

Background

Let $\pi = \pi_1 \pi_2 \dots \pi_m$ be a sequence of positive integers. We say that *i* is a

- **descent** if $\pi_i > \pi_{i+1}$ or i = m,
- **ascent** if $\pi_i < \pi_{i+1}$ or i = 0,
- plateau if $\pi_i = \pi_{i+1}$.

 $des(\pi) = number of descents of \pi$ $\operatorname{asc}(\pi) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{of} \pi$ $plat(\pi) = number of plateaus of \pi$ wdes $(\pi) = des(\pi) + plat(\pi) =$ number of weak descents of π

The Eulerian polynomials

$$A_n(t) = \sum_{\pi \in \mathcal{S}_n} t^{\operatorname{des}(\pi)}.$$

appear as numerators of the series

$$\sum_{m \ge 0} m^n t^m = \frac{A_n(t)}{(1-t)^{n+1}}.$$

Their exponential generating function is

$$A(t,z) = \sum_{n \ge 0} A_n(t) \frac{z^n}{n!} = \frac{1-t}{1-te^{(1-t)z}}.$$

Stirling permutations

Consider the multiset $[n] \sqcup [n] := \{1, 1, 2, 2, ..., n, n\}.$

Definition (Gessel–Stanley [5]) A **Stirling permutation** is a permutation $\pi_1 \pi_2 \dots \pi_{2n}$ of $[n] \sqcup [n]$ that avoids the pattern 212, i.e., there do not exist i < j < k such that $\pi_i = \pi_k > \pi_j$. $\mathcal{Q}_n = \text{set of Stirling permutations of } [n] \sqcup [n].$ Define the **Stirling polynomials**

$$Q_n(t) = \sum_{\pi \in \mathcal{Q}_n} t^{\operatorname{des}(\pi)}$$

Example: $13324421 \in \mathcal{Q}_4$, but $312321 \notin \mathcal{Q}_3$.

Theorem (Gessel–Stanley [5])

$$\sum_{n>0} S(m+n,m) t^m = \frac{Q_n(t)}{(1-t)^{2n+1}},$$

where S(,) denotes the Stirling numbers of the second kind.

Theorem (Bóna [2])

- On average, permutations in \mathcal{Q}_n have $\frac{2n+1}{3}$ ascents, $\frac{2n+1}{3}$ descents and $\frac{2n+1}{3}$ plateaus.
- The distribution of the number of descents on \mathcal{Q}_n is asymptotically normal.

Gessel and Stanley also defined k-Stirling permutations as permutations of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoid the pattern 212.

THE DISTRIBUTION OF DESCENTS ON NONNESTING PERMUTATIONS Sergi Elizalde, Dartmouth College

Viewed as labeled noncrossing matchings,

 $|\overline{\mathcal{Q}}_n| = n! \operatorname{Cat}_n = \frac{(2n)!}{(n+1)!}.$

4114663775885223

Nonnesting permutations
Definition A nonnesting (or canon) permutation is a permutation $\pi_1 \pi_2 \dots \pi_{2n}$ of $[n] \sqcup [n]$ that avoids the patterns 1221 and 2112, i.e., there do not exist $i < j < k < \ell$ with $\pi_i = \pi_\ell$ and $\pi_j = \pi_k$. $C_n =$ set of nonnesting permutations of $[n] \sqcup [n]$. Consider the polynomials $C_n(t, u) = \sum_{\pi \in \mathcal{C}_n} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)}$.
$3532521414 \in \mathcal{C}_5$ $312321 \notin \mathcal{C}_3$ Viewed as labeled nonnseting matching $(2n)!$
$ \mathcal{C}_n = n! \operatorname{Cat}_n = \frac{(2n)!}{(n+1)!}.$
π is nonnesting \iff subsequence of first copies = subsequence of second copies
A peak in a Dyck path $D \in \mathcal{D}_n$ is low if it touches the <i>x</i> -axis, and high otherwise
Example: has 1 low peak and 3 high peaks.
The Narayana polynomials
$N_n(t, u) = \sum_{D \in \mathcal{D}} t^{\# ext{high peaks of } D} u^{\# ext{low peaks of } D}$
$D \in \mathcal{D}_n$ have a well-known generating function
$\sum_{n\geq 0} N_n(t,u) z^n = \frac{2}{1 + (1+t-2u)z + \sqrt{1 - 2(1+t)z + (1-t)^2 z^2}}.$
Main theorem ([3])
$C_n(t, u) = A_n(t) N_n(t, u).$
As a consequence, since the polynomials $A_n(t)$, $N_n(t, 1)$ and $N_n(t, t)$ are palindron so are $C_n(t, 1) = A_n(t)N_n(t, 1)$ and $C_n(t, t) = A_n(t)N_n(t, t)$.
Corollary ([3])
The distributions of descents and weak descents on \mathcal{C}_n are symmetric: for all r ,
$ \{\pi \in \mathcal{C}_n : \operatorname{des}(\pi) = r\} = \{\pi \in \mathcal{C}_n : \operatorname{des}(\pi) = 2n - r\} , \\ \{\pi \in \mathcal{C}_n : \operatorname{wdes}(\pi) = r\} = \{\pi \in \mathcal{C}_n : \operatorname{wdes}(\pi) = 2n + 2 - r\} .$
We have bijective proofs of these symmetries but they are surprisingly complicate

[1] Kassie Archer, Adam Gregory, Bryan Pennington, and Stephanie Slayden. "Pattern restricted quasi-Stirling permutations". In: Australas. J. Combin. 74 (2019), pp. 389–407. [2] Miklós Bóna. "Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley". In: SIAM J. Discrete Math. 23.1 (2008), pp. 401–406.

- [3] Sergi Elizalde. "Descents on nonnesting multipermutations". preprint, arXiv:2204.00165.
- (2021), Paper No. 105429, 35.
- (1978), pp. 24–33.

FPSAC 2023, UC Davis

$$=\sum_{\pi\in\mathcal{C}_n}t^{\mathrm{des}(\pi)}u^{\mathrm{plat}(\pi)}.$$

mic,

References

[4] Sergi Elizalde. "Descents on quasi-Stirling permutations". In: J. Combin. Theory Ser. A 180

[5] Ira M. Gessel and Richard P. Stanley. "Stirling polynomials". In: J. Combin. Theory Ser. A 24.1