Overview

We define an RSK algorithm for chromatic symmetric functions on incomparability graphs of 3-free posets.

Background

The chromatic symmetric function $X_G(\mathbf{x})$ of a graph G was introduced by Stanley as a generalization of the chromatic polynomial. Stanley and Stembridge conjectured *e*-positivity for incomparability graphs of $\mathbf{3} + \mathbf{1}$ -free posets P. For these, Gasharov obtained a combinatorial interpretations of the Schur expansion in terms of P-tableaux through a sign-reversing involution. A bijective proof is unknown except in special cases.

Chromatic symmetric functions

Given a graph G = (V, E), the chromatic symmetric **function** is

$$X_G(\mathbf{x}) = \sum_{\kappa \in \mathcal{K}(G)} \prod_{v \in V} x_{\kappa(v)}$$

where $\mathcal{K}(G)$ is the set of all proper colorings, which are functions $\kappa: V \to \mathbb{P}$ such that no two adjacent vertices have the same color.

The **incomparability graph** G = Inc(P) of a poset P has an edge between every pair of incomparable elements of P. Example

$$G = \frac{1}{2} - \frac{3}{3} - \frac{3}{4} - \frac{5}{5} - 6$$

$$X_G(\mathbf{x}) = 720m_{1^6} + 144m_{2,1^4} + 28m_{2^2,1^2} + 6m_{2^3}$$
$$X_G(\mathbf{x}) = 6e_{3^2} + 16e_{4,2} + 33e_{5,1} + 96e_6$$

A poset is 3 + 1-free if it does not contain an induced subposet isomorphic to a disjoint union of a 3-chain and a 1-chain:

We will be working with posets that are **3**-free. It is well known that $X_{\text{Inc}(P)}(\mathbf{x})$ is *e*-positive for **3**-free posets.

Kyle Celano¹

¹Department of Mathematics, University of Miami

Gasharov's Schur expansion

For a poset P, a P-tableau of shape λ is a filling of a Young diagram of shape λ with the elements of P such that

 \bullet the rows are *P*-nondecreasing, and

2 the columns are strictly *P*-increasing.

Example

3	1	2	4
6	5		

If G = Inc(P) for a $\mathbf{3} + \mathbf{1}$ -free poset P, then $X_G(\mathbf{x}) = \sum |\mathcal{T}_{P,\lambda}| s_{\lambda^*}$

where $\mathcal{T}_{P,\lambda}$ is set of *P*-tableaux of shape λ . Example

 $X_G(\mathbf{x}) = 162s_{1^6} + 66s_{2,1^4} + 22s_{2^2,1^2} + 6s_{2^3}$

Representing colorings as two-line arrays

To prove Gasharov's expansion bijectively, we want to exhibit an RSK-like map

 $RSK_P : \mathcal{K}(G) \to \bigsqcup_{\lambda \vdash m} \mathcal{T}_{P,\lambda} \times RST_{\lambda}$

where RST_{λ} are **row-strict** tableaux i.e. conjugates of semistandard Young tableaux.

We first create a **two-line array** out of $\kappa \in \mathcal{K}(G)$ using the Burge antilexicographic order.:

- colors go on top in increasing order,
- corresponding vertices go on bottom,

• order same colored vertices *P*-decreasingly

Call this two-line array $\binom{\overline{\kappa}}{w}$. Note that $w = w_1 \cdots w_n$ is a permutation of the poset \hat{P} and that $\overline{\kappa} = \overline{\kappa}_1 \cdots \overline{\kappa}_n$ is a word in \mathbb{P} such that $\overline{\kappa}_i = \kappa(w_i)$.

Example (Coloring to two-line array)

1 —	- 2 -	3	-4 -	
3	8	9	5	

Example (Insertion)

Let P be the poset in our running example. Suppose $T_i = 34256$ and we want to insert $w_6 = 1$

Example (Full RSK)

Let κ be the coloring of the incomparability graph above.

1		_		\
	5		3	
		_ 9)

1				$\mathbf{\lambda}$
(1		3	
	5)	3	
		-		

RSK for colorings of 3-free posets

For a coloring $\kappa \in \mathcal{K}(G)$, represent κ as a two-line $\binom{\overline{\kappa}}{w}$. Create a sequence $((T_i, R_i))$ of P-tableaux T_i and row-strict tableaux R_i as follows:

- 1 $T_1 = w_1$ and $R_1 = \overline{\kappa}_1$
- 2 Suppose (T_{i-1}, R_{i-1}) has been created. We **insert** w_i into T_{i-1} to create T_i
- a If $w_i \not\leq_P$ (last number of the first row of T_{i-1}), then place w_i at the end of the row Otherwise, suppose T_{i-1} looks like

with $w_i <_P a_1, a_2, \cdots, a_k$ and $w_i \not<_P a_{k+1}$. Then make

Then, apply the **local moves** moving this new domino to the left until we have a partition shape.

In either case, if c is the new cell of T_i , set $R_i(c) = \overline{\kappa}_i$. If (T_n, R_n) is the result, then we set $RSK_P(\kappa) = (T_n, R_n)$.

Local moves for 3-free posets

Local moves rearrange the cells of a 4-element subarray

In addition to colorings, there are also **set colorings**, which place sets of colors at vertices so that adjacent vertices are assigned disjoint sets. For **3**-free posets, RSK_P is a type preserving bijection that takes set colorings to pairs (T, R) where T is a **semistandard** P-tableau (can repeat elements).

We would like to be able to extend this algorithm for (set) colorings to all (3 + 1)-free posets. Currently, we can extend this algorithm to the **beast poset** as well as minor generalization.

Theorem (C.)

For a **3**-free poset P, the map

 $RSK_P : \mathcal{K}(G) \to \bigsqcup \mathcal{T}_{P,\lambda} \times RST_\lambda$

is a bijection.

For 3-free posets P and G = Inc(P), RSK_P has nice properties. Try computing them for the Full RSK example.

 RSK_P preserves descents

For $w \in \mathfrak{S}_n$ and R a standard Young tableau, define **descent**

• $DES_P(w) = \{i \in [n-1] \mid w_i >_P w_{i+1}\}$ • $DES(R) = \{i \in [n-1] \mid i \text{ is above } i+1\}$ If κ uses the colors $\{1, \ldots, n\}$ exactly once and $RSK_P(\kappa) =$ (T, R) where $\kappa = {\overline{\kappa} \choose w}$, then $\text{DES}_P(w) = \text{DES}(R)$. Ex: $DES_P(w) = \{2, 5\}$

RSK_P preserves inversions

Suppose G = Inc(P) is naturally labeled unit interval order. For a coloring κ and $T \in \mathcal{T}_{P,\lambda}$ define **inversion numbers** • $\operatorname{inv}_G(\kappa) = \#\{ij \in E \mid i < j, \kappa(i) > \kappa(j)\}$ • $\operatorname{inv}_G(T) = \#\{ij \in E \mid i < j, i \text{ is to the right of } j\}$ If $RSK_P(\kappa) = (T, R)$, then $inv_G(\kappa) = inv_G(T)$. Ex: $\operatorname{inv}_G(\kappa) = \operatorname{inv}_G(T) = 4$ **Further directions**

For Further Information

• K. Celano, Chromatic symmetric functions and RSK for (3+1)-free posets, PhD Dissertation, University of Miami (2023). • V. Gasharov, Incomparability graphs of (3 + 1)-free posets are *s-positive*, *Disc. Math.* **157** (1996), no. 1-3, 107–125. • R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. in Math. **111** (1995), no. 1, 166–194.