Volume rigidity and algebraic shifting

Denys Bulavka, Eran Nevo and Yuval Peled

Volume computation

Let

$$
\mathbf{p}: V(K) \rightarrow \mathbb{R}^{d-1}
$$

be a mapping of the vertices of K
The (signed) volume of $\sigma=\left\{v_{1}, \ldots, v_{d}\right\} \in K$ with respect to \mathbf{p} is given by the determinant of the $d \times d$ matrix

$$
M_{\mathbf{p}, \sigma}=\left(\begin{array}{ccc}
\mathbf{p}\left(v_{1}\right) & \ldots & \mathbf{p}\left(v_{d}\right) \\
1 & \ldots & 1
\end{array}\right)
$$

Question

Is there a non-trivial continuous motion of the vertices starting at \mathbf{p} that preserves the volumes of all the ($d-1$)-simplices in K ? By "non-trivial" we mean that the volume of some $(d-1)$ non-face would change.

Volume-rigidity matrix

The volume-rigidity matrix $\mathfrak{V}(K, \mathbf{p})$ of the pair (K, \mathbf{p}) is a $(d-1) n \times f_{d-1}(K)$ matrix given by the Jacobian of the function $\mathrm{p} \mapsto\left(\operatorname{det} M_{\mathrm{p}, \sigma}\right)_{\sigma \in K}$, viewing \mathbf{p} as $\mathbf{a}(d-1) n$-dimensional vector. The column vector \mathbf{v}_{σ} corresponding to a $(d-1)$-face $\sigma=\left\{v_{1}, \ldots, v_{d}\right\} \in K$ is defined by
$\left(\mathbf{v}_{\sigma}\right)_{v, j}= \begin{cases}C_{i, j}\left(M_{\mathbf{p}, \sigma}\right) & \text { if } v=v_{i} \text { and } j \in[d-1], \\ 0 & \text { otherwise. }\end{cases}$ An n-vertex ($d-1$)-dimensional simplicial complex K is called volume-rigid if
$\operatorname{rank}(\mathfrak{V}(K, \mathbf{p}))=(d-1) n-\left(d^{2}-d-1\right)$,
for a generic $\mathbf{p}: V(K) \rightarrow \mathbb{R}^{d-1}$.

Question
Can we characterize volume-rigidity in terms of algebraic shifting?

Question

Can we characterize volume-rigidity in terms of algebraic shifting?

Example: Appolonian network

An Appolonian network is a 2-dimensional simplicial complex obtained by iteratively subdividing a triangle into three via a new vertex.

Figure 1:Example of Appolonian network. First we add vertex d creating triangles abd, acd, bcd and removing the triangle abc. Next we add vertex e creating triangles ade, ace, cde and removing triangle acd.

In the figure above, in the final complex the quantities $\operatorname{vol}(\mathrm{abc})$ and $\operatorname{vol}(\mathrm{acd})$ are preserved under continuous motions preserving all 2-faces. Is vol(bce) also preserved under such motions? Yes, since Appolonian networks are volume-rigid [2].

Exterior algebraic shifting

Consider the exterior face ring

$$
\wedge K=\wedge \mathbb{R}^{n} /\left\langle e_{S}: S \notin K\right\rangle
$$

and let $q: \wedge \mathbb{R}^{n} \rightarrow \wedge K$ denote the natural quotient map. Let $<_{p}$ denote the partial order on $2^{[n]}$ defined as follows: $\sigma=\left\{\sigma_{1}<\cdots<\sigma_{m}\right\}, \tau=\left\{\tau_{1}\right.$ $\left.\tau_{m}\right\} \in 2^{[n]}, \sigma<_{p} \tau$ if $\sigma_{i} \leq \tau_{i}$ for all $i \in[m]$. Let $\left(f_{i}\right)_{i \in[n]}$ be a generic change of basis in \mathbb{R}^{n}.
The exterior algebraic shifting of K w.r.t. $<_{p}$ is defined by
$\Delta^{<_{p}} K=\left\{\sigma \subseteq[n]: q\left(f_{\sigma}\right) \notin \operatorname{span}_{\mathbb{R}}\left\{q\left(f_{\tau}\right): \tau<_{p} \sigma\right\}\right\}$.
Shifting w.r.t. a partial order has several of the good properties of shifting with respect to a linear order because

$$
\Delta^{<_{p}} K=\bigcup_{<_{l} \in \mathcal{L}} \Delta^{<_{l}} K,
$$

where \mathcal{L} is the set of all linear extension of $<_{p}$.

Theorem (B., Nevo and Peled [1])

Fix $d \geq 3$. An n-vertex $(d-1)$-dimensional simplicial complex K is volume-rigid if and only if $\{1,3,4, \ldots, d, n\} \in \Delta^{<_{p}}(K)$.

Proof method

We identify the generic placement of the vertices \mathbf{p} with the generic change of basis $\left(f_{i}\right)_{i \in[n]}$. First, we set $f_{1}=1$. Next, for each $v \in V(K)$ we set the entry of f_{i+1} corresponding to v equal to the i-th entry of $p(v)$, i.e. $\left(f_{i+1}\right)_{v}=p(v)_{i}$. Define

$$
\begin{aligned}
& \psi: \bigoplus_{i=2}^{d} \bigwedge \mathbb{R}^{n} \\
& \rightarrow \bigwedge^{d} \mathbb{R}^{n} \\
&\left(m_{2}, \ldots, m_{d}\right) \mapsto \sum_{i=2}^{d} f_{[d] \backslash\{i\}} \wedge m_{i}
\end{aligned}
$$

Since

$$
\left\langle e_{\sigma}, \psi\left(e_{i, v}\right)\right\rangle=(-1)^{i-1} C_{i-1, j}\left(M_{\mathbf{p}, \sigma}\right)
$$

we have that the matrix representation of $q \circ \psi$ is equal to the transpose of the volume-rigidity matrix $\mathfrak{V}(K, \mathbf{p})$.

Local moves

Edge contraction. Let K be a pure $(d-$ 1)-dimensional simplicial complex, $e=\{u, w\} \in K$ such that at least $(d-1)$ facets in K contain e. Let K^{\prime} be the simplicial complex obtained from K by contracting the edge e, i.e. by identifying the vertex u with w, and removing duplicates. If K^{\prime} is volume rigid then so is K.
Vertex addition. Let K be $(d-1)$-volume-rigid $v \notin V(K)$ and $S \subseteq V(K)$ such that $|S| \geq d$, then $K \cup\left(v *\binom{S}{d-1}\right)$ is $(d-1)$-volume-rigid.
Union of volume-rigid complexes. Let K and L be $(d-1)$-volume-rigid complexes such that $|V(K) \cap V(L)| \geq d$. Then $K \cup L$ is $(d-$ $1)$-volume-rigid.

Volume-rigid surfaces

Every triangulation of the 2-sphere, the torus the projective plane or the Klein bottle is volume-rigid. In addition, every triangulation of the 2 -sphere and the torus minus a single triangle is also volume-rigid. In particular, every simplicial disc with a 3 -vertex boundary is minimally volume-rigid.
To show the claim for the torus, the projective plane and the Klein bottle we have verified by computer that the respective minimal triangulations are volume-rigid.

Volume-rigidity and sparsity

A $(d-1)$-complex is $\left(d-1, d^{2}-d-1\right)$-sparse (resp. tight) if every subset A of its vertices of cardinality at least d spans at most $(d-1)|A|-\left(d^{2}-d-1\right)$ simplices of dimensions $d-1$ (resp. and equality holds when A equals the entire vertex set).
Corollary. For every $d \geq 3$, there exists a $\left(d-1, d^{2}-\right.$ $d-1$)-tight $(d-1)$-complex that is not volume-rigid.

References

[1] Bulavka, D., Nevo, E., Peled, Y. Volume rigidity and algebraic shifting, ArXiv e-prints, 1810.11694, 2018.
[2] Lubetzky, E. and Peled, Y. The Threshold for Stacked Triangulations, International Mathematics Research Notices, 2022. https://doi.org/10.1093/imrn/rnac276.

Contact information

Web: https://kam.mff.cuni.cz/ãbulavka/

Email: dbulavka@kam.mff.cuni.cz

