The ν-Dyck lattices

An interval $[P, Q]$ in Dyck ${ }_{\nu}$ is a left interval if Q is obtained from P by transforming a subpath $E^{\ell} N$ It is a right interval if Q is obtained from P by transforming a subpath $E N^{\ell}$ into $N^{\ell} E$ for some $\ell \geqslant 1$. Proposition
Left and right intervals are exactly all non trivial linear intervals in the ν-Dyck lattices.

Example
The dark brown path
$(0,0,2,1,2)$ is weakly above the blue path
$\nu=\operatorname{ENEENNEEN}=(1,2,0,2,0)$.

Example
The ν-Dyck lattices for $\nu_{1}=$ ENEEN (left) and $\nu_{2}=E N E E N N$ (right). We omit the commas and $\nu_{2}=E N E E N N$ (right). We omit the commas an
parentheses in the labels of the paths. ${ }^{\text {Dyck }} \nu_{\nu_{1}}$ has $7,8,4$, and 1 linear intervals of length $0,1,2$, and 3 , respectively. Dyck $\nu_{\nu_{2}}$ has $16,24,16$, and 3 linear intervals of length $0,1,2$ and 3 , respectively.

The alt ν-Tamari lattices

fit into a family of posets that we call the alt ν-Tamari lattices.
 tor with respect to ν is $\delta=\left(\delta_{1}, \ldots, \delta_{k}\right)$ with
$0 \leqslant \delta_{i} \leqslant \nu_{i}, \forall i$. We set $\delta(E)=-1$ for an east step and $\delta\left(N_{i}\right)=\delta_{i}$ for the i-th north step in order to deine δ-excursions and δ-rotation The alt ν-Tamari lattice $\operatorname{Tam}_{\nu}(\delta)$ is the reflexive ransitive closure of δ-rotations.

Example
 and $\delta=(2,1,0,0)$. The dotted path is

The alt ν-Tamari lattice $\operatorname{Tam}_{\nu}(\delta)$ can also be described with rotations on trees. Let $\check{\nu}$ be the path
with the same endpoints as ν such that $\check{\nu}_{i}=\delta_{i} \forall i$ A (δ, ν)-tree is the image of a ν-path under the righ flushing with respect to ν.

Example

The (δ, ν)-tree that corresponds to the path of the example on the left for $\nu=(3,2,1,1,0)$ and

Example
The alt ν-Tamari lattices for $\nu_{1}=\operatorname{ENEEN}, \delta_{1}=$ $(1,0)$ (left) and $\nu_{2}=E N E E N N, \delta_{2}=(1,0,0)$ (right).
$\operatorname{Tam}_{\nu_{1}}\left(\delta_{1}\right)$ has $7,8,4$, and 1 linear intervals of length $0,1,2$, and 3 , respectively. Tam $\nu_{2}\left(\delta_{2}\right)$ has $16,24,16$, and 3 linear intervals of length $0,1,2$ $16,24,16$, and 3 linea
and 3 , respectively.

The ν-altitude alt $\nu_{\nu}(p)$ of a lattice point p of a ν-path μ is the maximum number of horizontal steps that can be added to the right of p without crossing ν. A ν-rotation $\mu<\lessdot_{\nu} \mu^{\prime}$ consists of switching the east step of a valley of a ν-path μ with the ν-excursion following it.
The ν-Tamari
The ν-Tamari lattice Tam_{ν} is the reflexive transitive closure of ν-rotations.

Example
The rotation operation of a ν-path for the path
$=E N E E N N E E N$. Each point is labelled with its ν-altitude.

The ν-Tamari lattices

The ν-Tamari lattice can also be described as the reflexive transitive closure of ν-rotations on ν-trees.
Two lattice points are ν-incompatible if one is Two lattice points are ν-incompatible if one is
strictly northeast of the other and the rectangle they strictly northeast of the other and the rectangle they define does not cross ν.
ν-tree is a maximal collection of ν-compatible points above ν in the smallest rectangle containing ν. We can define ν-rotations of a ν-path as below:

Example
The rotation operation of a ν-tree for the path $\nu=$ ENEENNEEN.

Example
The ν-Tamari lattices for $\nu_{1}=$ ENEEN (left) and $\nu_{2}=$ ENEENN (right).
$\operatorname{Tam}_{\nu_{2}}$ has $7,8,4$, and 1 linear intervals of length $0,1,2$, and 3 , respectively. Tam ν_{2} has $16,24,16$, and 3 linear intervals of length $0,1,2$, and 3 , respectively.

Results and bijections

Theorem 1

The alt ν-Tamari lattice $\operatorname{Tam}_{\nu}(\delta)$ is indeed a lattice. It is the restriction of $\operatorname{Tam}_{\bar{\nu}}$ to the interva of (δ, ν)-trees.
Similarly as in the ν-Dyck lattice, we can define left intervals and right intervals in the alt μ-Tamari lattices, and all linear intervals are either trivial, left or right intervals.
Moreover, we can defined 5 -marked and 7 -marked (δ, ν)-trees, in bijection with left and right intervals in $\operatorname{Tam}_{\nu}(\delta)$, respectively

Theorem 2

For a fixed path ν, all alt ν-Tamari lattices have the same number of right intervals and the same number of left intervals.
In particular, the number of linear intervals in $\operatorname{Tam}_{\nu}(\delta)$ is independant of the choice of δ.

For two different increment vectors δ and δ^{\prime}, the left flushings provide a bijection between (δ, ν)-trees extends naturally to

Example
Bijection between left intervals for $(1,2,0,3,2,0)$, with increment vectors $\delta^{\text {max }}$
$(2,0,3,2,0)$ (left) and $\delta=(1,0,1,1,0)$ (right).

A similar bijection between (δ, ν)-trees and $\left(\delta^{\prime}, \nu\right)$ trees can be described where this time we preserve
the number of nodes (not the columns. This bijection extends naturally the columns. This
T-marked trees. -

Example

Bijection between right intervals for ν $(2,0,3,2,0)$ (left) and $\delta=(1,0,1,1,0)$ (right).

