Conventions for this Poster

- Information in blue is a definition.
- Information in red is an important idea or result.
- The left column is for background information.
- The center column consists of the main definition and results.
- The right column contain other details of interest and contact information.

Chromatic Symmetric Function

Given a graph G the chromatic symmetric function X_G is $X_G(x_1, x_2, \dots) = \sum_{\kappa} \prod_{v \in V(G)} x_{\kappa(v)}$

• *m*- and *p*-basis expansions are well-understood. In particular, setting

$$\widetilde{m}_{\lambda} = \prod_{i=1}^{\infty} (\# \text{ parts of size i })! m_{\lambda},$$

 $[\widetilde{m}_{\lambda}]X_G$ is the number of partitions of V(G) into stable sets of sizes equal to the parts of λ .

• Stanley-Stembridge conjecture (1995): If G is the incomparability graph of a (3 + 1)-free poset (see definitions) below), then X_G is *e*-positive.

Vertex-Weighted Chromatic Symmetric Function

A vertex-weighted graph (G, w) consists of a graph G and a function $w: V(G) \to \mathbb{Z}^+$. All weights $1 \implies$ normal graph. Define

$$X_{(G,w)}(x_1,x_2,\dots) = \sum_{\kappa} \prod_{v \in V(G)} x_{\kappa(v)}^{w(v)}$$

• Admits deletion-contraction relation:

$$X_{(G,w)} = X_{(G \setminus e,w \setminus e)} - X_{(G/e,w/e)}$$

by adding weights of endpoints when contracting edge e.

• Gives simple combinatorial method for iterative computation.

Motivation: Grothendieck Symmetric Functions

A multi-valued semistandard Young tableau (MVT) is a tableau in which each cell contains a set of positive integers so that choosing one integer for each cell from its set always gives a semistandard Young tableau.

The Grothendieck symmetric function is $\overline{s}_{\lambda} = \sum (-1)^{\#numbers - \#boxes} \prod x_i^{\#i \text{ in } T}$ $T \in MVT(\lambda)$

- *K*-theoretic analogues of Schur functions.
- Not homogeneous, lowest degree $|\lambda|$.
- May be viewed as a multiple-valued superposition.

Other Definitions

- A **poset** is a set P with a partial order relation $<_P$ that is transitive, nonreflexive, and antisymmetric.
- A poset is (3+1)-free if it does not contain four elements a, b, c, d such that $a <_P b <_P c$ with d incomparable to all of *a*, *b*, *c*.
- The **incomparability graph of a poset** *P* is a graph with vertex set P and with $v, w \in P$ connected by an edge if and only if v and w are incomparable in P.

The Kromatic Symmetric Function

Logan Crew, Oliver Pechenik, Sophie Spirkl **Department of Combinatorics and Optimization, University of Waterloo** Definition and Example

$$(G,w)(x_1,x_2,\dots) = \sum_{\substack{\kappa: V(G) \to \mathcal{P}(\mathbb{Z}^+) \\ \kappa(v) \neq \emptyset}} \prod_{v \in V(G)} \prod_{i \in \kappa(v)} x_i^{w(v)}$$

- Lowest-degree terms give $X_{(G,w)}$
- Graph on right: green=1, blue=2, red=3, yellow=4
- Some vertices get two colors

 $x_1^4 x_2^5 x_3 x_4^2$

A Monomial Basis Expansion and a Deletion-Contraction Relation

The expansion of $\overline{X}_{(G,w)}$ in usual symmetric function bases is infinite. It makes sense to find appropriate analogues in the style of \overline{s}_{λ} . K(n) f K(v) $K(u) \wedge K(v) = \emptyset$

- C covers of G by (not necessarily disjoint) stable sets
- $\lambda(C)$ the weights of the stable sets.

This is an example of the expansion.

- added or contracted.
- the neighbors of *u*.
- computing a finite expression for $X_{(G,w)}$.

Expansion in \overline{s}_{λ} Basis

Given a poset P, a P-tableau of shape μ is a filling of μ with elements of P such that

- Each $p \in P$ occurs at least once.
- Rows are <_P-increasing left-to-right.
- Columns are weakly increasing, meaning that if *a* is immediately above *b*, $a \neq_P b$.

Note that *d* can be above *e* in the same column even though $d <_P e$ as long as they are not adjacent.

Theorem (Gasharov (1996))	Theo
When G is the incomparability graph of a	W
$(3 + 1)$ -free poset P, the coefficient of s_{λ} in X_G is	(3
the number of P-tableaux of shape λ . In	\overline{X}_{G}
particular, X _G is s-positive.	sha

A poset P and its incomparability graph.

An elegant *P*-tableau of shape λ is a combination of a *P*-tableau of shape μ and an elegant tableau of shape λ/μ for some $\mu \subseteq \lambda$.

d	С
а	1
е	2

• For nonedge uv in (G, w), express $\overline{X}_{(G, w)}$ in terms of \overline{X} of other graphs with uv

• Each graph corresponds to colorings of (G, w) satisfying listed conditions. • Some other edges are added, e.g. in the upper-right graph, we add edges from v to

• Repeatedly applying this relation terminates in finite time, giving a method for

An elegant tableau of shape λ/μ is a semistandard Young tableau of this shape so that the entries in row *i* are no greater than i - 1.

1	1
2	

Lifting a Result of Gasharov eorem (C.-Pechenik-Spirkl (2023+)) hen G is the incomparability graph of a +1)-free poset P, the coefficient of \overline{s}_{λ} in is the number of elegant *P*-tableaux of ape λ . In particular, X_G is \overline{s} -positive.

- $\langle \overline{s}_{\lambda}, \underline{s}_{\mu} \rangle = \delta_{\lambda\mu}$:

$$\sum_{\pi \in S_N} sgn(\pi) \sum_{\substack{(I_1, \dots, I_{l(\lambda)}) \\ I_{\pi(i)} \leq \lambda_{\pi(i)} - \pi(i) + i}} \left(\prod_{\pi(i)} \left(\begin{pmatrix} \pi(i) - 1 \\ I_{\pi(i)} \end{pmatrix} \right) [m_{\lambda(\pi, I_i)}] \overline{X}_G,$$

- $\lambda_{\pi(i)} \pi(i) + i.$
- *P*-tableau.

Answer: No!

- not *e*-positive!
- be $3\overline{e}_3 + \overline{e}_{21}$.
- negative term!
- structural descriptors?

Based on *The Kromatic Symmetric Function*: A K-Theoretic Analogue of X_G by Logan Crew (lcrew@uwaterloo.ca) • Oliver Pechenik (opecheni@uwaterloo.ca) • Sophie Spirkl (sspirkl@uwaterloo.ca)

Proof Sketch for Grothendieck Positivity

Idea: generalize the analogous proof by Gasharov, replacing Schur functions with Grothendieck functions.

• Start with determinantal formula of Lascoux-Naruse (2014) for the dual stable Grothendieck functions which satisfy

$$\underline{s}_{\lambda}[x_{N}] = \det(s_{\lambda_{i}-i+j}[x_{N}+i-1])$$

where $f[x_N] = f(x_1, ..., x_N)$.

• Take enough variables and simplify so all functions have same variable set. Take inner product with X_G and reduce to

where $\lambda(\pi, I_i)$ is the partition with parts $\lambda_{\pi(i)} - \pi(i) + i - I_i$. • Interpret this as a signed sum over (π, A) where A is an elegant *P*-array — an elegant *P*-tableau with no restriction on elements in the same column — with row lengths

• Generalize Gasharov's sign-reversing involution on pairs (π, A) whose fixed points are (id, T) where T is an elegant

• Key idea: if A is not an elegant P-tableau, there is a pair of adjacent cells in a column violating the tableau condition. Find the leftmost, bottommost such pair. Swap portions of rows around this pair as follows:

d	С	b	\iff	d	С	b	
e	1	1		е			
а	b			а	b	1	1

e-positivity

Question: does the Stanley-Stembridge conjecture lift to \overline{X}_G ? Can we find an appropriate \overline{e} -basis so that this might hold?

• Two logical options for a multiplicative basis: either $\overline{e}_n = \overline{s}_{1^n}$, or $\overline{e}_n = -\overline{X}_{K_n}$. But for both, even the three-vertex path P_3 is

• $X_{P_3} = 3e_3 + e_{21}$. So for any \overline{e} , the degree 3 terms of X_G will

• But both options for the \overline{e} -basis give us a monomial $x_1^2 x_2^2$. This does not occur in X_{P_3} , so must be cancelled by a

Further Questions

• Is there a topological interpretation of Schur- and Grothendieck-positivity for \overline{X}_G ? Is there a subvariety of the Grassmanian that induces both of these functions as • Is there a natural \overline{p} -basis lifting interpretations on X_G ? Perhaps one that lifts $\omega(p)$ -positivity? • Does \overline{X}_G distinguish non-isomorphic trees? Perhaps even all non-isomorphic graphs?

Contact Information