Nonnesting permutations

```
Definition
A nonnesting (or canon) permutation is a permutation }\mp@subsup{\pi}{1}{}\mp@subsup{\pi}{2}{}\ldots\mp@subsup{\pi}{2n}{}\mathrm{ of [n] }\sqcup[n
that avoids the patterns }1221\mathrm{ and 2112, i.e., there do not exist }i<j<k<\ell\mathrm{ with
\mp@subsup{\pi}{i}{}=\mp@subsup{\pi}{\ell}{}\mathrm{ and }\mp@subsup{\pi}{j}{}=\mp@subsup{\pi}{k}{}.
\mp@subsup{\mathcal{C}}{n}{}}=\mathrm{ set of nonnesting permutations of [n]}\sqcup[n]
Consider the polynomials
\[
C_{n}(t, u)=\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)} .
\]
```

$3532521414 \in \mathcal{C}_{5} \quad 312321 \notin \mathcal{C}_{3} \quad$ Viewed as labeled nonnseting matchings, $\overparen{35352} \widetilde{\sim} \quad \overbrace{312321}^{\infty} \quad\left|\mathcal{C}_{n}\right|=n!\mathrm{Cat}_{n}=\frac{(2 n)!}{(n+1)!}$.
π is nonnesting \Longleftrightarrow subsequence of first copies = subsequence of second copies A peak in a Dyck path $D \in \mathcal{D}_{n}$ is low if it touches the x-axis, and high otherwise.

Example:
has 1 low peak and 3 high peaks.
The Narayana polynomials

$$
N_{n}(t, u)=\sum_{D \in \mathcal{D}_{n}} t^{\# \text { ligh peaks of } D} u^{\# \text { low peaks of } D}
$$

have a well-known generating function
$\sum_{n \geq 0} N_{n}(t, u) z^{n}=\frac{2}{1+(1+t-2 u) z+\sqrt{1-2(1+t) z+(1-t)^{2} z^{2}}}$.

Main theorem ([3])

$$
C_{n}(t, u)=A_{n}(t) N_{n}(t, u) .
$$

As a consequence, since the polynomials $A_{n}(t), N_{n}(t, 1)$ and $N_{n}(t, t)$ are palindromic so are $C_{n}(t, 1)=A_{n}(t) N_{n}(t, 1)$ and $C_{n}(t, t)=A_{n}(t) N_{n}(t, t)$

Corollary ([3])

The distributions of descents and weak descents on \mathcal{C}_{n} are symmetric: for all r,

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{des}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{des}(\pi)=2 n-r\right\}\right|
$$

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=2 n+2-r\right\}\right| .
$$

We have bijective proofs of these symmetries but they are surprisingly complicated!

References

[1] Kassie Archer, Adam Gregory, Bryan Pennington, and Stephanie Slayden. "Pattern restricted quasi-Stirling permutations". In: Australas. J. Combin. 74 (2019), pp. 389-407.
[2] Miklós Bóna. "Real zeros and normal distribution for statistics on Stirling permutations define by Gessel and Stanley". In: SIAM J. Discrete Math. 23.1 (2008), pp. 401-406.
[3] Sergi Elizalde. "Descents on nonnesting multipermutations". preprint, arXiv:2204.00165.
[3] Sergi Elizalde. "Descents on nonnesting multipermutations". preprint, arXiv:2204.00165.
[4] Sergi Elizalde. "Descents on quasi-Stirling permutations". In: J. Combin. Theory Ser. A 180 [4] Sergi Elizalde. "Descents on quasi-Stirling permutations". In: J. Combin. Theory Ser. A 18 (2021), Paper No. 105429, 3.
(5] Ire Pessel and Richard P. Stanley. "Stirling polynomials". In: J. Combin. Theory Ser. A 24.1 (1978), pp. 24-33.

