Science fiction and Foata-like bijections Sam Armon

Macdonald polynomials

- $\widetilde{\mathrm{H}}_{\mu}(\mathrm{X} ; \mathrm{q}, \mathrm{t})$ is the transformed Macdonald polynomial
- $\left\{\widetilde{H}_{\mu}(X ; q, t): \mu \vdash n\right\}$ is a basis for $\mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]^{\text {sym }}$
- Generalize Schur functions, Hall-Littlewood polynomials, Jack symmetric functions
- Combinatorial formula due to Hagluand, Haiman, and Loehr:

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{T: \mu \rightarrow[n]} q^{i n v(T)} t^{m a j(T)} x^{T}
$$

where T is a filling of μ
Example. $\mu=(3,2)$,

$$
\left.\mathrm{T}=\begin{array}{|l|l}
3 & 2 \\
\hline & 3
\end{array}\right] \quad ; \quad x^{\top}=x_{1}^{2} x_{2} x_{3}^{2}, \quad \operatorname{inv}(\mathrm{~T})=2, \quad \operatorname{maj}(\mathrm{~T})=1
$$

- Open problem: find a combinatorial formula for the coefficients in the Schur expansion:

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{\lambda \vdash-n} \widetilde{\mathrm{~K}}_{\lambda \mu}(q, t) s_{\lambda}(X)
$$

The Macdonald positivity theorem asserts that $\widetilde{\mathrm{K}}_{\lambda \mu}(\mathrm{q}, \mathrm{t}) \in \mathbb{N}[\mathrm{q}, \mathrm{t}]$

Garsia-Haiman modules

- The Garsia-Haiman module M_{μ} is the representation-theoretic analog of $\tilde{H}_{\mu}(X ; q, t)$
- M_{μ} is the subspace of $\mathbb{Q}\left[x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right]$ spanned by the partial derivatives of a bihomogeneous polynomial $\Delta_{\mu}=\operatorname{det}\left(x_{i}^{p} y_{i}^{q_{j}}\right)$
- S_{n} acts by permuting coordinates, endowing M_{μ} with the structure of a doubly graded S_{n}-module

Example. $\mu=(2,1)$

| $(0,1)$ | $\Delta_{\mu}=\operatorname{det}\left(\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right)=x_{2} y_{3}-x_{3} y_{2}-x_{1} y_{3}+x_{3} y_{1}+x_{1} y_{2}-x_{2} y_{1},(1,0)$ |
| :--- | :--- | :--- |

Six nontrivial partial derivatives:
$\partial_{x_{1}}\left(\Delta_{\mu}\right)=-y_{3}+y_{2}$
$\partial_{y_{1}}\left(\Delta_{\mu}\right)=x_{3}-x_{2}$
$\partial_{x_{2}}\left(\Delta_{\mu}\right)=y_{3}-y_{1}$
$\partial_{y_{2}}\left(\Delta_{\mu}\right)=-x_{3}+x_{1}$
$\partial_{x_{3}}\left(\Delta_{\mu}\right)=-y_{2}+y_{1}$
$\partial_{y_{3}}\left(\Delta_{\mu}\right)=x_{2}-x_{1}$
and $\left\{\Delta_{\mu}, \partial_{x_{1}}\left(\Delta_{\mu}\right), \partial_{x_{2}}\left(\Delta_{\mu}\right), \partial_{y_{1}}\left(\Delta_{\mu}\right), \partial_{y_{2}}\left(\Delta_{\mu}\right), 1\right\}$ is a basis, $\operatorname{so} \operatorname{dim}\left(M_{\mu}\right)=6=3$!

- Haiman's n ! theorem proves that in general $\operatorname{dim}\left(\mathrm{M}_{\mu}\right)=|\mu|$!, which in turn proves that $\operatorname{Frob}\left(\mathrm{M}_{\mu}\right)=\widetilde{H}_{\mu}(\mathrm{X} ; \mathrm{q}, \mathrm{t})$
- Kostka-Macdonald coefficients $\widetilde{\mathrm{K}}_{\lambda \mu}(\mathrm{q}, \mathrm{t})$ describe the doubly graded decomposition of M_{μ} into irreducible S_{n}-modules

Science fiction

- Bergeron and Garsia studied intersections of k-tuples of Garsia-Haiman modules: the science fiction heuristics conjecturally describe the dimension and Frobenius series
Conjecture ($\mathrm{n}!/ \mathrm{k}$ conjecture). Let $\lambda \vdash n+1$ and let $\mu^{1}, \ldots, \mu^{\mathrm{k}} \vdash \mathrm{n}$ be k distinct partitions obtained by removing a cell from λ. Then

$$
\operatorname{dim}\left(\bigcap_{i=1}^{k} M_{\mu^{i}}\right)=\frac{n!}{k} .
$$

$$
\operatorname{dim}\left(\mathrm{M}_{(4,3,1)} \cap \mathrm{M}_{(4,2,2)} \cap \mathrm{M}_{(3,3,2)}\right)=\frac{8!}{3} .
$$

A basis for hook shapes

- Adin, Remmel, and Roichman define a basis for $\mathrm{M}_{\left(\mathrm{a}, 1^{1}\right)}$, the Garsia-Haiman module indexed by a hook shape
- Basis elements $\varphi_{T} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right]$ are indexed by standard fillings T $\left(a, 1^{\ell}\right) \underset{\rightarrow}{\sim}[n] ; x$-degree determined by column inversions and y-degree determined by row inversions

Example.

$\operatorname{colInv}(\mathrm{T})=\{(4,1),(\mathbf{9}, 7),(\mathbf{9}, 5),(7,5)\}$, $\operatorname{rowInv}(T)=\{(5,3),(5,2),(6,3),(6,2),(3,2)\}$,

$$
\text { so } \varphi_{T}(X, Y)=x_{4} x_{7} x_{9}^{2} y_{2}^{3} y_{3}^{2} .
$$

- We define a bijection θ on certain subsets of standard fillings which preserves appropriate elements in the row/column inversions, determining a basis for $M_{\left(a, l^{1-1}\right)} \cap M_{\left(a-1,1^{e}\right)}$

$n!/ 2$ theorem for hook shapes

The map θ satisfies $\varphi_{T}=\varphi_{\theta(T)}$ and is defined on a set of size $n!/ 2$, so θ determines a basis for $\mathrm{M}_{\left(\mathrm{a}, 1^{l-1}\right)} \cap \mathrm{M}_{\left(a-1, l^{1}\right)}$ and, in particular,
$\operatorname{dim}\left(M_{\left(a, 1^{t-1}\right)} \cap M_{(a-1,14)}\right)=\frac{n!}{2}$.

Foata's bijection

- Foata defined a family $\left\{\gamma_{x}\right\}$ of bijections on S_{n} which proves that the statistics maj and in ν are equidistributed
Example. To compute $\gamma_{5}(78136294)$, draw a vertical bar to the right of each number <5 and cyclically rotate the numbers within each block:

$$
\underset{\sim}{78} 1|3| 32|\underset{\sim}{\mid c} \underset{\sim}{9} 4| \longmapsto 178|3| 26|49|
$$

So $\gamma_{5}(78136294)=17832649$.

- $\operatorname{Defining} \Phi(w x)=\gamma_{x}(\Phi(w)) x$, we have $\operatorname{inv}(\Phi(w))=\operatorname{maj}(w)$

Foata-like bijections

- The bijection θ is defined by composing two maps on words: arm $_{u}$ and leg $_{v}$

Example. Let $w=49263187$. To compute $\operatorname{arm}_{5}(w)$ we draw vertical bars to the left of 4,2 , and 3 and within each block shuffle the leftmost number >5 to the front:

So, $\operatorname{arm}_{5}(w)=94628317$. The smaller entries in the inversions are identical in $5 w$ and in $\operatorname{arm}_{5}(w)$.
Example. Let $w=48731926$. To compute leg $_{5}(w)$ we draw vertical bars to the right of every number 7,9 , and 6 and within each block shuffle the rightmost number <5 to the end:

$$
4 \underbrace{4} 7|3 \underbrace{19}| 26|\longmapsto 874| 391|62|
$$

So, $\operatorname{leg}_{5}(48731926)=87439162$. The larger entries in the coinversions are identical in $5 w$ and in $\operatorname{leg}_{5}(w)$.
Example. Let $\mu=\left(5,1^{4}\right)$ and $\rho=\left(4,1^{5}\right)$, and let

$u=5, v=6$, so

$\in \mathrm{SF}_{<}(\rho)$.

Note that $\varphi_{T}=\varphi_{\theta(T)}=x_{7}^{2} x_{9}^{4} y_{2}^{3} y_{3}^{2}$.

