

Main Theorem (G., G., 2023)

Let $R_{n,\lambda,s}$ be a Δ -Springer module. We have the Schur expansion

$$\widetilde{H}_{n,\lambda,s}(x;q) := \operatorname{grFrob}(R_{n,\lambda,s}) = \frac{1}{q^{\binom{s-1}{2}(n-k)}} \sum_{T \in \mathcal{T}^+(n,\lambda,s)} q^{\operatorname{cc}(T)} s_{\operatorname{sh}^+(T)}(x)$$

where \mathcal{T}^+ is a set of battery-powered tableaux and cc is the cocharge statistic.

Background: What is a \triangle **-Springer module?**

Ingredients to make a Δ -Springer module $R_{n,\lambda,s}$

- 1. A positive integer n
- 2. A partition λ of size $k := |\lambda| < n$

Specializations:

3. A number $s > \ell(\lambda)$

Delta: $R_{n,(1^k),k} = R_{n,k}$ **Springer:** $R_{n,\mu,\ell(\mu)} = R_{\mu}$ for $\mu \vdash n$

Recipe: Define $I_{n,\lambda,s} = (x_1^s, \ldots, x_n^s, e_r(S))$ for certain partial elementary symmetric functions $e_r(S)$; invariant under S_n action on variables.

Output: The graded S_n -module

 $R_{n,\lambda,s} := \mathbb{Q}[x_1,\ldots,x_n]/I_{n,\lambda,s}.$

Background: Charge and cocharge on words

Charge of a standard word: Label the 1 with a *charge subscript* 0, then label $i = 2, 3, 4, \ldots, n$ where subscript is incremented if i is right of i - 1:

 $6257134 \rightarrow 6_2 2_0 5_2 7_3 1_0 3_1 4_2 \qquad ch(6257134) = 2 + 0 + 2 + 3 + 0 + 1 + 2 = 10$

Cocharge of a standard word: Increment subscripts if *i* is *left* of i - 1:

 $6257134 \rightarrow 6_32_15_27_31_03_14_1 \qquad cc(6257134) = 3 + 1 + 2 + 3 + 0 + 1 + 1 = 11$

Subwords: If w is a general word with partition content, to form its first charge subword $w^{(1)}$, search from the right to find a $1, 2, 3, \ldots$, wrapping around the end cyclically if need be:

w = 213413122 $w^{(1)} = 2_4_31_$

Remove $w^{(1)}$ and repeat to find the second cocharge subword $w^{(2)}$, etc.

Charge/cocharge of a word w with partition content:

 $cc(w) = \sum cc(w^{(i)}) \qquad ch(w) = \sum ch(w^{(i)})$

Background: Graded Frobenius series

Recall $Frob(V_{\lambda}) = s_{\lambda}$ where s_{λ} is a Schur function and V_{λ} is the irreducible S_n representation corresponding to λ . Also have

$$\operatorname{Frob}(V \oplus W) = \operatorname{Frob}(V) + \operatorname{Frob}(W).$$

Graded Frobenius: If $R = R_0 \oplus R_1 \oplus R_2 \oplus \cdots$ is a graded ring,

$$\operatorname{grFrob}_q(R) = \sum_d q^d \operatorname{Frob}(R_d)$$

A cocharge formula for the Δ -Springer modules

Maria Gillespie¹

²UC Davis

Sean Griffin²

¹Colorado State University

New: Battery-powered tableaux!

Say n = 9, $\lambda = (3, 2, 1, 1)$, s = 4. Define $\Lambda = (n - k)^s + \lambda$ as shown.

Device: D, semistandard, |D| = n

Battery: B, semistandard, $(s-1) \times (n-k)$ rectangle

Total content of (D, B) is Λ : The entry *i* appears Λ_i times

Battery-powered tableau of parameters n, λ, s - a pair T = (D, B) as above. Write $\mathcal{T}^+(n,\lambda,s)$ for the set of battery-powered tableaux.

Cocharge: cc(T) = cc(w) where w is formed by reading the rows of D and then of B from top to bottom. Can you compute the above tableau's cocharge? Shape: $sh^+(T) = sh(D)$. Above, shape is (6, 2, 1).

Charge version of Main Theorem

Define rev_q of a polynomial by setting $q \mapsto q^{-1}$ and multiplying through by the highest power of q. Then:

$$\operatorname{rev}_q\left(\widetilde{H}_{n,\lambda,s}\right) = \operatorname{rev}_q\left(\operatorname{grFrob}(R_{n,\lambda,s})\right) = \sum_{T \in \mathcal{T}^+(n,\lambda,s)} q^{\operatorname{ch}(T)} s_{\operatorname{sh}^+(T)}(x).$$

Specialization to "Delta" case

If $\lambda = 1^k$ and s = k, we have $R_{n,\lambda,s} = R_{n,k}$, the Haglund-Rhoades-Shimozono modules. The Delta Conjecture gives combinatorial expansions in two parameters q, t for $\Delta'_{e_{k-1}}e_n$ where $\Delta'_{e_{k-1}}$ is a certain Macdonald eigenoperator, and it is known that $\operatorname{grFrob}(R_{n,k}) = \omega \circ \operatorname{rev}_q \left(\Delta'_{e_{k-1}} e_n |_{t=0} \right).$

Corollary. We have a new Schur expansion and skewing formula at t = 0:

$$\Delta_{e_{k-1}}'e_n|_{t=0} = \sum_{T \in \mathcal{T}^+(n,(1^k),k)} q^{\operatorname{ch}(T)} s_{\operatorname{sh}^+(T)^*}(x) = \omega \cdot s_{(n-k)^{k-1}}^\perp H_\Lambda(x;q).$$

Specialization to "Springer" case

If k = n, that is, $\lambda \vdash n$, then $R_{n,\lambda,s} = R_{\lambda}$, a Garsia-Procesi module whose Frobenius series is a Hall-Littlewood polynomial:

$$\operatorname{grFrob}(R_{\lambda}) = \widetilde{H}_{\lambda}(x;q) = \sum_{T \text{ content } \lambda} q^{\operatorname{cc}(T)} s_{\operatorname{sh}(T)}$$

Here $R_{\lambda} = H^*(\mathcal{B}_{\lambda})$ where \mathcal{B}_{λ} is a Springer fiber.

FPSAC 2023

Background: Borho–Macpherson partial resolutions

Partial flag varieties: $G = GL_K(\mathbb{C})$, *P* parabolic subgroup (block upper triangular), B borel (upper trianglar). Partial flag variety is G/P, complete is G/B.

Partial resolutions: \mathcal{N} is cone of nilpotent matrices,

 $\widetilde{\mathcal{N}}^P := \{ (n, F_{\bullet}) \mid F_{\bullet} \in G/P, \ nF_i \subseteq F_i \ \forall i, \ n \in \mathcal{N} \}$ is rationally smooth, $\widetilde{\mathcal{N}} := \widetilde{\mathcal{N}}^B$ is smooth. Springer resolution $\widetilde{\mathcal{N}} \to \mathcal{N}$ factors: $\widetilde{\mathcal{N}} \xrightarrow{\eta} \widetilde{\mathcal{N}}^P \xrightarrow{\rho} \mathcal{N}.$

Orbit closures: Let $y \in \mathcal{N}^P$ map to $t + u \in \mathcal{N}$ where t is a block diagonal nilpotent with blocks given by P, u block strictly upper triangular. Orbit \mathcal{O}_y defined using adjoint action by a Levi subgroup, $\overline{\mathcal{O}_y}$ its closure.

Borho-Macpherson fibers: Let $x \in \mathcal{N}$, define $\mathcal{P}_x^y = \rho^{-1}(x) \cap \overline{\mathcal{O}_y}$. Concretely: $\mathcal{P}_x^y \cong \{F_{\bullet} \in G/P \mid xF_i \subseteq F_i \text{ and } \operatorname{JT}(x|_{F_i/F_{i-1}}) \preceq \operatorname{JT}(t_i) \text{ for all } i\}.$

Proof part 1: \triangle -Springer varieties as fibers

G. (second author), Levinson, Woo: Constructed a Δ -Springer variety $Y_{n,\lambda,s}$ such that $H^*(Y_{n,\lambda,s}) = R_{n,\lambda,s}$.

Proposition (G., G.): Let P such that flags in G/P has parts in dimensions $1, 2, \ldots, n, K = |\Lambda|$. Then $Y_{n,\lambda,s} = \mathcal{P}_x^y$ where x has Jordan type Λ and t has block sizes $1, 1, \ldots, 1, K - n$ with the last block having Jordan type $(n - k)^{s-1}$.

Theorem (G., G.): $\overline{\mathcal{O}_y}$ is rationally smooth at all points of \mathcal{P}_x^y in this case.

Idea of proof: Combinatorics of *q*-Kostka polynomials give the intersection cohomology. This shows the rectangular battery is geometrically special.

Proof part 2: Skewing formula

Using the above connections and a theorem of Borho–Macpherson in the case where $\overline{\mathcal{O}}_{y}$ is rationally smooth at all points of the fiber, we find

$$q^{\binom{s-1}{2}(n-k)}\widetilde{H}_{n,\lambda,s}(x;q) = s_{((n-k)^{s-1})}^{\perp}\widetilde{H}_{\Lambda}(x;q)$$

where s_{ν}^{\perp} is the adjoint operation to multiplication by s_{ν} with respect to the Hall inner product, and where $H_{\Lambda}(x;q)$ is a Hall-Littlewood polynomial.

Manipulating the above formula using symmetric function theory identities and combinatorics then proves the main theorem.

Towards a combinatorial proof

We have a direct combinatorial proof of the main theorem for:

- s = 2 and any n, λ ,
- The coefficient of $s_{(n)}$ in the t = 0 Delta conjecture case
- The coefficient of $s_{(n)}$ when λ is 'wide'

A full combinatorial proof would be of interest!