FPSAC 2023
35th International Conference on Formal Power Series and Algebraic Combinatorics
UC Davis (USA), 17-21 July 2023

Alternating Sign Matrices and Descending Plane Partitions: a linear number of equivalent statistics
 a) ilse.fischer@univie.ac.at ${ }^{\text {b) }}$ hans.hoengesberg@univie.ac.at ${ }^{\text {c) florian.schreier-aigner@univie.ac.at }}$

Alternating sign matrices (ASMs) and descending plane
partitions (DPPs) partitions (DPPs)
$n \times n$ ASMs
cyclically symmetric lozenge tilings of
a cored hexagon with sides $n+1, n-1$
$\left(\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right) \quad \underset{ }{\text { equinumerous }}$

The equinumerousity extends to horizontally symmetric objects on both sides.

Arrowed Monotone Triangles
An arrowed monotone triangle (AMT) is a triangular array of integers
satisfying the above monotonicity conditions together with a decoration of the entries by the symbols $\nwarrow, \nearrow, \nwarrow \nearrow$ where an entry can only "point" to entries with a different value.
We define the weight $W_{M}(u, v, w ; \mathbf{x})$ of an AMT $M=\left(m_{i, j}\right)_{1 \leq j \leq i \leq n}$ as

$$
u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i} m_{i, j}-\sum_{j=1}^{i-1} m_{i-1 . j}+\#(\nearrow \text { in row } i)-\#(\Omega \text { in row } i) . . .}
$$

The weight of the AMT above is $u^{5} v^{8} w^{2} x_{1}^{2} x_{2}^{4} x_{3}^{2} x_{4} x_{5}^{3}$.

Operator Formula

The generating function of AMTs with bottom row $k_{1}<k_{2}<\ldots<k_{n}$ is $\prod_{i=1}^{n}\left(u x_{i}+v x_{i}^{-1}+w\right)$

$$
\times \prod_{1 \leq i<j \leq n}\left(u \mathrm{E}_{k_{i}}+v \mathrm{E}_{k_{j}}^{-1}+w \mathrm{E}_{k_{i}} \mathrm{E}_{k_{j}}^{-1}\right) s_{\left(k_{n}, k_{n-1}, \ldots, k_{1}\right)}\left(x_{1}, \ldots, x_{n}\right),
$$

where E_{x} denotes the shift operator, defined as $\mathrm{E}_{x} p(x)=p(x+1)$.

Extended n-DPP paths

An extended n-DPP path is a family of lattice paths with starting points $S_{i}=(-i, i-2)$ and end points $E_{i}=(i,-2)$ for $i \in S$ and a given subset $S \subseteq\{1, \ldots, n\}$ and step set and weights as follows.

The weight of an extended n-DPP path is $v\left(\begin{array}{c}\binom{n+1}{2} \\ \text { times the product of the }\end{array}\right.$ weights of all steps. The weight of the above extended 7-DPP path with $S=\{1,2,4,6\}$ is

$$
u^{11} v^{15} w^{2} x_{1}^{5} x_{2}^{3} x_{3}^{5} x_{4}^{5} x_{5}^{2} x_{6} x_{7}^{3}\left(1+w v^{-1} x_{2}\right)\left(1+w v^{-1} x_{3}\right)\left(1+w v^{-1} x_{6}\right) .
$$

Obtaining the unweighted objects

When specialising $u=v=x_{1}=\cdots=x_{n}=1$ and $w=-1$, we have explicit signed bijections between

1. AMTs with bottom row $(1,2, \ldots, n)$ and $n \times n$ ASMs,
2. extended n-DPP paths and DPPs of size n,
and in the case of reflective symmetry between
3. AMTs with bottom row $(0,2, \ldots, 2 n-2)$ and $(2 n+1) \times(2 n+1)$ vertically symmetric ASMs,
4. certain families of lattice paths and cyclically and horizontally symmetric lozenge tilings of a cored hexagon with alternating side lengths $2 n+2$ and $2 n$.

AMTs and extended n-DPP paths

The generating function of AMTs with bottom row $(1,2, \ldots, n)$ and the generating function of extended n-DPP paths are both given by

$$
\prod_{i=1}^{n}\left(u x_{i}^{2}+v+w x_{i}\right)^{-1} \sum_{T \in \operatorname{TSPP}_{n-1}} \omega_{T}(u, v, w) s_{\pi_{1}(T)}(\mathbf{x})
$$

where TSPP $_{n}$ denotes the set of totally symmetric plane partitions inside an (n, n, n)-box, $\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right)$ denotes the Frobenius notation of the diagonal of $T, \pi_{1}(T)=\left(a_{1}, \ldots, a_{l} \mid b_{1}+1, \ldots, b_{l}+1\right)$, and

$$
\omega_{T}(u, v, w)=u^{\sum_{i}\left(a_{i}+1\right)} v^{\binom{n}{2}-\sum_{i}\left(b_{i}+1\right)} w^{\sum_{i}\left(b_{i}-a_{i}\right)}
$$

Lattice path model for the verically symmetric case

The generating function of AMTs with bottom row $(0,2, \ldots, 2 n-2)$ is equal to the generating function of families of lattice paths starting at $S_{i}=(-i, i)$, ending at $E_{j}=(j-1,-j+2)$, for $1 \leq i, j \leq n$, and with step set, edge weight and sign given as follows, where d is the distance from the line $y=2$

The family of paths above has weight $u v w^{2}\left(u x_{1}+v x_{1}^{-1}\right)\left(u x_{3}+v x_{3}^{-1}\right)$.

Pair of plane partitions with $\mathbf{n}+3$ statistics

By applying sign-reversing involutions, we obtain pairs (P, Q) of plane partitions of the same shape with n rows (allowing row length 0) such that - P is column-strict and the ith row from the bottom is bounded by $2 i$; - Q is row-strict and the i th row from the bottom is bounded by i. The weight is

$$
w^{\binom{n+1}{2}}-\# \text { entries in } Q \prod_{i=1}^{n} x_{i}^{n-1}\left(u x_{i}\right)^{\# 2 i-1 \text { in } P}\left(v x_{i}^{-1}\right)^{\# 2 i \text { in } P} .
$$

(\mathbf{P}, \mathbf{Q}) with three rows

Symplectic tableau

self-complementary plane partition

				\geq		
$\overline{1}$	1		$6 \geq$	6	5	
2	2		$4 \geq$	3	3	
$\overline{3}$			$2 \geq$	2		

$\begin{array}{lll}3 \geq & 3 & 1 \\ 2 \geq & \\ 2 & 1\end{array} \mathrm{~V}$ I $1 \geq 1$

Expansion into symmetric functions

The generating function of AMT s with bottom row $(0,2, \ldots, 2 n-2)$ is

$$
\prod_{i} x_{i}^{n-1} \sum_{Q} w^{\binom{n+1}{2}-|\lambda(Q)|} \mathrm{sp}_{\lambda(Q)}\left(u x_{1}, \ldots, u x_{n}, v x_{1}^{-1}, \ldots, v x_{n}^{-1}\right),
$$

where we sum over all plane partitions Q as above and $\lambda(Q)$ denotes the shape of Q and sp denotes the generating function of symplectic tableaux.

