Associative spectrum

• A groupoid is a set G with a binary operation *. Let $\mathcal{P}_*(n)$ be the set of all n-ary term operations on (G, *) induced by bracketings of *n* variables. Example: $1 2 3 4 \qquad 1 2 3 4 \qquad 1 2 3 4$

 $((x_1 * x_2) * x_3) * x_4 \quad (x_1 * x_2) * (x_3 * x_4) \quad (x_1 * (x_2 * x_3)) * x_4 \quad x_1 * ((x_2 * x_3) * x_4) \quad x_1 * (x_2 * (x_3 * x_4))$

- We have $1 \le |\mathcal{P}_*(n)| \le C_{n-1}$, where $C_n := \frac{1}{n+1} \binom{2n}{n}$ is the ubiquitous *Catalan number*. The equality $|\mathcal{P}_*(n)| = 1$ holds for all $n \ge 1$ if and only if * is associative. Thus $|\mathcal{P}_*(n)|$ measures the failure of * to be associative.
- Csákány and Waldhauser defined the *associative spectrum* of the binary operation * to be the sequence $s_n^a(*) := |\mathcal{P}_*(n)|$, while Braitt and Silberger called it the *subassociativity type* of the groupoid (G, *). It has been determined for many binary operations.
- It turns out that the associative spectrum has connections with the operad theory. We have a *non-symmetric operad* $\mathcal{P}_* := \{\mathcal{P}_*(n)\}_{n \ge 1}$ which has an identity element $1 \in \mathcal{P}_*(1)$ and a composition function satisfying some coherence axioms. The *Hilbert series* of \mathcal{P}_* is $\sum_{n=1}^{\infty} |\mathcal{P}_*(n)| t^n$.

Associative-commutative spectrum

- Let $\mathcal{P}_*(n)$ be the set of all *n*-ary operations induced on (G, *) by the bracketings of all permutations of *n* variables x_1, \ldots, x_n . This gives a symmetric operad $\overline{\mathcal{P}}_* := \{\overline{\mathcal{P}}_*(n)\}_{n\geq 1}$ with Hilbert series $\sum_{n=1}^{\infty} \frac{|\mathcal{P}_*(n)|}{n!} t^n$.
- We define the *associative-commutative spectrum* (in brief, *ac-spectrum*) of the binary operation * to be the sequence $s_n^{ac}(*) := |\mathcal{P}_*(n)|$, which measures the nonassociativity and noncommutativity of *. It is clear that $s_n^{ac}(*) \ge 1$; the equality holds for all $n \ge 1$ if and only if * is both commutative and associative.
- For an arbitrary binary operation *, we have $s_n^{ac}(*) \le n!C_{n-1}$, and the equality holds for all $n \ge 1$ when (G, *) is the free groupoid on one generator.
- If * is associative, then $s_n^{\rm ac}(*) \leq n!$, and the equality holds when (G, *) is the free associative groupoid (i.e., the free semigroup) on two generators or any associative noncommutative groupoid with a neutral (i.e., identity) element.

Two-element groupoids

- Every two-element groupoid must be (anti-)isomorphic to $(\{0, 1\}, *)$ with x * ydefined as one of the following: (1) 1, (2) x, (3) min{x, y}, (4) $x + y \pmod{2}$, (5) $x + 1 \pmod{2}$, (6) $x \downarrow y$ (negated disjunction, NOR) or (7) $x \rightarrow y$ (implication). Csákány and Waldhauser found the associative spectra of all two-element groupoids.
- We have $s_n^{ac}(*) = 1$ for all $n \ge 1$ if * defined by (1), (3), or (4) since * is both associative and commutative in these three cases.
- The operation * defined by (2) is associative but not commutative, and we have $s_n^{\rm ac}(*) = n$ for all $n \ge 1$, which is much smaller than the upper bound n! for the ac-spactrum of an associative operation.
- The operation * defined by (5) is neither associative nor commutative, and we have $s_1^{ac}(*) = 1$, $s_2^{ac}(*) = 2$, and $s_n^{ac}(*) = 2n$ for all $n \ge 3$.
- We will discuss the groupoids defined by (6) and (7) later.

The associative-commutative spectrum of a binary operation

Jia Huang

University of Nebraska at Kearney huangj2@unk.edu

Commutative groupoids

- If (G, *) is commutative, then $s_n^{ac}(*) \leq D_{n-1}$, where $D_n := (2n)!/(2^n n!)$ is the number of unordered binary trees with *n* labeled leaves. This upper bound is achieved when (G, *) is the free commutative groupoid on one generator.
- Given a commutative groupoid (G, *), if $s_n^{ac}(*) = D_{n-1}$ for all $n \ge 1$, then *must be *totally nonassociative*, i.e., $s_n^a(*) = C_{n-1}$ for all $n \ge 1$.
- The converse of the above does not hold: If * is the arithmetic mean on \mathbb{R} or the geometric/harmonic mean on \mathbb{R}_+ then $s_n^a(*) = C_{n-1}$ for all $n \ge 1$ by Csákány and Waldhauser, but we show that $s_n^{ac}(*)$ equals the number of ways to write 1 as an ordered sum of *n* powers of 2 for all $n \ge 1$ (OEIS A007178).
- Define * on {rock, paper, scissors} by x * y = y * x := x if x beats y or x = y. Then $s_n^{ac}(*) = D_{n-1}$ and $s_n^{a}(*) = C_{n-1}$ for all $n \ge 1$.
- Let (G, *) be a commutative groupoid with a neutral element e. Then either (i) * is associative, in which case $s_n^a(*) = s_n^{ac}(*) = 1$ for all $n \ge 1$, or (ii) $s_n^{a}(*) = C_{n-1}$ and $s_n^{ac}(*) = D_{n-1}$ for all $n \ge 1$.
- Example: The *Jordan algebra* of $n \times n$ self-adjoint matrices over \mathbb{R}, \mathbb{C} , or \mathbb{H} (the algebra of quaternions) with a product defined by $x \circ y := (xy + yx)/2$ is a nonassociative commutative groupoids with a neutral element I_n .

Anticommutative algebras

- An algebra over a field \mathbb{F} of characteristic not 2 is *anticommutative* if it satisfies the identity $xy \approx -yx$, which implies the identity $xx \approx 0$ since $xx \approx -xx$.
- The cross product \times is anticommutative and has a "commutative version" \bowtie defined on \mathbb{R}^3 by $\mathbf{i} \bowtie \mathbf{i} = \mathbf{j} \bowtie \mathbf{j} = \mathbf{k} \bowtie \mathbf{k} = 0$, $\mathbf{i} \bowtie \mathbf{j} = \mathbf{k}$, $\mathbf{j} \bowtie \mathbf{k} = \mathbf{i}$, and $\mathbf{k} \bowtie \mathbf{i} = \mathbf{j}$.
- Recently, the first author studied \bowtie in connection with the Norton algebras of certain distance regular graphs. Now we show that the ac-spectrum distinguishes \times and \bowtie , although the associative spectrum does not: (i) $s_n^{\rm ac}(\bowtie) = D_{n-1}$ for all $n \ge 1$,
- (ii) $s_n^{\rm ac}(\times) = 2D_{n-1}$ for all $n \ge 2$, and
- (iii) $s_n^{a}(\times) = s_n^{a}(\bowtie) = C_{n-1}$ for all $n \ge 1$.
- A triple (e, f, h) of nonzero elements of a Lie algebra is called an \mathfrak{sl}_2 -*triple* if [e, f] = h, [h, e] = 2e, and [h, f] = -2f. It is well known that \mathfrak{sl}_2 -triples exist in every semisimple Lie algebra over a field of characteristic zero.
- Given a Lie algebra over a field of characteristic distinct from 2 with an \mathfrak{sl}_2 -triple, its Lie bracket [-, -] satisfies $s_n^{\mathrm{ac}}([-, -]) = 2D_{n-1}$ for all $n \ge 2$ and $s_n^{a}([-,-]) = C_{n-1}$ for all $n \ge 1$.

Some totally nonassociative operations

- Let (G, *) be a groupoid satisfying the identity $(xy)z \approx (xz)y$. Then $s_n^{\rm ac}(*) \leq n^{n-1}$ (the number of unordered rooted trees with *n* labeled vertices), and if the equality holds for all n, then $s_n^a(*) = C_{n-1}$.
- The exponentiation $a * b := a^b$ for all $a, b \in \mathbb{R}_{\geq 0}$ satisfies the above identity and its ac-spectrum reaches the upper bound: $s_n^{\rm ac}(*) = n^{n-1}$ for all $n \ge 1$.
- For the *implication* \rightarrow defined on {0, 1} by $x \rightarrow y := 0$ if (x, y) = (1, 0) or $x \to y := 1$ otherwise, we also have $s_n^{ac}(\to) = n^{n-1}$ for all $n \ge 1$. Hint: use \leftarrow .
- The *negated disjunction* \downarrow defined on {0, 1} by the rule $x \downarrow y = 1$ if and only if x = y = 0 is commutative and $s_n^{ac}(\downarrow) = D_{n-1}$ for all $n \ge 1$.

 $1 \overline{2} \overline{3} \overline{4}$

Erkko Lehtonen

Khalifa University and Universidade Nova de Lisboa e.lehtonen@fct.unl.pt

k-associativity and associative spectrum

- A groupoid (G, *) is *right k-associative* if it satisfies the identity
- k-associativity becomes the usual associativity when k = 1.

k-associativity and associative-commutative spectrum

where the *Stirling number of the second kind* S(n, k) counts partitions of the set $[n] = \{1, 2, \dots, n\}$ into k (unordered) blocks.

- When k = 3 we have $n \sum_{1 \le i \le k-2} i! S(n-1, i) = n$ for all $n \ge 2$.
- which is the well-known *Jacobsthal sequence* (OEIS A001045).

Remarks and questions

- distinct three-element groupoids. What are their ac-spectra?
- (iii) *flexible*: $x * (y * x) \approx (x * y) * x$ holds (e.g., a Lie algebra).

- alternative.

 $([x_1x_2\cdots x_{k+1}]_Rx_{k+2}) \approx (x_1[x_2\cdots x_{k+2}]_R)$, where $[\cdots]_R$ is a shorthand for the rightmost bracketing of the variables occurring between the square brackets. • Example: $a * b := a + e^{2\pi i/k}b$, which reduces to addition and subtraction if k = 1, 2. Another example: f * g := xf + yg for all $x, y \in \mathbb{C}[x, y]/(y^k - 1)$. • One can also define the *left k-associativity* similarly. The left or right

• Previously, Hein and the first author showed that the equivalence relation on binary trees induced by the left k-associativity is the same as the congruence relation on the left depth sequences of binary trees modulo k. The number of equivalence classes is called the *k-modular Catalan number*, which counts many restricted families of Catalan objects and has interesting closed formulas.

• We determine the ac-spectra of k-associative binary operations like $a * b := a + e^{2\pi i/k} b$ and f * g := xf + yg for all $x, y \in \mathbb{C}[x, y]/(y^k - 1)$. • If k = 1 then we clearly have $s_n^{ac}(*) = 1$ for all $n \ge 1$. For $k \ge 2$, we have $s_n^{\rm ac}(*) = k!S(n,k) + n \sum_{0 \le i \le k-2} i!S(n-1,i), \quad \forall n \ge 1$

• When k = 2 we have $s_n^{ac}(*) = 2^n - 2$ for $n \ge 2$ (the *n*-ary operations obtained by bracketing and permuting $x_1 - x_2 - \cdots - x_n$ are precisely those of the form $\pm x_1 \pm x_2 \cdots \pm x_n$ with at least one plus sign and at least one minus sign). • When k = 4, the sequence $n \sum_{1 \le i \le k-2} i! S(n-1, i)$ has simple closed formulas

(OEIS A058877) $n2^{n-1} - n = \sum_{1 \le j \le n} (n-2+j)2^{n-j-1} = \sum_{1 \le j \le n-1} {n \choose j} (n-j).$ • The first author, Mickey, and Xu (also Csákány and Waldhauser) studied the *double minus operation* defined by $a \ominus b := -a - b$ and determined $s_n^a(\ominus)$ (OEIS A000975). Now we show that $s_n^{ac}(\Theta) = (2^n - (-1)^n)/3$ for all $n \ge 1$,

• Csákány and Waldhauser found the associative spectra of some of the 3330

• Find the ac-spectra of groupoids with properties weaker than associativity, e.g., (i) *alternative*: $(x * x) * y \approx x * (x * y)$ and y * (x * x) = (y * x) * x hold; (ii) *power associative*: any element generates an associative subgroupoid; • The Jordan algebra is commutative (hence flexible) and power associative.

• The *Okubo algebra*, which consists of all 3-by-3 trace-zero complex matrices with a product $x \circ y := axy + byx - tr(xy)I_3/3$ for some $a, b \in \mathbb{C}$ satisfying a + b = 3ab = 1, is also flexible and power associative but not alternative. • The multiplication of octonions is alternative, power associative, and flexible. • The multiplication of sedenions is power associative and flexible but not