

On linear intervals in the alt ν -Tamari lattices

Cesar Ceballos & Clément Chenevière

[⊄] Institute of Geometry, TU Graz, Graz, Austria. [⇔]IRMA, Université de Strasbourg, Strasbourg, France & Ruhr-Universität Bochum, Bochum, Germany.

In a poset, when two elements P and Q are comparable, the interval [P,Q] is the subset of elements R that satisfy $P\leqslant R\leqslant Q$. The simplest intervals are those which are totally ordered. They are called **linear intervals**. Intervals of the form [P,P] are called **trivial** and are always linear. Given a lattice path ν , the ν -Tamari lattice and the ν -Dyck lattice are two natural examples of partial order structures on the set of lattice paths that lie weakly above ν . In this work, we introduce a more general family of lattices, which contains these two examples as particular cases. Unexpectedly, we show that all these lattices have the same number of linear intervals.

The ν -Dyck lattices

A lattice path ν consisting of a finite number of north and east unit steps can be encoded by the sequence of its consecutive east steps.

A ν -path μ is a lattice path using north and east steps, with the same endpoints as ν , that is weakly above ν .

The ν -Dyck lattice $\operatorname{Dyck}_{\nu}$ of size n is the poset on ν -paths where $P \leqslant Q$ if Q is weakly above P.

Example

The dark brown path $\mu = NNEENENEE = (0,0,2,1,2)$ is weakly above the blue path $\nu = ENEENNEEN = (1,2,0,2,0)$.

An interval [P, Q] in $\operatorname{Dyck}_{\nu}$ is a **left interval** if Q is obtained from P by transforming a subpath $E^{\ell}N$ into NE^{ℓ} for some $\ell \geq 1$.

It is a **right interval** if Q is obtained from P by transforming a subpath EN^{ℓ} into $N^{\ell}E$ for some $\ell \geqslant 1$.

Proposition

Left and right intervals are exactly all non trivial linear intervals in the ν -Dyck lattices.

Example

A left interval of length 2 in Dyck_{ν} for $\nu = ENEENNEEN$.

Example

The ν -Dyck lattices for $\nu_1 = ENEEN$ (left) and $\nu_2 = ENEENN$ (right). We omit the commas and parentheses in the labels of the paths.

Dyck_{ν_1} has 7, 8, 4, and 1 linear intervals of length 0, 1, 2, and 3, respectively. Dyck_{ν_2} has 16, 24, 16, and 3 linear intervals of length 0, 1, 2, and 3, respectively.

The ν -Tamari lattices

The ν -altitude $\operatorname{alt}_{\nu}(p)$ of a lattice point p of a ν -path μ is the maximum number of horizontal steps that can be added to the right of p without crossing ν . A ν -rotation $\mu \lessdot_{\nu} \mu'$ consists of switching the east step of a valley of a ν -path μ with the ν -excursion following it.

The ν -Tamari lattice Tam_{ν} is the reflexive transitive closure of ν -rotations.

Example

The rotation operation of a ν -path for the path $\nu = ENEENNEEN$. Each point is labelled with its ν -altitude.

The ν -Tamari lattice can also be described as the reflexive transitive closure of ν -rotations on ν -trees. Two lattice points are ν -incompatible if one is strictly northeast of the other and the rectangle they

A ν -tree is a maximal collection of ν -compatible points above ν in the smallest rectangle containing ν . We can define ν -rotations of a ν -path as below:

Example

define does not cross ν .

The rotation operation of a ν -tree for the path $\nu = ENEENNEEN$.

Example

The ν -Tamari lattices for $\nu_1 = ENEEN$ (left) and $\nu_2 = ENEENN$ (right).

 Tam_{ν_1} has 7, 8, 4, and 1 linear intervals of length 0, 1, 2, and 3, respectively. Tam_{ν_2} has 16, 24, 16, and 3 linear intervals of length 0, 1, 2, and 3, respectively.

The alt ν -Tamari lattices

The ν -Dyck and the ν -Tamari lattices are very similar: covering relations consist of exchanging the east step of a valley with a subpath that follows it. In fact, they fit into a family of posets that we call the alt ν -Tamari lattices.

For a path $\nu = (\nu_0, \dots, \nu_k)$, an **increment vector** with respect to ν is $\delta = (\delta_1, \dots, \delta_k)$ with $0 \le \delta_i \le \nu_i, \forall i$. We set $\delta(E) = -1$ for an east step and $\delta(N_i) = \delta_i$ for the *i*-th north step in order to define δ -excursions and δ -rotations.

The alt ν -Tamari lattice $\mathrm{Tam}_{\nu}(\delta)$ is the reflexive transitive closure of δ -rotations.

Example

Two δ -excursions for $\nu=(3,2,1,1,0)$ and $\delta=(2,1,0,0)$. The dotted path is $\check{\nu}=(4,2,1,0,0)$.

The alt ν -Tamari lattice $\mathrm{Tam}_{\nu}(\delta)$ can also be described with rotations on trees. Let $\check{\nu}$ be the path with the same endpoints as ν such that $\check{\nu}_i = \delta_i, \forall i$. A (δ, ν) -tree is the image of a ν -path under the right flushing with respect to $\check{\nu}$.

Example

The (δ, ν) -tree that corresponds to the path of the example on the left for $\nu = (3, 2, 1, 1, 0)$ and $\delta = (2, 1, 0, 0)$.

Example

The alt ν -Tamari lattices for $\nu_1 = ENEEN$, $\delta_1 = (1,0)$ (left) and $\nu_2 = ENEENN$, $\delta_2 = (1,0,0)$ (right).

 $\mathrm{Tam}_{\nu_1}(\delta_1)$ has 7, 8, 4, and 1 linear intervals of length 0, 1, 2, and 3, respectively. $\mathrm{Tam}_{\nu_2}(\delta_2)$ has 16, 24, 16, and 3 linear intervals of length 0, 1, 2, and 3, respectively.

Results and bijections

Theorem 1

The alt ν -Tamari lattice $\mathrm{Tam}_{\nu}(\delta)$ is indeed a lattice. It is the restriction of $\mathrm{Tam}_{\check{\nu}}$ to the interval of (δ, ν) -trees.

Similarly as in the ν -Dyck lattice, we can define **left intervals** and **right intervals** in the alt ν -Tamari lattices, and all linear intervals are either trivial, left or right intervals.

Moreover, we can defined \vdash -marked and \lnot -marked (δ, ν) -trees, in bijection with left and right intervals in $\mathrm{Tam}_{\nu}(\delta)$, respectively.

Theorem 2

For a fixed path ν , all alt ν -Tamari lattices have the same number of right intervals and the same number of left intervals.

In particular, the number of linear intervals in $\mathrm{Tam}_{\nu}(\delta)$ is independent of the choice of δ .

For two different increment vectors δ and δ' , the left flushings provide a bijection between (δ, ν) -trees and (δ', ν) -trees. This bijection extends naturally to \vdash -marked trees.

Example

Bijection between left intervals for $\nu = (1, 2, 0, 3, 2, 0)$, with increment vectors $\delta^{max} = (2, 0, 3, 2, 0)$ (left) and $\delta = (1, 0, 1, 1, 0)$ (right).

A similar bijection between (δ, ν) -trees and (δ', ν) -trees can be described where this time we preserve the number of nodes (not on the left border) in the columns. This bijection extends naturally to T-marked trees.

Example

Bijection between right intervals for $\nu = (1, 2, 0, 3, 2, 0)$, with increment vectors $\delta^{max} = (2, 0, 3, 2, 0)$ (left) and $\delta = (1, 0, 1, 1, 0)$ (right).

- [1] C. Ceballos and C. Chenevière. On linear intervals in the alt ν -tamari lattices. 2023. arXiv:2305.02250.
- [2] C. Ceballos, A. Padrol, and C. Sarmiento. The ν -Tamari lattice via ν -trees, ν -bracket vectors, and subword complexes. *Electron. J. Combin.*, 27(1):Paper No. 1.14, 31, 2020.
- [3] C. Chenevière. Linear intervals in the Tamari and the Dyck lattices and in the alt-Tamari posets. 2022. arXiv:2209.00418.
- [4] L.-F. Préville-Ratelle and X. Viennot. The enumeration of generalized Tamari intervals. *Trans. Amer. Math. Soc.*, 369(7):5219–5239, 2017.

Email addresses: $^{(\!0\!)}$ cesar.ceballos@tugraz.at $~^{(\!0\!)}$ ccheneviere@unistra.fr