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Volume computation

Let
p : V (K) → Rd−1

be a mapping of the vertices of K.
The (signed) volume of σ = {v1, . . . , vd} ∈ K with
respect to p is given by the determinant of the d × d
matrix

Mp,σ =
p(v1) . . . p(vd)
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 .

Question

Is there a non-trivial continuous motion of the
vertices starting at p that preserves the volumes of
all the (d − 1)-simplices in K? By “non-trivial”
we mean that the volume of some (d− 1) non-face
would change.

Volume-rigidity matrix

The volume-rigidity matrix V(K,p) of the pair
(K,p) is a (d − 1)n × fd−1(K) matrix given by
the Jacobian of the function p 7→ (detMp,σ)σ∈K,
viewing p as a (d − 1)n-dimensional vector. The
column vector vσ corresponding to a (d − 1)-face
σ = {v1, . . . , vd} ∈ K is defined by

(vσ)v,j =

Ci,j(Mp,σ) if v = vi and j ∈ [d− 1],
0 otherwise.

An n-vertex (d − 1)-dimensional simplicial complex
K is called volume-rigid if

rank(V(K,p)) = (d− 1)n− (d2 − d− 1),
for a generic p : V (K) → Rd−1.

Question

Can we characterize volume-rigidity in terms of
algebraic shifting?

Example: Appolonian network

An Appolonian network is a 2-dimensional
simplicial complex obtained by iteratively
subdividing a triangle into three via a new vertex.

Figure 1:Example of Appolonian network. First we add vertex
d creating triangles abd, acd, bcd and removing the triangle
abc. Next we add vertex e creating triangles ade, ace, cde and
removing triangle acd.

In the figure above, in the final complex the
quantities vol(abc) and vol(acd) are preserved under
continuous motions preserving all 2-faces. Is vol(bce)
also preserved under such motions? Yes, since
Appolonian networks are volume-rigid [2].

Exterior algebraic shifting

Consider the exterior face ring∧
K =

∧
Rn/⟨eS : S /∈ K⟩.

and let q : ∧Rn → ∧
K denote the natural quotient

map. Let <p denote the partial order on 2[n] defined
as follows: σ = {σ1 < · · · < σm}, τ = {τ1 < · · · <
τm} ∈ 2[n], σ <p τ if σi ≤ τi for all i ∈ [m]. Let
(fi)i∈[n] be a generic change of basis in Rn.
The exterior algebraic shifting of K w.r.t. <p is
defined by

∆<pK = {σ ⊆ [n] : q(fσ) /∈ spanR{q(fτ) : τ <p σ}}.
Shifting w.r.t. a partial order has several of the good
properties of shifting with respect to a linear order
because

∆<pK =
⋃
<l∈L

∆<lK,

where L is the set of all linear extension of <p.

Theorem (B., Nevo and Peled [1])

Fix d ≥ 3. An n-vertex (d − 1)-dimensional simplicial complex K is volume-rigid if and only if
{1, 3, 4, ..., d, n} ∈ ∆<p(K).

Proof method

We identify the generic placement of the vertices p
with the generic change of basis (fi)i∈[n]. First, we set
f1 = 1. Next, for each v ∈ V (K) we set the entry of
fi+1 corresponding to v equal to the i-th entry of p(v),
i.e. (fi+1)v = p(v)i. Define

ψ :
d⊕
i=2

1∧
Rn →

d∧
Rn

(m2, . . . ,md) 7→
d∑
i=2
f[d]\{i} ∧mi.

Since

⟨eσ, ψ(ei,v)⟩ = (−1)i−1Ci−1,j(Mp,σ)
we have that the matrix representation of q ◦ ψ is
equal to the transpose of the volume-rigidity matrix
V(K,p).

Local moves

Edge contraction. Let K be a pure (d −
1)-dimensional simplicial complex, e = {u,w} ∈ K
such that at least (d − 1) facets in K contain e. Let
K ′ be the simplicial complex obtained from K by
contracting the edge e, i.e. by identifying the vertex
u with w, and removing duplicates. If K ′ is volume
rigid then so is K.
Vertex addition. Let K be (d− 1)-volume-rigid,
v /∈ V (K) and S ⊆ V (K) such that |S| ≥ d, then
K ∪ (v ∗

(
S
d−1

)
) is (d− 1)-volume-rigid.

Union of volume-rigid complexes. Let K and L be
(d− 1)-volume-rigid complexes such that
|V (K) ∩ V (L)| ≥ d. Then K ∪ L is (d −
1)-volume-rigid.

Volume-rigid surfaces

Every triangulation of the 2-sphere, the torus,
the projective plane or the Klein bottle is
volume-rigid. In addition, every triangulation
of the 2-sphere and the torus minus a single
triangle is also volume-rigid. In particular,
every simplicial disc with a 3-vertex boundary is
minimally volume-rigid.
To show the claim for the torus, the projective
plane and the Klein bottle we have verified
by computer that the respective minimal
triangulations are volume-rigid.

Volume-rigidity and sparsity

A (d− 1)-complex is (d− 1, d2 −d− 1)-sparse (resp.
tight) if every subset A of its vertices of cardinality at
least d spans at most (d−1)|A|−(d2−d−1) simplices
of dimensions d− 1 (resp. and equality holds when A
equals the entire vertex set).
Corollary. For every d ≥ 3, there exists a (d−1, d2 −
d− 1)-tight (d− 1)-complex that is not volume-rigid.
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