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1. Manifest
• Birational rowmotion is an birational map defined for every finite poset ([3]).

• It generalizes PL-rowmotion, which in turn generalizes combinatorial rowmo-
tion but also (quite indirectly) Schützenberger promotion of rectangular SSYTs.

• For various classes of posets, wondrous properties of all types of rowmotion have
been surfacing over the last decade ([4], [5], ...).

• Recently, it has been extended to noncommutative rings. Surprisingly, some (not
all!) of its good behavior survives!

• We prove that its periodicity and reciprocity properties survive in the noncom-
mutative case (with a slight twist). See [1] and [2] for details.

2. Notations
• Fix a finite poset P and a ring K (not necessarily commutative).

• Unless said otherwise, P is a p × q-rectangle – i.e., a product [p] × [q] of two
chains [p] = {1, 2, . . . , p} and [q] = {1, 2, . . . , q}.

• The notation x is short for x−1.

• We let P̂ denote the poset P with two new elements 0 and 1 adjoined to it, with
0 ≤ p ≤ 1 for all p ∈ P̂ .

• A K-labelling (or, short, labelling) of P means a map f : P̂ → K. Its values
f (p) are called its labels at the “points” p ∈ P̂ , and we draw it by overlaying
these labels at the respective points on the Hasse diagram of P̂ . For example:
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poset P = [2]× [2] extended poset P̂ a labelling of P

• The notation “u ⋖ v” means “u < v, and there is nothing between u and v”.
Likewise for “u⋗ v”.

3. Noncommutative birational rowmotion

Definition 1. Birational rowmotion is the partial map R : KP̂ 99K KP̂ that trans-
forms each labelling f of P into a new labelling Rf whose values are

(Rf) (0) = f (0) , (Rf) (1) = f (1) , and

(Rf) (v) =

∑
u∈P̂ ;
u⋖v

f (u)

 · f (v) ·
∑
u∈P̂ ;
u⋗v

(Rf) (u) for all v ∈ P.

• This is a recursive definition: To compute (Rf) (v), the (Rf) (u) for all u ⋗ v
must be known.

• If any of the inverses don’t exist, then we leave Rf undefined (thus partial map!).

• Alternatively, R can be defined as a composition of toggles (each changing only
one label) from top to bottom.

• “Classical” birational rowmotion is obtained when K is commutative.

• PL-rowmotion is the case when K is the tropical semifield.

• Combinatorial rowmotion is the case when K is the Boolean semiring.

Example 1. Here are the first four iterations of R for P = [2]× [2]:
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Note that nontrivial computations with noncommutative inverses are used here!8. References
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7. Semirings
• The definition of R and the above theorems are subtraction-free, so we can let
K be any semiring.

• However, the proofs use subtraction (in Step 6). Thus another open problem: Do
periodicity and reciprocity (for P = [p]× [q]) hold when K is just a semiring?

• This is not obvious! There are several identities (e.g., a · a+ b · b = b · a+ b · a
when a+ b is invertible) that hold in all rings but not in all semirings.

4. The main theorems for rectangles
Let now P = [p] × [q] for two integers p, q ≥ 1. Fix a K-labelling f ∈ KP̂ . Set
a = f (0) and b = f (1). Then:

Theorem 1 (twisted periodicity). For any x ∈ P̂ , we have(
Rp+qf

)
(x) = ab · f (x) · ab (if Rp+qf is well-defined).

Theorem 2 (twisted reciprocity). Let ℓ ∈ N and (i, j) ∈ P satisfy ℓ− i−j+1 ≥ 0.
Then, (

Rℓf
)
(i, j) = a · (Rℓ−i−j+1f) (p+ 1− i, q + 1− j)︸ ︷︷ ︸

reflection of (i,j) through
the center of the rectangle

· b

(if Rℓf is well-defined).

• Note that twisted periodicity just says Rp+q (f) = f when K is commutative.

• Several proofs were known for commutative K, but none of them generalize.

• The commutative case is crypto-equivalent to Zamolodchikov periodicity (see
[5]), but the latter does not generalize to noncommutative K.

5. Outline of Proof
• Suffices to prove Thm 2 from which Thm 1 follows easily in two applications.

• Simplify notation by making a “time subscript” and “antipode tilde” so Thm 2
becomes: xℓ = a · x∼

ℓ−i−j+1 · b
• Create two types of “slack products,” A and

A

to write in condensed form certain
expressions along all (lattice) paths between two fixed points in P , from which
we can recover the labels uℓ for any u ∈ P . uu′

d
d′

• Use a “conversion lemma” to relate these prod-
ucts when the starting points are adjacent on the
upper boundary and ending points are adjacent on
the lower boundary. From this, the theorem fol-
lows easily for all boundary elements: Au→d

ℓ =

Au′→d′
ℓ .

• Now it is relatively straightforward to induct up the poset to prove reciprocity for
interior elements.

6. Other posets
• If K is commutative, many more classes of posets P are known for which R has

nice properties (e.g., periodicity). Some of these persist for general K.

• For P = , periodicity holds for commutative K but not in general.
 

  

   .

• For P = ∆(p) (type-A positive root poset), pe-
riodicity is known to hold for commutative K and
seems to hold in general (as well as reciprocity:
(Rpf) (x) = ab · f (x′) · ab), but this is an open
problem.
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