A combinatorial interpretation of the NSym inverse Kostka matrix

Sarah K Mason and Edward E Allen

Department of Mathematics, Wake Forest University

The classical inverse Kostka matrix

- $h_{k}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k}} x_{i_{1}} \cdots x_{i_{k}}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{\ell}}$
- Jacobi-Trudi formula: If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$, then

$$
s_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)_{i, j} .
$$

- The inverse Kostka matrix K^{-1} is the transition matrix from $\left\{s_{\lambda}\right\}_{\nvdash n}$ to $\left\{h_{\lambda}\right\}_{\lambda \nvdash n}$ in Sym.
- Eğecioğlu and Remmel [4]: Fill partition diagrams with "special rim hooks" and assign signed weights to these fillings to obtain the inverse Kostka matrix entries.

Immaculate functions $\mathfrak{S}_{\mu}[2]$

- $\left\{H_{1}, H_{2}, \ldots\right\}=$ algebraically independent functions that don't commute; for any composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$,

$$
H_{\alpha}=H_{\alpha_{1}} H_{\alpha_{2}} \cdots H_{\alpha_{\ell}} .
$$

- NSym is generated by H_{1}, H_{2}, \ldots (with no relations)
- Let M_{μ} be the matrix $\left(M_{\mu}\right)_{i, j}=H_{\mu_{i}+j-i}$. Then

$$
\mathfrak{S}_{\mu}=\mathfrak{d e t}\left(M_{\mu}\right),
$$

where $\mathfrak{d e t}$ is the NSym determinant.

Main goal and results:

The main goal of this project is to generalize the EğecioğluRemmel construction to the NSym setting. We provide:

- a diagram filling construction to compute the H-basis decomposition of the immaculate functions,
- an extension to skew immaculates, and
- new results on the ribbon decomposition of
immaculate functions

GBPR Diagram (sequence μ, partition λ)

- Place λ_{i} grey cells in row i (bottom to top)

(2) Forch $1 \leq i \leq k$:
(1f If $\mu_{i}>0$ and $\lambda_{i} \leq \mu_{i}$, append $\mu_{i}-\lambda_{i}$ blue cells to row i.
(8) If $\mu_{i} \leq 0$, append $\left|\mu_{i}\right|+\lambda_{i}$ red cells to row i.
(3) All other cells are purple.

Example: $\mu / \lambda=(2,5,-3,0,-3,6) /(3,2,1)$

If μ is a partition, the GBPR diagram is an ordinary skew partition diagram. Furthermore, the forgetful map (which "forgets" that the H functions don't commute) implies that the constructions in this project are valid in both Sym and NSym

Theorem [A-M, 2022]

For $\mu \in \mathbb{Z}^{k}$,

$$
\mathfrak{S}_{\mu}=\sum_{\gamma \in \mathrm{THC}_{\mu}} \prod_{r=1}^{k} \epsilon\left(\mathfrak{h}\left(r, \tau_{r}\right)\right) H_{\Delta\left(\mathfrak{h}\left(r, \tau_{r}\right)\right)} \text {, where }
$$

- $\mathrm{THC}_{\mu}=$ the set of tunnel hook coverings of a GBPR diagram of shape μ,
- $\mathfrak{h}\left(r, \tau_{r}\right)$ is a tunnel hook starting in row r of a THC,
- $\epsilon\left(\mathfrak{h}\left(r, \tau_{r}\right)\right.$) is the sign of $\mathfrak{h}\left(r, \tau_{r}\right)$, and
- $\Delta\left(\mathfrak{h}\left(r, \tau_{r}\right)\right)$ is a value assigned to tunnel hook $\mathfrak{h}\left(r, \tau_{r}\right)$.

Tunnel hook coverings and weights
A tunnel hook $\mathfrak{h}\left(r, \tau_{r}\right)$ of height p includes all cells in row r as well as some collection of boundary cells (adjacent to grey cells on left) in higher rows, spanning a total of p rows.

- $\Delta\left(\mathfrak{h}\left(r, \tau_{r}\right)\right)=($ blue cells - red cells $)$ in row $r+$ taxicab distance to end of tunnel hook
- $\epsilon\left(\mathfrak{h}\left(r, \tau_{r}\right)\right)=(-1)^{p+}$
- A tunnel hook covering (THC) in THC_{μ} is a covering of the GBPR diagram of μ with non-overlapping tunnel hooks, one starting in each row.

A trio of examples

Skew immaculate functions \mathfrak{S}_{μ}
Let μ and ν be arbitrary sequences of integers and $M_{\mu / \nu}$ be the matrix $\left(M_{\mu / \nu}\right)_{i, j}=H_{\mu_{i}-i-\left(\nu_{j}-j\right)}$. Then

$$
\mathfrak{S}_{\mu / \nu}=\mathfrak{d e t}\left(M_{\mu / \nu}\right)
$$

where $\mathfrak{d e t}$ is the NSym determinant.

- This definition generalizes the Jacobi-Trudi formula for skew Schur functions to NSym

$\left[\begin{array}{lllll}H_{1} & \mathrm{H}_{2} & H_{4} & H_{6} & H_{7} \\ H_{7} & H_{3} & H_{-1} & H_{1} & H_{2}\end{array}\right]$ $\begin{array}{lllll}H_{-4} & H_{-3} & H_{-1} & \mathrm{H}_{1} & H_{2}\end{array}$ | H_{-2} | H_{-1} | H_{1} | H_{3} | H_{4} |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{cccccc}H_{2} & H_{1} & H_{1} & H_{3} & H_{4} \\ \mathrm{H}_{0} & H_{1} & H_{3} & H_{5} & H_{6} \\ H_{3} & H_{2} & & & \end{array}$ $\left[\begin{array}{llllll} & H_{-2} & H_{0} & H_{0} & H_{2} & H_{3}\end{array}\right.$

- Our tunnel hook construction extends to skewing by a partition.

Example: $\mu=(3,-1,2,5,3), \lambda=(2,2,1)$

$=-H_{(1,1,1,1,3)}+H_{(1,1,4,1,0)}+H_{(1,2,1,1,2)}-H_{(1,2,3,1,0)}$
$+H_{(2,1,1,0,3)}-H_{(2,1,4,0,0)}-H_{(2,2,1,0,2)}+H_{(2,2,3,0,0)}^{(, 2,2,1,1)}$

Theorem [A-M, 2022]
For $\mu \in \mathbb{Z}^{k}$ and partition λ,

$$
\mathfrak{S}_{\mu}=\sum_{\gamma \in \operatorname{THC}_{\mu}} \prod_{r=1}^{k} \epsilon\left(\mathfrak{h}\left(r, \tau_{r}\right)\right) H_{\Delta\left(\mathfrak{h}\left(r, \tau_{r}\right)\right)}, \text { where }
$$

- $\mathrm{THC}_{\mu / \lambda}=$ the set of tunnel hook coverings of a GBPR diagram of shape μ,
- $\mathfrak{h}\left(r, \tau_{r}\right)$ is a tunnel hook starting in row r of a THC,
- $\epsilon\left(\mathfrak{h}\left(r, \tau_{r}\right)\right)$ is the sign of $\mathfrak{h}\left(r, \tau_{r}\right)$, and
- $\Delta\left(\mathfrak{h}\left(r, \tau_{r}\right)\right.$) is a value assigned to tunnel hook $\mathfrak{h}\left(r, \tau_{r}\right)$.

Decomposition into ribbon basis
The ribbon basis for NSym is dual to the fundamental basis for quasisymmetric functions (QSym).

$$
R_{\alpha}=\sum_{\beta \succeq \alpha}(-1)^{\ell(\beta)-\ell(\alpha)} H_{\beta}
$$

- Open Problem: Find a formula for the decomposition of the immaculate functions into the ribbon basis.
- Rectangles: If $\alpha=\left(m^{k}\right)$, then the indices appearing in the ribbon expansion equal the length k indices
appearing in the H-basis expansion [3].
- Example: $\alpha=(2,2,2)$
$\mathfrak{S}_{(2,2,2)}=H_{(2,2,2)}-H_{(2,3,1)}-H_{(3,1,2)}+H_{(4,1,1)}+H_{(3,3)}-H_{(4,2)}$ $\mathfrak{S}_{(2,2,2)}=H_{(2,2,2)}-H_{(2,3,1)}-H_{(3,1,2)}+H_{(4,1,1)}$
$\mathfrak{S}_{(2,2,2)}=R_{(2,2,2)}-R_{(2,3,1)}-R_{(3,1,2)}+R_{(4,1,1)}$
- We use our tunnel hook construction to extend this result to a larger (but not complete) class of compositions.

Theorem [A-M, 2022]

```
Let \alpha = (\alpha, , , , 2,
some 1\leqj\leq\ell,
    (1) }\mp@subsup{\alpha}{i}{}\geqi\mathrm{ for 1}\leqi\leqj,\mathrm{ and
    (2) }\mp@subsup{\alpha}{j+1}{}=j\mathrm{ , and
    (3) }\mp@subsup{\alpha}{j+1}{}=\mp@subsup{\alpha}{j+2}{}=\ldots=\mp@subsup{\alpha}{\ell}{}\mathrm{ .
Then
\[
\mathfrak{S}_{\alpha}=\sum_{\sigma \in S_{k}} \epsilon(\sigma) R_{\left(\alpha_{1}-1+\sigma_{1}, \alpha_{2}-2+\sigma_{2}, \ldots, \alpha_{k}-k+\sigma_{k}\right)},
\]
with the convention that \(R_{\alpha}\) vanishes if \(\alpha\) contains any
``` nonpositive parts.

Further directions
- Understand the relationship between skew immaculate functions and products of dual immaculate functions.
- Use tunnel hook coverings to determine the ribbon
expansion of an arbitrary immaculate function.
- Extend this expansion to other bases for NSym and QSym such as the Young quasisymmetric Schur functions.

\section*{For Further Information}
(1) Allen, E. and Mason, S. A combinatorial interpretation of the noncommutative inverse Kostka matrix. ar Xiv:2207.05903 (2022) (2) Berg, C., Bergeron, N., Saliola, F., Serrano, L., and Zabrocki, M. A lift of the Schur and Hall-Littlewood bases to non-commutativ symmetric functions. Canad. J. Math., 66 (2014) 3:525-565.
3 Campbell, J. The expansion of immaculate functions in the ribbon
basis. Discrete Math, 340 (2017) 7:1716-1726
Egecioglu, O. and Remmel, J. A combinatorial interpretation of the inverse Kostka matrix. Linear and Multilinear Algebra, 26 (1990)

Gefrand, I., Krob, D., Lascoux, A., Leclerc, B., Retakh, V., and Iribon, J.Y. Noncommutative symmetric functions. Adv. Math. 112 (1995) 2:218-348.
- Loehr, N. and Niese, E. Combinatorics of the immaculate inverse```

