The Kromatic Symmetric Function

Logan Crew, Oliver Pechenik, Sophie Spirkl

- Information in blue is a definition.
- Information in red is an important idea or result.
- The left column is for background information.
- The center column consists of the main definition and results. - The right column contain other details of interest and contact information.

Given a graph G the chromatic symmetric function X_{G} is

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\kappa} \prod_{V \in V(G)} x_{k(v)}
$$

- m - and p-basis expansions are well-understood. In particular setting

$$
\widetilde{m}_{\lambda}=\prod_{i=1}^{\infty}(\# \text { parts of size } i)!m_{\lambda},
$$

[$\left.\widetilde{m}_{\lambda}\right] X_{G}$ is the number of partitions of $V(G)$ into stable sets of sizes equal to the parts of λ.

- Stanley-Stembridge conjecture (1995): If G is the incomparability graph of a $(\mathbf{3}+\mathbf{1})$-free poset (see definitions below), then X_{G} is e-positive.

A vertex-weighted graph (G, w) consists of a graph G and a function $w: V(G) \rightarrow \mathbb{Z}^{+}$. All weights $1 \Longrightarrow$ normal graph. Define

$$
X_{(G, v)}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\kappa} \prod_{v \in V(G)} x_{\kappa(v)}^{w(v)}
$$

- Admits deletion-contraction relation:

$$
X_{(G, w)}=X_{(G \backslash e, w l e)}-X_{(G / e, w / e)}
$$

by adding weights of endpoints when contracting edge e. - Gives simple combinatorial method for iterative computation.
-1

A multi-valued semistandard Young tableau (MVT) is a able in which seal is a tableau in which each cell contains a set of positive integers so
that choosing one integer for each cell from its set always gives a semistandard Young tableau

1,2	2
4	5,8
7	

The Grothendieck symmetric function is
$\bar{s}_{\lambda}=\sum_{T \in M V T(\lambda)}(-1)^{\# n u m b e r s-\# b o x e s} \prod_{i} x_{i}^{\# i}$ in T

- K-theoretic analogues of Schur functions.
- Not homogeneous, lowest degree $\mid \lambda$
- May be viewed as a multiple-valued superposition.

[^0] only if v and w are incomparable in P.

Department of Combinatorics and Optimization, University of Waterloo

The Kromatic symmetric function
$\bar{X}_{(G, w)}$ of a vertex-weighted graph is
$\bar{X}_{(G, w)}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\substack{\kappa: V(G) \rightarrow \mathcal{P}\left(\mathbb{Z}^{+}\right) \\ \kappa(v) \neq \varnothing}} \prod_{v \in V(G)} \prod_{i \epsilon \kappa(v)} x_{i}^{w(v)}$

- Lowest-degree terms give $X_{(G, w)}$
- Graph on right: green=1, blue=2
red $=3$, yellow $=4$
- Some vertices get two colors

Define $\overline{\widetilde{m}}_{\lambda}=\bar{X}_{K \lambda}$ (below is

Then
$\bar{X}_{(G, w)}=\sum_{C} \overline{\widetilde{m}}_{\lambda(C)}$

- C covers of G by (not necessarily disjoint) stable sets
- $\lambda(C)$ the weights of the stable
sets.

$$
\begin{aligned}
& \bar{m}_{2,1}+\bar{m}_{2,1,1}+\bar{m}_{2,1,1} \\
& +\overline{\tilde{m}}_{2,1,1,1}+\bar{m}_{1,1,1}
\end{aligned}
$$

This is an example of the expansion.

A Monomial Basis Expansion and a Deletion-Contraction Relation

A Monomial Basis Expansion and a Deletion-Contraction Relatio

- For nonedge $u v$ in (G, w), express $\bar{X}_{(G, w)}$ in terms of \bar{X} of other graphs with $u v$ added or contracted
- Each graph corresponds to colorings of (G, w) satisfying listed conditions.
- Some other edges are added, e.g. in the upper-right graph, we add edges from v to the neighbors of u.
- Repeatedly applying this relation terminates in finite time, giving a method for computing a finite expression for $\bar{X}_{(G, w)}$

Given a poset P, a P-tableau of shape μ is a filling of μ with elements of P such that - Each $p \in P$ occurs at least once. - Each $p \in P$ occurs at least once.

- Rows are $<p$-increasing left-to-right. - Rows are $<p$-increasing left-to-right.
- Columns are weakly increasing, meaning - Columns are weakly increasing, meaning
that if a is immediately above $b, a \ngtr p b$.

d	c	b
a		
e		

Note that d can be above e in the same column even though $d<p e$ as long as they are not adjacent.

A poset P and its incomparability graph.

An elegant P-tableau of shape λ is a combination of a P-tableau of shape μ and an elegant tableau of shape λ / μ for some $\mu \subseteq \lambda$.

Lifting a Res

When G is the incomparability graph of a
$(\mathbf{3}+\mathbf{1})$-free poset P, the coefficient of s_{λ} in X_{G} the number of P-tableaux of shape λ. In
particular, X_{G} is s-positive.

Theorem (C.-Pechenik-Spirkl (2023-))

When G is the incomparability graph of a $(3+1)$-free poset P, the coefficient of \bar{s}_{λ} in X_{G} is the number of elegant P-tableaux of shape λ. In particular, \bar{X}_{G} is \bar{s}-positive.

Proof Sketch for Grothendieck Positivit

Idea: generalize the analogous proof by Gasharov, replacing Schur functions with Grothendieck functions.

- Start with determinantal formula of Lascoux-Naruse (2014) for the dual stable Grothendieck functions which satisfy $\left\langle\bar{s}_{\lambda}, \underline{s}_{\mu}\right\rangle=\delta_{\lambda \mu}:$

$$
\underline{s}_{\lambda}\left[x_{N}\right]=\operatorname{det}\left(s_{\lambda_{i}-i+j}\left[x_{N}+i-1\right]\right.
$$

where $f\left[x_{N}\right]=f\left(x_{1}, \ldots, x_{N}\right)$.

- Take enough variables and simplify so all functions have sam variable set. Take inner product with \bar{X}_{G} and reduce to

$$
\sum_{\pi \in S_{N}} \operatorname{sgn}(\pi) \sum_{\substack{\left(1, \ldots, l_{(\lambda)}\right) \\ l_{\pi(i)} \leq \lambda_{-(i j}-\pi(i)+i}}\left(\prod_{\pi(i)}\binom{\pi(i)-1}{I_{\pi(i)}}\right)\left[m_{\lambda(\pi, i)}\right] \bar{X}_{G},
$$

where $\lambda\left(\pi, l_{i}\right)$ is the partition with parts $\lambda_{\pi(i)}-\pi(i)+i-I_{i}$.

- Interpret this as a signed sum over (π, A) where \boldsymbol{A} is an elegant P-array - an elegant P-tableau with no restriction on elements in the same column - with row lengths $\lambda_{\pi(i)}-\pi(i)+i$
- Generalize Gasharov's sign-reversing involution on pairs (π, A) whose fixed points are (id, T) where T is an elegant P-tableau.
- Key idea: if A is not an elegant P-tableau, there is a pair of adjacent cells in a column violating the tableau condition. Find the leftmost, bottommost such pair. Swap portions of rows around this pair as follows:

[^1]Based on The Kromatic Symmetric Function A K-Theoretic Analogue of X_{G} by

- Logan Crew (Icrew@uwaterloo.ca)
- Oliver Pechenik (opecheni@uwaterloo.ca) - Sophie Spirkl (sspirkl@uwaterloo.ca)

[^0]: - A poset is a set P with a partial order relation $<p$ that is transitive, nonreflexive, and antisymmetric
 - A poset is $(\mathbf{3}+\mathbf{1})$-free if it does not contain four elements a, b, c, d such that $a<p b<p c$ with d incomparable to all of a, b, c.
 - The incomparability graph of a poset P is a graph with vertex set P and with $v, w \in P$ connected by an edge if and

[^1]: Question: does the Stanley-Stembridge conjecture lift to $\bar{X} G$? Can we find an appropriate \bar{e}-basis so that this might hold? Answer: No!

 - Two logical options for a multiplicative basis: either $\bar{e}_{n}=\bar{s}_{1}$, or $\bar{e}_{n}=\frac{1}{n!} \bar{X}_{\kappa_{n}}$. But for both, even the three-vertex path P_{3} is not \bar{e}-positive!
 - $X_{P_{3}}=3 e_{3}+e_{21}$. So for any \bar{e}, the degree 3 terms of \bar{X}_{6} will be $3 \bar{e}_{3}+\bar{e}_{21}$.
 - But both options for the $\overline{\bar{e}}$-basis give us a monomial $x_{1}^{2} x_{2}^{2}$.

 This does not occur in $\bar{X}_{P_{3}}$, so must be cancelled by a negative term!

 - Is there a topological interpretation of Schur- and - Is there a topological interpretation of Schur- and
 Grothendieck-positivity for \bar{X}_{G} ? Is there a subvariety of the Grothendieck-positivity for \bar{X}_{G} ? Is there a subvariety Grassmanian that induces both of these functions as structural descriptors?
 - Is there a natural \bar{p}-basis lifting interpretations on X_{G} ?

 Perhaps one that lifts $\omega(p)$-positivity?

 - Does \bar{X}_{G} distinguish non-isomorphic trees? Perhaps even all non-isomorphic graphs?

