Volume computation

Let

$$\mathbf{p}: V(K) \to \mathbb{R}^{d-1}$$

be a mapping of the vertices of K.

The (signed) volume of $\sigma = \{v_1, \ldots, v_d\} \in K$ with respect to p is given by the determinant of the $d \times d$ matrix

$$M_{\mathbf{p},\sigma} = \begin{pmatrix} \mathbf{p}(v_1) \dots \mathbf{p}(v_d) \\ 1 \dots 1 \end{pmatrix}.$$

Question

Is there a **non-trivial** continuous motion of the vertices starting at p that preserves the volumes of all the (d-1)-simplices in K? By "non-trivial" we mean that the volume of some (d-1) non-face would change.

Volume-rigidity matrix

The volume-rigidity matrix $\mathfrak{V}(K, \mathbf{p})$ of the pair (K, \mathbf{p}) is a $(d - 1)n \times f_{d-1}(K)$ matrix given by the Jacobian of the function $\mathbf{p} \mapsto (\det M_{\mathbf{p},\sigma})_{\sigma \in K}$, viewing p as a (d-1)n-dimensional vector. The column vector \mathbf{v}_{σ} corresponding to a (d-1)-face $\sigma = \{v_1, \ldots, v_d\} \in K$ is defined by

$$(\mathbf{v}_{\sigma})_{v,j} = \begin{cases} C_{i,j}(M_{\mathbf{p},\sigma}) & \text{if } v = v_i \text{ and } j \in [d-1], \\ 0 & \text{otherwise.} \end{cases}$$

An *n*-vertex (d-1)-dimensional simplicial complex K is called **volume-rigid** if

rank
$$(\mathfrak{V}(K, \mathbf{p})) = (d - 1)n - (d^2 - d - 1),$$

for a generic $\mathbf{p} : V(K) \to \mathbb{R}^{d-1}.$

Question

Can we characterize volume-rigidity in terms of algebraic shifting?

Volume rigidity and algebraic shifting

Denys Bulavka, Eran Nevo and Yuval Peled

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.

Example: Appolonian network

Consider the **exterior face ring** An Appolonian network is a 2-dimensional simplicial complex obtained by iteratively subdividing a triangle into three via a new vertex.

Figure 1:Example of Appolonian network. First we add vertex d creating triangles abd, acd, bcd and removing the triangle abc. Next we add vertex e creating triangles ade, ace, cde and removing triangle acd.

In the figure above, in the final complex the quantities vol(abc) and vol(acd) are preserved under continuous motions preserving all 2-faces. Is vol(bce) also preserved under such motions? Yes, since Appolonian networks are volume-rigid [2].

Shifting w.r.t. a partial order has several of the good properties of shifting with respect to a linear order because

where \mathcal{L} is the set of all linear extension of $<_p$.

Theorem (B., Nevo and Peled [1])

Fix $d \ge 3$. An *n*-vertex (d - 1)-dimensional simplicial complex K is volume-rigid if and only if $\{1, 3, 4, ..., d, n\} \in \Delta^{<_p}(K).$

Proof method

We identify the generic placement of the vertices p with the generic change of basis $(f_i)_{i \in [n]}$. First, we set $f_1 = 1$. Next, for each $v \in V(K)$ we set the entry of f_{i+1} corresponding to v equal to the i-th entry of p(v), i.e. $(f_{i+1})_v = p(v)_i$. Define

$$\psi: \bigoplus_{i=2}^{d} \bigwedge^{1} \mathbb{R}^{n} \to \bigwedge^{d} \mathbb{R}^{n}$$

$$(m_2,\ldots,m_d)\mapsto \sum_{i=2}^d f_{[d]\setminus\{i\}}\wedge m_i.$$

Since

$$\langle e_{\sigma}, \psi(e_{i,v}) \rangle = (-1)^{i-1} C_{i-1,j}(M_{\mathbf{p},\sigma})$$

we have that the matrix representation of $q \circ \psi$ is equal to the transpose of the volume-rigidity matrix $\mathfrak{V}(K,\mathbf{p}).$

Exterior algebraic shifting

 $\bigwedge K = \bigwedge \mathbb{R}^n / \langle e_S \colon S \notin K \rangle.$

and let $q: \wedge \mathbb{R}^n \to \wedge K$ denote the natural quotient map. Let $<_p$ denote the partial order on $2^{[n]}$ defined as follows: $\sigma = \{\sigma_1 < \cdots < \sigma_m\}, \tau = \{\tau_1 < \cdots < \sigma_m\}$ $\tau_m \in 2^{[n]}, \sigma <_p \tau \text{ if } \sigma_i \leq \tau_i \text{ for all } i \in [m].$ Let $(f_i)_{i \in [n]}$ be a generic change of basis in \mathbb{R}^n .

The exterior algebraic shifting of K w.r.t. $<_p$ is defined by

 $\Delta^{<_p} K = \{ \sigma \subseteq [n] \colon q(f_{\sigma}) \notin \operatorname{span}_{\mathbb{R}} \{ q(f_{\tau}) \colon \tau <_p \sigma \} \}.$

$$\Delta^{<_p} K = \bigcup_{<_l \in \mathcal{L}} \Delta^{<_l} K,$$

Local moves

Edge contraction. Let K be a pure (d -1)-dimensional simplicial complex, $e = \{u, w\} \in K$ such that at least (d-1) facets in K contain e. Let K' be the simplicial complex obtained from K by contracting the edge e, i.e. by identifying the vertex u with w, and removing duplicates. If K' is volume rigid then so is K.

Vertex addition. Let K be (d-1)-volume-rigid, $v \notin V(K)$ and $S \subseteq V(K)$ such that $|S| \ge d$, then

 $K \cup (v * \binom{S}{d-1})$ is (d-1)-volume-rigid. Union of volume-rigid complexes. Let K and L be

(d-1)-volume-rigid complexes such that $|V(K) \cap V(L)| \geq d$. Then $K \cup L$ is (d -1)-volume-rigid.

Every triangulation of the 2-sphere, the torus, the projective plane or the Klein bottle is volume-rigid. In addition, every triangulation of the 2-sphere and the torus minus a single triangle is also volume-rigid. In particular, every simplicial disc with a 3-vertex boundary is minimally volume-rigid. To show the claim for the torus, the projective plane and the Klein bottle we have verified computer that the respective minimal by triangulations are volume-rigid.

A (d-1)-complex is $(d-1, d^2 - d - 1)$ -sparse (resp. **tight**) if every subset A of its vertices of cardinality at least d spans at most $(d-1)|A| - (d^2 - d - 1)$ simplices of dimensions d-1 (resp. and equality holds when A equals the entire vertex set). **Corollary.** For every $d \ge 3$, there exists a $(d-1, d^2 - 1)$ d-1)-tight (d-1)-complex that is not volume-rigid.

[1] Bulavka, D., Nevo, E., Peled, Y. Volume rigidity and algebraic shifting, ArXiv e-prints, 1810.11694, 2018. [2] Lubetzky, E. and Peled, Y. The Threshold Triangulations, Stacked International for 2022. Mathematics Research Notices, https://doi.org/10.1093/imrn/rnac276.

Volume-rigid surfaces

Volume-rigidity and sparsity

References

Contact information

Web: https://kam.mff.cuni.cz/dbulavka/ Email: dbulavka@kam.mff.cuni.cz