, which measures the
nonassociativity and noncommutativity of $*$. It is clear that $s_{n}^{\text {ac }}(*) \geq 1$; the equality holds for all $n \geq 1$ if and only if $*$ is both commutative and associative - For an arbitrary binary operation *, we have $s_{n}^{\text {ac }}(*) \leq n!C_{n-1}$, and the equality holds for all $n \geq 1$ when ($G, *$) is the free groupoid on one generator.
\bullet If $*$ is associative, then $s_{n}^{\text {ac }}(*) \leq n!$, and the equality holds when $(G, *)$ is the free associative groupoid (i.e., the free semigroup) on two generators or any associative noncommutative groupoid with a neutral (i.e., identity) element.

Two-element groupoids

- Every two-element groupoid must be (anti-)isomorphic to $(\{0,1\}, *)$ with $x * y$ defined as one of the following: (1) 1 , (2) x, (3) $\min \{x, y\}$, (4) $x+y(\bmod 2)$, (5) $x+1(\bmod 2)$, (6) $x \downarrow y$ (negated disjunction, NOR) or (7) $x \rightarrow y$ (implication). Csákány and Waldhauser found the associative spectra of all two-element groupoids
- We have $s_{n}^{\mathrm{ac}}(*)=1$ for all $n \geq 1$ if $*$ defined by (1), (3), or (4) since $*$ is both associative and commutative in these three cases.
- The operation $*$ defined by (2) is associative but not commutative, and we have $s_{n}^{\text {ac }}(*)=n$ for all $n \geq 1$, which is much smaller than the upper bound $n!$ for the ac-spactrum of an associative operation.
- The operation $*$ defined by (5) is neither associative nor commutative, and we have $s_{1}^{\mathrm{ac}}(*)=1, s_{2}^{\mathrm{ac}}(*)=2$, and $s_{n}^{\mathrm{ac}}(*)=2 n$ for all $n \geq 3$. - We will discuss the groupoids defined by (6) and (7) later.

Commutative groupoids

If $(G, *)$ is commutative, then $s_{n}^{\text {ac }}(*) \leq D_{n-1}$, where $D_{n}:=(2 n)!/\left(2^{n} n!\right)$ is the number of unordered binary trees with n labeled leaves. This upper bound is achieved when $(G, *)$ is the free commutative groupoid on one generator. - Given a commutative groupoid ($G, *$), if $s_{n}^{\mathrm{ac}}(*)=D_{n-1}$ for all $n \geq 1$, then * must be totally nonassociative, i.e., $s_{n}^{\mathrm{a}}(*)=C_{n-1}$ for all $n \geq 1$.
The converse of the above does not hold: If $*$ is the arithmetic mean on \mathbb{R} or the geometric/harmonic mean on \mathbb{R}_{+}then $s_{n}^{\mathrm{a}}(*)=C_{n-1}$ for all $n \geq 1$ by Csákány and Waldhauser, but we show that $s_{n}^{\mathrm{ac}}(*)$ equals the number of ways to write 1 as an ordered sum of n powers of 2 for all $n \geq 1$ (OEIS A007178).

- Define $*$ on \{rock, paper, scissors\} by $x * y=y * x:=x$ if x beats y or $x=y$. Then $s_{n}^{\mathrm{ac}}(*)=D_{n-1}$ and $s_{n}^{\mathrm{a}}(*)=C_{n-1}$ for all $n \geq 1$.
Let $(G, *)$ be a commutative groupoid with a neutral element e. Then either (i) $*$ is associative, in which case $s_{n}^{\mathrm{a}}(*)=s_{n}^{\mathrm{ac}}(*)=1$ for all $n \geq 1$, or (ii) $s_{n}^{\mathrm{a}}(*)=C_{n-1}$ and $s_{n}^{\mathrm{ac}}(*)=D_{n-1}$ for all $n \geq 1$.

Example: The Jordan algebra of $n \times n$ self-adjoint matrices over \mathbb{R}, \mathbb{C}, or \mathbb{H} (the algebra of quaternions) with a product defined by $x \circ y:=(x y+y x) / 2$ is a nonassociative commutative groupoids with a neutral element I_{n}.

Anticommutative algebras

- An algebra over a field \mathbb{F} of characteristic not 2 is anticommutative if it satisfies the identity $x y \approx-y x$, which implies the identity $x x \approx 0$ since $x x \approx-x x$.
-The cross product \times is anticommutative and has a "commutative version" \bowtie defined on \mathbb{R}^{3} by $\mathbf{i} \bowtie \mathbf{i}=\mathbf{j} \bowtie \mathbf{j}=\mathbf{k} \bowtie \mathbf{k}=0, \mathbf{i} \bowtie \mathbf{j}=\mathbf{k}, \mathbf{j} \bowtie \mathbf{k}=\mathbf{i}$, and $\mathbf{k} \bowtie \mathbf{i}=\mathbf{j}$. Recently, the first author studied \bowtie in connection with the Norton algebras of certain distance regular graphs. Now we show that the ac-spectrum distinguishes \times and \bowtie, although the associative spectrum does not: (i) $s_{n}^{\mathrm{ac}}(\bowtie)=D_{n-1}$ for all $n \geq 1$,
(ii) $s_{n}^{\text {ac }}(\times)=2 D_{n-1}$ for all $n \geq 2$, and
(iii) $s_{n}^{\mathrm{a}}(\times)=s_{n}^{\mathrm{a}}(\bowtie)=C_{n-1}$ for all $n \geq 1$

A triple (e, f, h) of nonzero elements of a Lie algebra is called an $\mathfrak{s l}_{2}$-triple if $[e, f]=h,[h, e]=2 e$, and $[h, f]=-2 f$. It is well known that $\mathfrak{s l}_{2}$-triples exist in every semisimple Lie algebra over a field of characteristic zero
Given a Lie algebra over a field of characteristic distinct from 2 with an $\mathfrak{s l}_{2}$-triple, its Lie bracket $[-,-]$ satisfies $s_{n}^{\mathrm{ac}}([-,-])=2 D_{n-1}$ for all $n \geq 2$ and $s_{n}^{\mathrm{a}}([-,-])=C_{n-1}$ for all $n \geq 1$.

Some totally nonassociative operations
Let $(G, *)$ be a groupoid satisfying the identity $(x y) z \approx(x z) y$. Then $s_{n}^{\mathrm{ac}}(*) \leq n^{n-1}$ (the number of unordered rooted trees with n labeled vertices), and if the equality holds for all n, then $s_{n}^{\mathrm{a}}(*)=C_{n-1}$.

- The exponentiation $a * b:=a^{b}$ for all $a, b \in \mathbb{R}_{\geq 0}$ satisfies the above identity and its ac-spectrum reaches the upper bound: $s_{n}^{\mathrm{ac}}(*)=n^{n-1}$ for all $n \geq 1$. - For the implication \rightarrow defined on $\{0,1\}$ by $x \rightarrow y:=0$ if $(x, y)=(1,0)$ or $x \rightarrow y:=1$ otherwise, we also have $s_{n}^{\mathrm{ac}}(\rightarrow)=n^{n-1}$ for all $n \geq 1$. Hint: use \leftarrow The negated disiunction \downarrow defined on $\{0,1\}$ by the rule $x \downarrow y=1$ if and only if $x=y=0$ is commutative and $s_{n}^{\text {ac }}(\downarrow)=D_{n-1}$ for all $n \geq 1$.

k-associativity and associative spectrum

A groupoid $(G, *)$ is right k-associative if it satisfies the identity $\left(\left[x_{1} x_{2} \cdots x_{k+1}\right]_{\mathrm{R}} x_{k+2}\right) \approx\left(x_{1}\left[x_{2} \cdots x_{k+2}\right]_{\mathrm{R}}\right)$, where $[\cdots]_{\mathrm{R}}$ is a shorthand for the rightmost bracketing of the variables occurring between the square brackets - Example: $a * b:=a+e^{2 \pi i / k} b$, which reduces to addition and subtraction if $k=1,2$. Another example: $f * g:=x f+y g$ for all $x, y \in \mathbb{C}[x, y] /\left(y^{k}-1\right)$. One can also define the left k-associativity similarly. The left or right k-associativity becomes the usual associativity when $k=1$.

- Previously, Hein and the first author showed that the equivalence relation on binary trees induced by the left k-associativity is the same as the congruence relation on the left depth sequences of binary trees modulo k. The number of equivalence classes is called the k-modular Catalan number, which counts many restricted families of Catalan objects and has interesting closed formulas
k-associativity and associative-commutative spectrum
We determine the ac-spectra of k-associative binary operations like $a * b:=a+e^{2 \pi i / k} b$ and $f * g:=x f+y g$ for all $x, y \in \mathbb{C}[x, y] /\left(y^{k}-1\right)$. - If $k=1$ then we clearly have $s_{n}^{\mathrm{ac}}(*)=1$ for all $n \geq 1$. For $k \geq 2$, we have

$$
s_{n}^{\mathrm{ac}}(*)=k!S(n, k)+n \sum_{0 \leq i \leq k-2} i!S(n-1, i), \quad \forall n \geq 1
$$

where the Stirling number of the second kind $S(n, k)$ counts partitions of the se $[n]=\{1,2, \ldots, n\}$ into k (unordered) blocks
When $k=2$ we have $s_{n}^{\mathrm{ac}}(*)=2^{n}-2$ for $n \geq 2$ (the n-ary operations obtained by bracketing and permuting $x_{1}-x_{2}-\cdots-x_{n}$ are precisely those of the form $\pm x_{1} \pm x_{2} \cdots \pm x_{n}$ with at least one plus sign and at least one minus sign). - When $k=3$ we have $n \sum_{1 \leq i \leq k-2} i!S(n-1, i)=n$ for all $n \geq 2$.

When $k=4$, the sequence $n \sum_{1 \leq i \leq k-2} i!S(n-1, i)$ has simple closed formulas (OEIS A058877) $n 2^{n-1}-n=\sum_{1 \leq j \leq n}(n-2+j) 2^{n-j-1}=\sum_{1 \leq j \leq n-1}\binom{n}{j}(n-j)$ The first author, Mickey, and Xu (also Csákány and Waldhauser) studied the double minus operation defined by $a \ominus b:=-a-b$ and determined $s_{1}^{\mathrm{a}}(\Theta)$ (OEIS A000975). Now we show that $s_{n}^{\text {ac }}(\theta)=\left(2^{n}-(-1)^{n}\right) / 3$ for all $n \geq 1$, which is the well-known Jacobsthal sequence (OEIS A001045).

Remarks and questions

Csákány and Waldhauser found the associative spectra of some of the 3330 distinct three-element groupoids. What are their ac-spectra?
Find the ac-spectra of groupoids with properties weaker than associativity, e.g. (i) alternative: $(x * x) * y \approx x *(x * y)$ and $y *(x * x)=(y * x) * x$ hold; (ii) power associative: any element generates an associative subgroupoid (iii) flexible: $x *(y * x) \approx(x * y) * x$ holds (e.g., a Lie algebra).

- The Jordan algebra is commutative (hence flexible) and power associative. The Okubo algebra, which consists of all 3-by-3 trace-zero complex matrices with a product $x \circ y:=a x y+b y x-\operatorname{tr}(x y) I_{3} / 3$ for some $a, b \in \mathbb{C}$ satisfying $a+b=3 a b=1$, is also flexible and power associative but not alternative.
- The multiplication of octonions is alternative, power associative, and flexible.
- The multiplication of sedenions is power associative and flexible but not alternative.

