Generic Curves and non-coprime Catalans

Eugene Gorsky ${ }^{1}$, Mikhail Mazin ${ }^{2}$, Alexei Oblomkov ${ }^{3}$

${ }^{1}$ UC Davis, ${ }^{2}$ Kansas State University, ${ }^{3}$ UMass Amherst

Outline
We compute the Poincaré polynomials of the compactified Jacobians for plane
curve singularities

$$
x=t^{n d}, y=t^{m d}+\lambda t^{m d+1}+\ldots, \lambda \neq 0
$$

and relate them to the q, t-Catalan combinatorics in the non-coprime case.

Compactified Jacobians and Semigroups
Let C be a plane curve singularity parametrized by $(x(t), y(t))$, and let $\mathcal{O}_{C}=$ $\mathbb{C}[[x(t), y(t)]] \subset \mathbb{C}[[t]]$ be the local ring of functions on C. For $f(t) \in \mathcal{O}_{C}$, write $f(t)=\alpha_{k} t^{k}+\alpha_{k+1} t^{k+1}+\ldots, \alpha_{k} \neq 0$
and set $\operatorname{Ord} f(t):=k$. The compactified Jacobian $\overline{J C}$ is defined as the moduli space of \mathcal{O}_{C}-submodules $M \subset \mathbb{C}[t t]$. Note that M is an $\mathcal{O}_{C^{-}}$-submodule if and only if $x(t) M \subset M, y(t) M \subset M$. Given such a subspace M, we define

$$
\Delta_{M}=\{\operatorname{Ord} f(t): f(t) \in M\} \subset \mathbb{Z}_{\geq 0} .
$$

In particular, for $M=\mathcal{O}_{C}$ we obtain the semigroup of C :
$\Gamma=\Delta_{\mathcal{O}_{C}}=\left\{\operatorname{Ord} f(t): f(t) \in \mathcal{O}_{C}\right\}$.
If M is an \mathcal{O}_{C}-submodule then Δ_{M} is a Γ-module: $\Delta_{M}+\Gamma \subset \Delta_{M}$.
Definition
Given a subset $\Delta \subset \mathbb{Z}_{\geq 0}$, we define the stratum in the compactified Jacobian:

$$
J_{\Delta}:=\left\{M \subset \mathbb{C}[[t]]: \mathcal{O}_{C} M \subset M, \Delta_{M}=\Delta\right\} .
$$

Clearly, the strata J_{Δ} give a subdivision of $\overline{J C}$ and J_{Δ} is empty if Δ is not Γ-invariant. However, J_{Δ} could be empty even if Δ is Γ-invariant.

Example

Consider the curve $(x(t), y(t))=\left(t^{4}, t^{6}+t^{7}\right)$. It is easy to see that $y^{2}(t)-x^{3}(t)=$ $2 t^{13}+t^{14}$ has order 13, and one can check that the semigroup Γ in this case is generated by 4,6 and 13 . The subset

$$
\Delta=\{0,2,4,6,8,10,12,13,14, \ldots\}
$$

is clearly Γ-invariant. Suppose that $M \subset J_{\Delta}$, and $f_{0}=1+a t+\ldots$ and $f_{2}=$ $t^{2}+b t^{3}+\ldots$ are two elements of M of orders 0 and 2 respectively. Then $y(t) f_{0}-x(t) f_{2}=\left(t^{6}+t^{7}\right)(1+a t+\ldots)-t^{4}\left(t^{2}+b t^{3}+\ldots\right)=(a+1-b) t^{7}+$. $x^{2}(t) f_{0}-y(t) f_{2}=t^{8}(1+a t+\ldots)-\left(t^{6}+t^{7}\right)\left(t^{2}+b t^{3}+\ldots\right)=(a-b-1) t^{9}+$.

Observe that $a+1-b$ and $a-b-1$ cannot vanish at the same time, so either M contains an element of order 7 or an element of order 9 , which is a contradictio since $7 \notin \Delta$ and $9 \notin \Delta$. Therefore the corresponding stratum J_{Δ} is empty.

Any unibranched planar curve C can be parametrized using Puiseaux expansion

$$
x=t^{n d}, y=t^{m d}+\lambda t^{m d+1}+\ldots, \quad \operatorname{GCD}(m, n)=1 .
$$

If $d=1$ then the semigroup of C is generated by m and n and the link of C is the (n, m) torus knot
Assume that $d>1$. Then a curve C is called a generic curve if $\lambda \neq 0$. It is easy to see that the definition of a generic curve is symmetric in n and m. The semigroup Γ of a generic curve is generated by $d n, d m$ and $d n m+1$. The corresponding knot as a $(d, m n d+1)$-cable of the (n, m) torus knot.

Invariant Subsets and the Cell Decomposition
We call a subset $\Delta \subset \mathbb{Z}_{>0}$ an $(n d)$-invariant subset if $n d+\Delta \subset \Delta$. A number a is called an ($n d)$-generator of Δ if $a \in \Delta$ but $a-n d \notin \Delta$. Let A denote the set of all $(n d)$-generators of Δ.
For any element $b \in \Delta$ let us use the notation

$$
\operatorname{Gaps}(b):=\{c \in \mathbb{Z} \mid c>b, c \notin \Delta\}
$$

Furthermore, set

$$
G(\Delta):=\sum_{a \in A}|\operatorname{Gaps}(a)| \text { and } E(\Delta):=\sum_{a \in A}|\operatorname{Gaps}(a+d m)| .
$$

We show that J_{Δ} is an affine subvariety inside $\mathbb{C}^{G(\Delta)}$ defined by $E(\Delta)$ equations. However, as we saw in the Example above, sometimes the equations have no solutions. It is convenient to split Δ into d pieces according to the remainders modulo d. We write

$$
\Delta_{j}:=\Delta \cap(d \mathbb{Z}+j), \quad \Delta=\bigcup_{j=0, \ldots, d-1} \Delta_{j} .
$$

Definition
We call Δ admissible, if for every j one has $\Delta_{j+1} \not \subset \Delta_{j}+m d+n d+1$
We prove that for an inadmissible subset Δ the set of equations defined above is inconsistent, while for an admissible subset Δ the equations are essentially independent and can be used to eliminate parameters:

Theorem

$J_{\Delta}=\emptyset$ unless Δ is admissible, in which case

$$
J_{\Delta}=\mathbb{C}^{\operatorname{dim}(\Delta)}, \quad \operatorname{dim}(\Delta)=G(\Delta)-E(\Delta)
$$

Continuing the Example above, one gets:

$$
\text { Example }
$$

We have $n=2, m=3$ and $d=2$. For the subset

$$
\Delta=\{0,2,4,6,8,10,12,13,14, \ldots\}
$$

one gets

$$
\Delta_{0}=\{0,2,4,8, \ldots\}=2 \mathbb{Z}_{\geq 0} \text { and } \Delta_{1}=\{13,15, \ldots\}=2 \mathbb{Z}_{\geq 0}+13 .
$$

One gets $n d+m d+1=4+6+1=11$ and

\[\)| $\Delta_{1} \subset \Delta_{0}+n d+m d+1 .$ |
| :--- |

\]

Hence Δ is inadmissible.

Note that even though the semigroup Γ of a generic curve is generated by $d n, d m$, and $d n m+1$, one doesn't have to require Δ to be $(d n m+1)$-invariant. This is due to the following elementary observation:

Lemma

Any admissible $(n d, m d)$-invariant subset is also $(d n m+1)$-invariant

Combinatorics
Let $\operatorname{Inv}(d m, d n)$ be the set of all cofinite 0 -normalized $(d m, d n)$-invariant subsets: $\operatorname{Inv}(d m, d n):=\left\{\Delta \in \mathbb{Z}_{\geq 0}\left|0 \in \Delta, \Delta+d n \subset \Delta, \Delta+d m \subset \Delta,\left|\mathbb{Z}_{\geq 0} \backslash \Delta\right|<\infty\right\}\right.$ Let also $\operatorname{Dyck}(d m, d n)$ be the set of all $(d n, d m)$ Dyck paths, i.e. south-west lattice paths connecting $(0, d n)$ to $(d m, 0)$ and staying (weakly) under the diagonal. In [2] the first two authors and Monica Vazirani defined an equivalence relation \sim on $\operatorname{Inv}(d m, d n)$ and a bijection

$$
\mathcal{D}: \operatorname{Inv}(d m, d n) / \sim \rightarrow \operatorname{Dyck}(d m, d n),
$$

such that $\operatorname{dim} \Delta=\delta-\operatorname{dinv}(\mathcal{D}(\Delta))$ for all $\Delta \in \operatorname{Inv}(n d, m d)$.
We prove the following result:

Theorem

Every equivalence class contains a unique admissible representative.

In particular, one gets the following simple formula for the Poincaré polynomial of the Compactified Jacobian:

Corollary

$$
\begin{aligned}
& \text { The Poincaré polynomial of } \overline{J C} \text { is given by } \\
& \qquad P_{\overline{J C}}(t)=\sum_{D \in \operatorname{Dyck}(n d, m d)} t^{2(\delta-\operatorname{dinv}(D))}
\end{aligned}
$$

The rectangular q, t-Catalan is defined by

$$
C_{n d, m d}(q, t)=\sum_{D \in \operatorname{Dyck}(d n, d m)} q^{\operatorname{area}(D)} t^{\operatorname{dinv}(D)} .
$$

The Compositional Rational Shuffle Theorem, conjectured in [1] and proved in [4], implies that $C_{n d, m d}(q, t)$ is symmetric in q and t. In particular, one gets an even simplier formula for the Poincaré polynomial of $\overline{J C}$:
Corollary

The Poincaré polynomial of $\overline{J C}$ is given by

$$
P_{\overline{J C}}(t)=\sum_{D \in \operatorname{Dyck}(n d, m d)} t^{2(\delta-\operatorname{area}(D))}
$$

Bibliography

[1] F. Bergeron, A. Garsia, E. S. Leven, and G. Xin, Compositional (km,kn)-shuffle conjectures, Int. Math. Res. Not. IMRN (2015), no. 14 4229-4270.
[2] E. Gorsky, M. Mazin, M. Vazirani. Rational Dyck paths in the non relatively prime case. Electron. J. Combin. 24 (2017), no. 3, Paper No. 3.61, 29 pp.
3] E. Gorsky, M. Mazin, A. Oblomkov, Generic Curves and non-coprime Catalans, arXiv:2210.12569.
[4] A. Mellit. Toric braids and (m, n)-parking functions. Duke Math. J,. 170 (2021), no. 18, 4123-4169

