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Main Theorem (G., G., 2023)

Let Rn,λ,s be a ∆-Springer module. We have the Schur expansion

H̃n,λ,s(x; q) := grFrob(Rn,λ,s) = 1

q(s−1
2 )(n−k)

∑
T∈T +(n,λ,s)

qcc(T )ssh+(T )(x)

where T + is a set of battery-powered tableaux and cc is the cocharge statistic.

Background: What is a ∆-Springer module?

Ingredients to make a ∆-Springer module Rn,λ,s

1. A positive integer n Specializations:

2. A partition λ of size k := |λ| < n Delta: Rn,(1k),k = Rn,k

3. A number s > `(λ) Springer: Rn,µ,`(µ) = Rµ for µ ` n

Recipe: Define In,λ,s = (xs
1, . . . , xs

n, er(S)) for certain partial elementary sym-

metric functions er(S); invariant under Sn action on variables.

Output: The graded Sn-module

Rn,λ,s := Q[x1, . . . , xn]/In,λ,s.

Background: Charge and cocharge onwords

Charge of a standard word: Label the 1 with a charge subscript 0, then label

i = 2, 3, 4, . . . , n where subscript is incremented if i is right of i − 1:
6257134 → 62205273103142 ch(6257134) = 2 + 0 + 2 + 3 + 0 + 1 + 2 = 10

Cocharge of a standard word: Increment subscripts if i is left of i − 1:
6257134 → 63215273103141 cc(6257134) = 3 + 1 + 2 + 3 + 0 + 1 + 1 = 11

Subwords: If w is a general word with partition content, to form its first charge

subword w(1), search from the right to find a 1, 2, 3, . . ., wrapping around the

end cyclically if need be:

w = 213413122 w(1) = 2 4 31
Remove w(1) and repeat to find the second cocharge subword w(2), etc.

Charge/cocharge of a word w with partition content:

cc(w) =
∑

cc(w(i)) ch(w) =
∑

ch(w(i))

Background: Graded Frobenius series

Recall Frob(Vλ) = sλ where sλ is a Schur function and Vλ is the irreducible Sn

representation corresponding to λ. Also have

Frob(V ⊕ W ) = Frob(V ) + Frob(W ).

Graded Frobenius: If R = R0 ⊕ R1 ⊕ R2 ⊕ · · · is a graded ring,

grFrobq(R) =
∑

d

qdFrob(Rd)

New: Battery-powered tableaux!

Say n = 9, λ = (3, 2, 1, 1), s = 4. Define Λ = (n − k)s + λ as shown.

λ

Λ: {

{

s

n− |λ|

D 4
3 3
1 1 1 2 2 2

4 4
2 3
1 1

B

Device: D, semistandard, |D| = n

Battery: B, semistandard, (s − 1) × (n − k) rectangle
Total content of (D, B) is Λ: The entry i appears Λi times

Battery-powered tableau of parameters n, λ, s - a pair T = (D, B) as above.
Write T +(n, λ, s) for the set of battery-powered tableaux.

Cocharge: cc(T ) = cc(w) where w is formed by reading the rows of D and

then of B from top to bottom. Can you compute the above tableau’s cocharge?

Shape: sh+(T ) = sh(D). Above, shape is (6, 2, 1).

Charge version of Main Theorem

Define revq of a polynomial by setting q 7→ q−1 and multiplying through by

the highest power of q. Then:

revq

(
H̃n,λ,s

)
= revq

(
grFrob(Rn,λ,s)

)
=

∑
T∈T +(n,λ,s)

qch(T )ssh+(T )(x).

Specialization to “Delta” case

If λ = 1k and s = k, we have Rn,λ,s = Rn,k, the Haglund-Rhoades-Shimozono

modules. TheDelta Conjecture gives combinatorial expansions in two param-

eters q, t for∆′
ek−1en where ∆′

ek−1 is a certainMacdonald eigenoperator, and

it is known that grFrob(Rn,k) = ω ◦ revq

(
∆′

ek−1en|t=0
)
.

Corollary. We have a new Schur expansion and skewing formula at t = 0:

∆′
ek−1en|t=0 =

∑
T∈T +(n,(1k),k)

qch(T )ssh+(T )∗(x) = ω · s⊥
(n−k)k−1HΛ(x; q).

Specialization to “Springer” case

If k = n, that is, λ ` n, then Rn,λ,s = Rλ, a Garsia-Procesi module whose

Frobenius series is a Hall-Littlewood polynomial:

grFrob(Rλ) = H̃λ(x; q) =
∑

T content λ

qcc(T )ssh(T )

Here Rλ = H∗(Bλ) where Bλ is a Springer fiber.

Background: Borho–Macpherson partial resolutions

Partial flag varieties: G = GLK(C), P parabolic subgroup (block upper trian-

gular), B borel (upper trianglar). Partial flag variety is G/P , complete is G/B.

Partial resolutions: N is cone of nilpotent matrices,

Ñ P := {(n, F•) | F• ∈ G/P, nFi ⊆ Fi ∀i, n ∈ N }
is rationally smooth, Ñ := Ñ B is smooth. Springer resolution Ñ → N factors:

Ñ η−→ Ñ P ρ−→ N .

Orbit closures: Let y ∈ N P map to t + u ∈ N where t is a block diagonal

nilpotent with blocks given by P , u block strictly upper triangular. Orbit Oy

defined using adjoint action by a Levi subgroup, Oy its closure.

Borho–Macpherson fibers: Let x ∈ N , define Py
x = ρ−1(x) ∩ Oy. Concretely:

Py
x

∼= {F• ∈ G/P | xFi ⊆ Fi and JT(x|Fi/Fi−1) � JT(ti) for all i}.

Proof part 1: ∆-Springer varieties as fibers

G. (second author), Levinson, Woo: Constructed a ∆-Springer variety Yn,λ,s
such that H∗(Yn,λ,s) = Rn,λ,s.

Proposition (G., G.): Let P such that flags in G/P has parts in dimensions

1, 2, . . . , n, K = |Λ|. Then Yn,λ,s = Py
x where x has Jordan type Λ and t has

block sizes 1, 1, . . . , 1, K − n with the last block having Jordan type (n − k)s−1.

Theorem (G., G.): Oy is rationally smooth at all points of Py
x in this case.

Idea of proof: Combinatorics of q-Kostka polynomials give the intersection

cohomology. This shows the rectangular battery is geometrically special.

Proof part 2: Skewing formula

Using the above connections and a theorem of Borho–Macpherson in the

case where Oy is rationally smooth at all points of the fiber, we find

q(s−1
2 )(n−k)H̃n,λ,s(x; q) = s⊥

((n−k)s−1)H̃Λ(x; q)

where s⊥
ν is the adjoint operation to multiplication by sν with respect to the

Hall inner product, and where H̃Λ(x; q) is a Hall-Littlewood polynomial.

Manipulating the above formula using symmetric function theory identities

and combinatorics then proves the main theorem.

Towards a combinatorial proof

We have a direct combinatorial proof of the main theorem for:

s = 2 and any n, λ,

The coefficient of s(n) in the t = 0 Delta conjecture case

The coefficient of s(n) when λ is ‘wide’

A full combinatorial proof would be of interest!
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