Science fiction and Foata-like bijections Sam Armon

Macdonald polynomials

- $\widetilde{H}_{\mu}(X; q, t)$ is the transformed Macdonald polynomial
- { $\widetilde{H}_{\mu}(X; q, t) : \mu \vdash n$ } is a basis for $\mathbb{Q}(q, t)[x_1, \dots, x_n]^{Sym}$
- Generalize Schur functions, Hall-Littlewood polynomials, Jack symmetric functions
- Combinatorial formula due to Hagluand, Haiman, and Loehr:

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{T:u \to [n]} q^{inv(T)} t^{maj(T)}$$

where T is a *filling* of μ

Example. $\mu = (3, 2)$,

$$T = \begin{bmatrix} 3 & 2 \\ 1 & 3 & 1 \end{bmatrix}; \quad x^{T} = x_{1}^{2}x_{2}x_{3}^{2}, \quad inv(T) = 2, \quad maj(T) = 1$$

• Open problem: find a combinatorial formula for the coefficients in the Schur expansion:

 $\widetilde{H}_{\mu}(X;q,t) = \sum_{\lambda \vdash \mathfrak{n}} \widetilde{K}_{\lambda \mu}(q,t) s_{\lambda}(X)$

The Macdonald positivity theorem asserts that $K_{\lambda\mu}(q,t) \in \mathbb{N}[q,t]$

Garsia-Haiman modules

• The Garsia-Haiman module M_{μ} is the representation-theoretic analog of $\widetilde{H}_{\mu}(X;q,t)$

- M_{μ} is the subspace of $\mathbb{Q}[x_1, \ldots, x_n; y_1, \ldots, y_n]$ spanned by the partial derivatives of a bihomogeneous polynomial $\Delta_{\mu} = det(x_i^{p_j}y_i^{q_j})$
- $\bullet S_n$ acts by permuting coordinates, endowing M_μ with the structure of a doubly graded S_n-module

 $= x_2y_3 - x_3y_2 - x_1y_3 + x_3y_1 + x_1y_2 - x_2y_1$

Example.
$$\mu = (2, 1)$$

Six nontrivial partial derivatives:

$$\begin{array}{ll} \partial_{x_1}(\Delta_{\mu}) = -y_3 + y_2 & & \partial_{y_1}(\Delta_{\mu}) = x_3 - x_2 \\ \partial_{x_2}(\Delta_{\mu}) = y_3 - y_1 & & \partial_{y_2}(\Delta_{\mu}) = -x_3 + x_1 \\ \partial_{x_3}(\Delta_{\mu}) = -y_2 + y_1 & & \partial_{y_3}(\Delta_{\mu}) = x_2 - x_1 \end{array}$$

and $\{\Delta_{\mu}, \partial_{x_1}(\Delta_{\mu}), \partial_{x_2}(\Delta_{\mu}), \partial_{u_1}(\Delta_{\mu}), \partial_{u_2}(\Delta_{\mu}), 1\}$ is a basis, so dim $(M_{\mu}) = 6 = 3!$

x3 ¥3

- Haiman's n! *theorem* proves that in general $\dim(M_{\mu}) = |\mu|!$, which in turn proves that $Frob(M_{\mu}) = \widetilde{H}_{\mu}(X;q,t)$
- Kostka-Macdonald coefficients $\tilde{K}_{\lambda\mu}(q,t)$ describe the doubly graded decomposition of M_{μ} into irreducible S_n -modules

Science fiction

• Bergeron and Garsia studied intersections of k-tuples of Garsia-Haiman modules: the science fiction heuristics conjecturally describe the dimension and Frobenius series

Conjecture (n!/k conjecture). Let $\lambda \vdash n + 1$ and let $\mu^1, \ldots, \mu^k \vdash n$ be k distinct partitions obtained by removing a cell from λ . Then

$$\dim\left(\bigcap_{i=1}^{k} M_{\mu^{i}}\right) = \frac{n!}{k}.$$

A basis for hook shapes

- Adin, Remmel, and Roichman define a basis for $M_{(q,1^{\ell})}$, the Garsia-Haiman module indexed by a hook shape
- Basis elements $\varphi_T \in \mathbb{Q}[x_1, \dots, x_n; y_1, \dots, y_n]$ are indexed by *standard fillings* T : $(\mathfrak{a}, \mathfrak{l}^{\ell}) \xrightarrow{\sim} [\mathfrak{n}]$; x-degree determined by *column inversions* and y-degree determined by row inversions

Example.

$colInv(T) = \{(4, 1), (9, 7), (9, 5), (7, 5)\},\$ $rowInv(T) = \{(5,3), (5,2), (6,3), (6,2), (3,2)\},\$

so $\varphi_{T}(X, Y) = x_{4}x_{7}x_{9}^{2}y_{2}^{3}y_{3}^{2}$.

• We define a bijection θ on certain subsets of standard fillings which preserves appropriate elements in the row/column inversions, determining a basis for $M_{(a,1^{\ell-1})} \cap M_{(a-1,1^{\ell})}$

n!/2 theorem for hook shapes

The map θ satisfies $\varphi_T = \varphi_{\theta(T)}$ and is defined on a set of size n!/2, so θ determines a basis for $M_{(\mathfrak{a},1^{\ell-1})}\cap M_{(\mathfrak{a}-1,1^{\ell})}$ and, in particular,

$$\dim(\mathbf{M}_{(\mathfrak{a},1^{\ell-1})}\cap\mathbf{M}_{(\mathfrak{a}-1,1^{\ell})})=\frac{n!}{2}.$$

Foata's bijection

• Foata defined a family $\{\gamma_x\}$ of bijections on S_n which proves that the statistics maj and inv are equidistributed

Example. To compute $\gamma_5(78136294)$, draw a vertical bar to the right of each number < 5 and cyclically rotate the numbers within each block:

So $\gamma_5(78136294) = 17832649$.

• Defining $\Phi(wx) = \gamma_x(\Phi(w))x$, we have $inv(\Phi(w)) = maj(w)$

Foata-like bijections

• The bijection θ is defined by composing two maps on words: arm_u and leg_v

Example. Let w = 49263187. To compute $arm_5(w)$ we draw vertical bars to the left of 4, 2, and 3 and within each block shuffle the leftmost number > 5 to the front:

|4 9 |2 6 |3 1 8 7 → |9 4 |6 2 |8 3 1 7

So, $arm_5(w) = 94628317$. The *smaller* entries in the *inversions* are identical in 5w and in $\operatorname{arm}_5(w)$.

Example. Let w = 48731926. To compute $leq_5(w)$ we draw vertical bars to the right of every number 7, 9, and 6 and within each block shuffle the rightmost number < 5 to the end:

$$4 \ 8 \ 7 \ | \ 3 \ 1 \ 9 \ 2 \ 6 \ | \ 6 \ 2 \ 8 \ 7 \ 4 \ 3 \ 9 \ 1 \ 6 \ 2$$

So, $leg_5(48731926) = 87439162$. The *larger* entries in the *coinversions* are identical in 5*w* and in $leg_5(w)$.

Example. Let
$$\mu = (5, 1^4)$$
 and $\rho = (4, 1^5)$, and let

$$T = \frac{\begin{array}{|c|c|}\hline 9 \\ \hline 1 \\ \hline 7 \\ \hline 4 \\ \hline 5 & 6 & 3 & 2 & 8 \end{array} \in SF_{<}(\mu)$$

u = 5, v = 6, so

