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Main Theorem (G., G., 2023)

Let R), ) s De a A-Springer module. We have the Schur expansion

~ 1
Hn,)\,s(xB Q) = ngrOb(Rn,)\,S) — (8_1>(n—/€) Z qCC<T>SSh—|-(T) (33)
q* 2 TeT(n,\s)

where T is a set of battery-powered tableaux and cc is the cocharge statistic.
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New: Battery-powered tableaux!

Ingredients to make a A-Springer module R,, )

Specializations:
Delta: Rn,(lk),k — ank

1. A positive integer n
2. Apartition A of size k.= |A\| <n
3. Anumber s > £())

Springer: R =R, forukn
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Recipe: Define I, \ ¢ = (1, ..., xp, er(S)) for certain partial elementary sym-
metric functions e, (S); invariant under S, action on variables.

Output: The graded S;,-module

Ry s = Qlzy, ... 7%1]/[72,)\,8'

Background: Charge and cocharge on words

Sayn =9, A=(3,2,1,1), s =4. Define A = (n — k)® + X as shown.

A: | D ’
3|3
8{ 1[1]1]2]2]2
A 4|4
\ 23| b
\n—Y|A|J 11

Device: D, semistandard, |D| =n
Battery: B, semistandard, (s — 1) x (n — k) rectangle
Total content of (D, B) is A: The entry ¢ appears A; times

Battery-powered tableau of parameters n, A\, s - a pair T' = (D, B) as above.
Write T (n, A, s) for the set of battery-powered tableaux.

Cocharge: cc(T) = cc(w) where w is formed by reading the rows of D and
then of B from top to bottom. Can you compute the above tableau’s cocharge?

Shape: sh*(T') = sh(D). Above, shape is (6,2, 1).

Charge version of Main Theorem

Charge of a standard word: Label the 1 with a charge subscript 0, then label
1 =2,3,4,...,n where subscript is incremented if 7 is right of ¢ — 1:

6257134 — 69205973103140  ch(6257134) =24+ 0+2+3+0+1+2 = 10

Cocharge of a standard word: Increment subscripts if ¢ is left of ¢+ — 1:
6257134 — 63215973193141  ¢c(6257134) =3+1+2+34+0+1+1=11
Subwords: If w is a general word with partition content, to form its first charge

subword wl), search from the right to ind a 1,2, 3, ..., wrapping around the
end cyclically if need be:

w=213413122  w =2 431
Remove w'l) and repeat to find the second cocharge subword w?) etc.

Charge/cocharge of a word w with partition content:

ce(w) =Y ce(w!)  ch(w) =Y ch(w!?)

Background: Graded Frobenius series

Define rev, of a polynomial by setting g — ¢~ ! and multiplying through by
the highest power of ¢q. Then:

revy (Hy ) = 1evg (grfrob(Ryp ) = D ¢ sy (@),
TeT T (n,\,s)

Specialization to “Delta” case

Recall Frob(Vy) = sy where s\ is a Schur function and V) is the irreducible S,
representation corresponding to A. Also have

Frob(V @& W) = Frob(V') 4+ Frob(W).

Graded Frobenius: It R=Ry® R1 & Ry & --- is a graded ring,

grkrob, (R) = Z ¢“Frob(R,)
d
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f A = 1¥ and s = k, we have Ry, \.s = Ry 1, the Haglund-Rhoades-Shimozono
modules. The Delta Conjecture gives combinatorial expansions in two param-

eters g, t for Alek_1€” where Alek_1 IS a certain Macdonald eigenoperator, and

it is known that grFrob(R,, 1) = w o revg (A’ek_len\tzo).

Corollary. We have a new Schur expansion and skewing formula at ¢ = 0:

A/ek_lenlt:() = Z th<T)Ssh+(T)*<5E> = W Sé_z_k)k:—lHA(x; q)-

Specialization to “Springer” case

f k = mn, thatis, A = n, then R, \ ; = R), a Garsia-Procesi module whose
Frobenius series is a Hall-Littlewood polynomial:

orFrob(R) ) = Hy (2 q) = Z QCC<T)Ssh(T)
T content A
Here Ry = H*(B)) where B, is a Springer fiber.

FPSAC 2023

Background: Borho—-Macpherson partial resolutions

Partial flag varieties: G = GL g (C), P parabolic subgroup (block upper trian-
gular), B borel (upper trianglar). Partial flag variety is G/ P, complete is G/B.

Partial resolutions: N is cone of nilpotent matrices,
NP = {(n,Fy) | Fo € G/P, nF; C F; Vi, n € N'}
is rationally smooth, N = NBis smooth. Springer resolution N — N factors:
NL NP LN

Orbit closures: Let y € N map to t + u € N where t is a block diagonal
nilpotent with blocks given by P, u block Strictlwpper triangular. Orbit O,
defined using adjoint action by a Levi subgroup, O, its closure.

Borho-Macpherson fibers: Let x € N, define Py = p~—(x) N O,. Concretely:
Pi = {Fe € G/P | xF; C Fyand JT(x|pp,_,) < JT(t;) for all i}

Proof part 1: A-Springer varieties as fibers

G. (second author), Levinson, Woo: Constructed a A-Springer variety Y, y
such that H*(Y, x s) = By a6

Proposition (G., G.): Let P such that flags in G/P has parts in dimensions
1,2,...,n, K = |Al. ThenY,, \ 4 = PJ where x has Jordan type A and ¢ has

block sizes 1,1, ..., 1, K —n with the last block having Jordan type (n— k)5~ L.
Theorem (G., G.): O, is rationally smooth at all points of P in this case.

ldea of proof: Combinatorics of ¢-Kostka polynomials give the intersection
cohomology. This shows the rectangular battery is geometrically special.

Proof part 2: Skewing formula

Using the above connections and a theorem of Borho-Macpherson in the
case where O, is rationally smooth at all points of the fiber, we find

=1l ~ ~
(]( : ><n_k)Hn,)\,s(x3 q) = S(Lm_k)s—l)HA(x; q)

where sﬁ is the adjoint operation to multiplication by s, with respect to the
Hall inner product, and where Hy(x;q) is a Hall-Littlewood polynomial.

Manipulating the above formula using symmetric function theory identities
and combinatorics then proves the main theorem.

Towards a combinatorial proof

We have a direct combinatorial proof of the main theorem for:

= s =2and any n, A,

= The coefficient of S( in the t = 0 Delta conjecture case

n)

" The coefficient of s(,,) when A'is ‘wide

A full combinatorial proof would be of interest!
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