A cocharge formula for the Δ-Springer modules

Maria Gillespie ${ }^{1} \quad$ Sean Griffin ${ }^{2}$

${ }^{1}$ Colorado State University ${ }^{2}$ UC Davis

Main Theorem (G., G., 2023)

Let $R_{n, \lambda, s}$ be a Δ-Springer module. We have the Schur expansion

$$
\widetilde{H}_{n, \lambda, s}(x ; q):=\operatorname{grFrob}\left(R_{n, \lambda, s}\right)=\frac{1}{q^{\left(s_{2}^{-1}\right)(n-k)}} \sum_{T \in \mathcal{T}^{+}(n, \lambda, s)} q^{\operatorname{cc}(T)} s_{\mathrm{sh}^{+}(T)}(x)
$$

where \mathcal{T}^{+}is a set of battery-powered tableaux and cc is the cocharge statistic.

Background: What is a Δ-Springer module?

Ingredients to make a Δ-Springer module $R_{n, \lambda, s}$

1. A positive integer n

Specializations:
2. A partition λ of size $k:=|\lambda|<n$

Delta: $R_{n,\left(1^{k}\right), k}=R_{n, k}$
3. A number $s>\ell(\lambda)$

Springer: $R_{n, \mu, \ell(\mu)}=R_{\mu}$ for $\mu \vdash n$
Recipe: Define $I_{n, \lambda, s}=\left(x_{1}^{s}, \ldots, x_{n}^{s}, e_{r}(S)\right)$ for certain partial elementary symmetric functions $e_{r}(S)$; invariant under S_{n} action on variables.
Output: The graded S_{n}-module

$$
R_{n, \lambda, s}:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I_{n, \lambda, s} .
$$

Background: Charge and cocharge on words

Charge of a standard word: Label the 1 with a charge subscript 0 , then label $i=2,3,4, \ldots, n$ where subscript is incremented if i is right of $i-1$:
$6257134 \rightarrow 6_{2} 2_{0} 5_{2} 7_{3} 1_{0} 3_{1} 4_{2} \quad \operatorname{ch}(6257134)=2+0+2+3+0+1+2=10$
Cocharge of a standard word: Increment subscripts if i is left of $i-1$:
$6257134 \rightarrow 6{ }_{3} 2_{1} 5_{2} 7_{3} 1_{0} 3_{1} 4_{1} \quad \operatorname{cc}(6257134)=3+1+2+3+0+1+1=11$
Subwords: If w is a general word with partition content, to form its first charge subword $w^{(1)}$, search from the right to find a $1,2,3, \ldots$, wrapping around the end cyclically if need be:

$$
w=213413122 \quad w^{(1)}=2 _4 _31 _
$$

Remove $w^{(1)}$ and repeat to find the second cocharge subword $w^{(2)}$, etc. Charge/cocharge of a word w with partition content:

$$
\operatorname{cc}(w)=\sum \operatorname{cc}\left(w^{(i)}\right) \quad \operatorname{ch}(w)=\sum \operatorname{ch}\left(w^{(i)}\right)
$$

Background: Graded Frobenius series

$$
\begin{aligned}
& \text { Recall } \operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda} \text { where } s_{\lambda} \text { is a Schur function and } V_{\lambda} \text { is the irreducible } S_{n} \\
& \text { representation corresponding to } \lambda \text {. Also have } \\
& \qquad \operatorname{Frob}(V \oplus W)=\operatorname{Frob}(V)+\operatorname{Frob}(W) . \\
& \text { Graded Frobenius: If } R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots \text { is a graded ring, } \\
& \qquad \operatorname{grFrob}_{q}(R)=\sum_{d} q^{d} \operatorname{Frob}\left(R_{d}\right)
\end{aligned}
$$

New: Battery-powered tableaux!
Say $n=9, \lambda=(3,2,1,1), s=4$. Define $\Lambda=(n-k)^{s}+\lambda$ as shown.

D| 4 |
| :--- |
| 3 |

3	3
1	1

	3			
	1	1	2	2

Device: D, semistandard, $|D|=n$
Battery: B, semistandard, $(s-1) \times(n-k)$ rectangle
Total content of (D, B) is Λ : The entry i appears Λ_{i} times
Battery-powered tableau of parameters n, λ, s - a pair $T=(D, B)$ as above. Write $\mathcal{T}^{+}(n, \lambda, s)$ for the set of battery-powered tableaux.
Cocharge: $\operatorname{cc}(T)=\operatorname{cc}(w)$ where w is formed by reading the rows of D and then of B from top to bottom. Can you compute the above tableau's cocharge? Shape: $\operatorname{sh}^{+}(T)=\operatorname{sh}(D)$. Above, shape is $(6,2,1)$.

Charge version of Main Theorem

Define rev_{q} of a polynomial by setting $q \mapsto q^{-1}$ and multiplying through by the highest power of q. Then:

$$
\operatorname{rev}_{q}\left(\widetilde{H}_{n, \lambda, s}\right)=\operatorname{rev}_{q}\left(\operatorname{grFrob}\left(R_{n, \lambda, s}\right)\right)=\sum_{T \in \mathcal{T}^{+}(n, \lambda, s)} q^{\operatorname{ch}(T)} s_{\operatorname{sh}^{+}(T)}(x) .
$$

Specialization to "Delta" case

If $\lambda=1^{k}$ and $s=k$, we have $R_{n, \lambda, s}=R_{n, k}$, the Haglund-Rhoades-Shimozono modules. The Delta Conjecture gives combinatorial expansions in two parameters q, t for $\Delta_{e_{k-1}}^{\prime} e_{n}$ where $\Delta_{e_{k-1}}^{\prime}$ is a certain Macdonald eigenoperator, and it is known that $\operatorname{grFrob}\left(R_{n, k}\right)=\omega \circ \operatorname{rev}_{q}\left(\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}\right)$.
Corollary. We have a new Schur expansion and skewing formula at $t=0$:

$$
\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}=\sum_{T \in \mathcal{T}^{+}\left(n,\left(1^{k}\right), k\right)} q^{\operatorname{ch}(T)} s_{\mathrm{sh}^{+}(T)^{*}}(x)=\omega \cdot s_{(n-k)^{k-1}}^{\perp} H_{\Lambda}(x ; q) .
$$

Specialization to "Springer" case

If $k=n$, that is, $\lambda \vdash n$, then $R_{n, \lambda, s}=R_{\lambda}$, a Garsia-Procesi module whose Frobenius series is a Hall-Littlewood polynomial:

$$
\operatorname{grFrob}\left(R_{\lambda}\right)=\widetilde{H}_{\lambda}(x ; q)=\sum_{T \text { content } \lambda} q^{\operatorname{cc}(T)} s_{\operatorname{sh}(T)}
$$

Here $R_{\lambda}=H^{*}\left(\mathcal{B}_{\lambda}\right)$ where \mathcal{B}_{λ} is a Springer fiber.

Background: Borho-Macpherson partial resolutions

Partial flag varieties: $G=\mathrm{GL}_{K}(\mathbb{C}), P$ parabolic subgroup (block upper triangular), B borel (upper trianglar). Partial flag variety is G / P, complete is G / B. Partial resolutions: \mathcal{N} is cone of nilpotent matrices,

$$
\tilde{\mathcal{N}}^{P}:=\left\{\left(n, F_{\bullet}\right) \mid F_{\bullet} \in G / P, n F_{i} \subseteq F_{i} \forall i, n \in \mathcal{N}\right\}
$$

is rationally smooth, $\widetilde{\mathcal{N}}:=\widetilde{\mathcal{N}}^{B}$ is smooth. Springer resolution $\widetilde{\mathcal{N}} \rightarrow \mathcal{N}$ factors: $\widetilde{\mathcal{N}} \xrightarrow{\eta} \widetilde{\mathcal{N}}^{P} \xrightarrow{\rho} \mathcal{N}$.
Orbit closures: Let $y \in \mathcal{N}^{P}$ map to $t+u \in \mathcal{N}$ where t is a block diagonal nilpotent with blocks given by P, u block strictly upper triangular. Orbit \mathcal{O}_{y} defined using adjoint action by a Levi subgroup, $\overline{\mathcal{O}_{y}}$ its closure.
Borho-Macpherson fibers: Let $x \in \mathcal{N}$, define $\mathcal{P}_{x}^{y}=\rho^{-1}(x) \cap \overline{\mathcal{O}_{y}}$. Concretely:

$$
\mathcal{P}_{x}^{y} \cong\left\{F_{\bullet} \in G / P \mid x F_{i} \subseteq F_{i} \text { and } \mathrm{JT}\left(\left.x\right|_{F_{i} / F_{i-1}}\right) \preceq \mathrm{JT}\left(t_{i}\right) \text { for all } i\right\} .
$$

Proof part 1: Δ-Springer varieties as fibers

G. (second author), Levinson, Woo: Constructed a Δ-Springer variety $Y_{n, \lambda, s}$ such that $H^{*}\left(Y_{n, \lambda, s}\right)=R_{n, \lambda, s}$.
Proposition (G., G.): Let P such that flags in G / P has parts in dimensions $1,2, \ldots, n, K=|\Lambda|$. Then $Y_{n, \lambda, s}=\mathcal{P}_{x}^{y}$ where x has Jordan type Λ and t has block sizes $1,1, \ldots, 1, K-n$ with the last block having Jordan type $(n-k)^{s-1}$. Theorem (G., G.): $\overline{\mathcal{O}_{y}}$ is rationally smooth at all points of \mathcal{P}_{x}^{y} in this case.
Idea of proof: Combinatorics of q-Kostka polynomials give the intersection cohomology. This shows the rectangular battery is geometrically special.

Proof part 2: Skewing formula

Using the above connections and a theorem of Borho-Macpherson in the case where $\overline{\mathcal{O}}_{y}$ is rationally smooth at all points of the fiber, we find

$$
\left.q^{(s-1}{ }^{(s-1}\right)(n-k) \widetilde{H}_{n, \lambda, s}(x ; q)=s_{\left((n-k)^{s-1}\right)}^{\perp} \widetilde{H}_{\Lambda}(x ; q)
$$

where s_{ν}^{\perp} is the adjoint operation to multiplication by s_{ν} with respect to the Hall inner product, and where $\tilde{H}_{\Lambda}(x ; q)$ is a Hall-Littlewood polynomial.
Manipulating the above formula using symmetric function theory identities and combinatorics then proves the main theorem.

Towards a combinatorial proof

We have a direct combinatorial proof of the main theorem for:

- $s=2$ and any n, λ
- The coefficient of $s_{(n)}$ in the $t=0$ Delta conjecture case
- The coefficient of $s_{(n)}$ when λ is 'wide'

A full combinatorial proof would be of interest!

