RSK for 3-free posets

Kyle Celano ${ }^{1}$

${ }^{1}$ Department of Mathematics, University of Miami

Overview

We define an RSK algorithm for chromatic symmetric functions on incomparability graphs of 3 -free posets.

Background

The chromatic symmetric function $X_{G}(\mathbf{x})$ of a graph G was introduced by Stanley as a generalization of the chromatic polynomial. Stanley and Stembridge conjectured e-positivity for incomparability graphs of $\mathbf{3}+\mathbf{1}$-free posets P. For these Gasharov obtained a combinatorial interpretations of the Schur expansion in terms of P-tableaux through a sign-reversing involution. A bijective proof is unknown except in special cases

Chromatic symmetric functions

Given a graph $G=(V, E)$, the chromatic symmetric function is

$$
X_{G}(\mathbf{x})=\sum_{\kappa \in \mathcal{K}(G)} \prod_{v \in V} x_{\kappa(v)}
$$

where $\mathcal{K}(G)$ is the set of all proper colorings, which are functions $\kappa: V \rightarrow \mathbb{P}$ such that no two adjacent vertices have the same color.
The incomparability graph $G=\operatorname{Inc}(P)$ of a poset P has an edge between every pair of incomparable elements of P. Example

$G=1-2-3-4$

$$
X_{G}(\mathbf{x})=720 m_{1^{6}}+144 m_{2,1^{4}}+28 m_{2^{2}, 1^{2}}+6 m_{2^{3}}
$$

$$
X_{G}(\mathbf{x})=6 e_{3^{2}}+16 e_{4,2}+33 e_{5,1}+96 e_{6}
$$

A poset is $\mathbf{3}+\mathbf{1}$-free if it does not contain an induced subposet isomorphic to a disjoint union of a 3 -chain and a 1-chain:

We will be working with posets that are $\mathbf{3}$-free. It is well known that $X_{\operatorname{Inc}(P)}(\mathbf{x})$ is e-positive for $\mathbf{3}$-free posets.

Gasharov's Schur expansion

For a poset P, a P-tableau of shape λ is a filling of a Young diagram of shape λ with the elements of P such that
(1) the rows are P-nondecreasing, and
(2) the columns are strictly P-increasing

Example

If $G=\operatorname{Inc}(P)$ for a $\mathbf{3}+\mathbf{1}$-free poset P, then

$$
X_{G}(\mathbf{x})=\sum_{\lambda \vdash n}\left|\mathcal{T}_{P, \lambda}\right| s_{\lambda^{*}}
$$

where $\mathcal{T}_{P, \lambda}$ is set of P-tableaux of shape λ
Example

$$
X_{G}(\mathbf{x})=162 s_{1^{6}}+66 s_{2,1^{4}}+22 s_{2^{2}, 1^{2}}+6 s_{2^{3}}
$$

Representing colorings as two-line arrays
To prove Gasharov's expansion bijectively, we want to exhibit an RSK-like map

$$
R S K_{P}: \mathcal{K}(G) \rightarrow \bigsqcup_{\lambda \vdash n} \mathcal{T}_{P, \lambda} \times R S T_{\lambda}
$$

where $R S T_{\lambda}$ are row-strict tableaux i.e. conjugates of semistandard Young tableaux.
We first create a two-line array out of $\kappa \in \mathcal{K}(G)$ using the Burge antilexicographic order.:

- colors go on top in increasing order
- corresponding vertices go on bottom,
- order same colored vertices P-decreasingly

Call this two-line array $\binom{\bar{\kappa}}{w}$. Note that $w=w_{1} \cdots w_{n}$ is permutation of the poset $\stackrel{w}{P}$ and that $\bar{\kappa}=\bar{\kappa}_{1} \cdots \bar{\kappa}_{n}$ is a word in \mathbb{P} such that $\bar{\kappa}_{i}=\kappa\left(w_{i}\right)$.

Example (Coloring to two-line array)

Example (Insertion)
Let P be the poset in our running example. Suppose $T_{i}=\sqrt{3 / 4 / 2|5| 6}$ and we want to insert $w_{6}=1$

Example (Full RSK)
Let κ be the coloring of the incomparability graph above.

RSK for colorings of 3 -free posets

For a coloring $\kappa \in \mathcal{K}(G)$, represent κ as a two-line $\binom{\bar{\kappa}}{w}$. Create a sequence $\left(\left(T_{i}, R_{i}\right)\right)$ of P-tableaux T_{i} and row-strict tableaux R_{i} as follows:
(-1) $T_{1}=w_{1}$ and $R_{1}=\bar{\kappa}_{1}$
(3) Suppose $\left(T_{i-1}, R_{i-1}\right)$ has been created. We insert w_{i}
into T_{i-1} to create T

- If $w_{i} \not{ }_{P}$ (last number of the first row of T_{i-1}), then place w_{i}
at the end of the row Otherwise, suppose T_{i-1} looks like

Then, apply the local moves moving
In either case, if c is the new cell of T_{i}, set $R_{i}(c)=\bar{\kappa}$
If $\left(T_{n}, R_{n}\right)$ is the result, then we set $R S K_{P}(\kappa)=\left(T_{n}, R_{n}\right)$.

$$
\text { Local moves for } 3 \text {-free posets }
$$

Local moves rearrange the cells of a 4 -element subarray
according to the 4 (exclusive) cases
(1) $x<_{P} z$

2b) $x \not{ }_{P} z$ and $z \not{ }_{P} y$ and $z>_{P} \omega$

Theorem (C.)

$$
\begin{aligned}
& \text { For a } 3 \text {-free poset } P \text {, the map } \\
& \qquad R S K_{P}: \mathcal{K}(G) \rightarrow \underset{\lambda \vdash n}{ } \mathcal{T}_{P, \lambda} \times R S T_{\lambda}
\end{aligned}
$$

is a bijection.

For 3-free posets P and $G=\operatorname{Inc}(P), R S K_{P}$ has nice For 3 -free posets P and $G=\operatorname{lnc}(P), R S K_{P}$ has nice
properties. Try computing them for the Full RSK example.

$$
R S K_{P} \text { preserves descents }
$$

For $w \in \mathfrak{S}_{n}$ and R a standard Young tableau, define descent sets

- $\operatorname{DES}_{P}(w)=\left\{i \in[n-1] \mid w_{i}>_{P} w_{i+1}\right\}$
- $\operatorname{DES}(R)=\{i \in[n-1] \mid i$ is above $i+1\}$

If κ uses the colors $\{1, \ldots, n\}$ exactly once and $R S K_{P}(\kappa)=$ (T, R) where $\kappa=\binom{\bar{\kappa}}{w}$, then $\operatorname{DES}_{P}(w)=\operatorname{DES}(R)$.
Ex: $\operatorname{DES}_{P}(w)=\{2,5\}$
$R S K_{P}$ preserves inversions
Suppose $G=\operatorname{Inc}(P)$ is naturally labeled unit interval order. For a coloring κ and $T \in \mathcal{T}_{P, \lambda}$ define inversion numbers

- $\operatorname{inv}_{G}(\kappa)=\#\{i j \in E \mid i<j, \kappa(i)>\kappa(j)\}$
- $\operatorname{inv}_{G}(T)=\#\{i j \in E \mid i<j, i$ is to the right of $j\}$ If $R S K_{P}(\kappa)=(T, R)$, then $\operatorname{inv}_{G}(\kappa)=\operatorname{inv}_{G}(T)$.
Ex: $\operatorname{inv}_{G}(\kappa)=\operatorname{inv}_{G}(T)=4$
Further directions
In addition to colorings, there are also set colorings, which place sets of colors at vertices so that adjacent vertices are assigned disjoint sets. For 3 -free posets, $R S K_{P}$ is a type preserving bijection that takes set colorings to pairs (T, R) where T is a semistandard P-tableau (can repeat elements).
We would like to be able to extend this algorithm for (set) colorings to all $(\mathbf{3}+\mathbf{1})$-free posets. Currently, we can extend this algorithm to the beast poset as well as minor generalization.

For Further Information

K. Celano, Chromatic symmetric functions and RSK for (3+1)-free posets, PhD Dissertation, University of Miami (2023).
V. Gasharov, Incomparability graphs of $(3+1)$-free posets are
s-positive, Disc. Math. 157 (1996), no. 1-3, 107-125.
R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. in Math. 111 (1995), no. 1, 166-194

