1. Wreath Frobenius characteristic

For an integer \(r > 0 \), consider the wreath product of the symmetric group \(S_r \) and the integers \(\mathbb{Z}/r\mathbb{Z} \):

\[
G_r = S_r \wr \mathbb{Z}/r\mathbb{Z} = S_r \times (\mathbb{Z}/r\mathbb{Z})^r
\]

We have a wreath Frobenius characteristic:

\[
\bigoplus \text{Rep}(G_r) \cong \Lambda^{\text{rw}}
\]

where \(\Lambda \) is the ring of symmetric functions. The irreducibles \([\nu] \in \text{Rep}(G_r) \) are indexed by \(r \)-tuples of partitions \(\lambda \) with \(|\lambda| = n \). For \(\lambda = (\lambda_1, \ldots, \lambda_r) \), let

\[
x^{\lambda} = x_{\lambda_1} \cdots x_{\lambda_r}
\]

where \(x_s \) is the Schur function. The wreath Frobenius characteristic sends \([\nu] \) to \(x^{\nu} \).

2. Cores and quotients

For a box \(\square = (i, j) \) in a partition, we call \(\ell(\square) = j - i \) its content. We call the class of \(\square \) mod its color.

The \(r \)-content vector of a partition \(\lambda \) is the vector

\[
(a_0, \ldots, a_{r-1})
\]

such that

\[
a_i = \#(\square \in \lambda : \ell(\square) \equiv i \mod r)
\]

There is a bijection

\[
\{\text{partitions}\} \leftrightarrow \{\text{cores}\} \times \{\text{\(r \)-tuples of partitions}\}
\]

\(\lambda \mapsto (\text{core}(\lambda), \text{quot}(\lambda)) \)

Each square in the \(r \)-quotient of \(\lambda \) is a ribbon of length \(r \) in \(\lambda \)–the square in the \(i \)-th coordinate if the northwesternmost square of the ribbon has color \(i \). The \(r \)-core \(\text{core}(\lambda) \) records what is left over when all ribbons of length \(r \) are peeled off.

Example: \(r = 3, \lambda = (4, 4, 2) \)

\[
\begin{array}{c}
\text{core}(\lambda) = (3, 3, 1) \\
\text{quot}(\lambda) = ((0, 0), (0, 0), (2, 2))
\end{array}
\]

The \(r \)-content of \(\text{core}(\lambda) \) is determined by \(\lambda \), the \(r \)-content vector mod the diagonal, i.e. by an element of the \(A_{r-1} \) root lattice \(Q \).

3. Wreath Macdonald polynomials

Let \(B_\lambda \) be the reflection representation of \(G_r \). Haiman [1] formulated the following definition:

Definition: For \(\lambda \) with \(q\text{quot}(\lambda) = n \), \(B_\lambda \in \text{C}(q,t) \otimes \text{Rep}(G_r) \).

- 1. \(B_\lambda \cong \bigoplus_{\mu \geq \lambda} V_{[\mu]} \otimes [\mu] \)
- 2. \(B_\lambda \cong \bigoplus_{\mu \geq \lambda} \otimes_{\mu} \bigoplus_{\nu \geq \lambda} [\nu] \otimes V_{[\nu]} \)
- 3. The coefficient of the trivial representation is 1.

This is a generalization of the transformed Macdonald polynomials. Any fixed \(r \)-core produces an ordering on \(r \)-tuples of partitions by using the core-quotient bijection and dominance order on single partitions.

The \(P \)-polynomial \(P_r \) is obtained by performing the tensor product in condition (2), inverting \(t \), and then normalizing so that the coefficient of \(V_{[\lambda]} \otimes [\lambda] \) is 1.

4. Finitization

For finitely many variables, we will use an alphabet for each tensor of \(\Lambda^{an} \), i.e. \(x^{(i)}_{\mu} \), for \(i \) the tensor.

\[
N_r = (N_0, \ldots, N_{r-1}), \quad X_r = \bigcup_{n \in \mathbb{Z}/r\mathbb{Z}} (x^{(i)}_{\mu})_{\mu \geq \lambda}
\]

When specializing \(P_r \), we impose the following:

Compatibility condition: \(N_r \) and the \(r \)-content vector of \(\lambda \) are congruent mod the diagonal.

This is really a compatibility between \(N_r \) and \(\text{core}(\lambda) \).

5. Cyclic-shift operators

Define a shift pattern of \(X_r \) to be a subset of \(X_r \) that contains no more than one variable of each color. A shift pattern contains the color \(p \in \mathbb{Z}/r\mathbb{Z} \) if it contains a variable of color \(p \). Let \(S_{\lambda}(X_r) \) denote the set of all shift patterns containing \(p \).

- For a shift pattern \(\Delta \), let \(J \subset \mathbb{Z}/r\mathbb{Z} \) denote the set of colors of the variables in \(\Delta \). We denote the variables in \(\Delta \) by \(x^{\Delta} \).

\[
\Delta \mapsto [\nu]_{\lambda} \mapsto \prod_{i \in J} x^{\Delta} \prod_{i \notin J} x^{\lambda_i}
\]

6. Wreath Macdonald operators

The wreath Macdonald operators depend on a color \(p \in \mathbb{Z}/r\mathbb{Z} \) and degree \(n \leq N_r \).

\[
D_{\lambda}(X_r, q, t) = \prod_{\nu \geq \lambda} \prod_{\mu \geq \lambda} \left(1 - qt \right) \frac{\prod_{\sigma \in \Sigma_{\lambda}} \prod_{i=1}^{\mu_i} (x^{(i)}_{\mu} - x^{(i)}_{\nu})}{\prod_{\sigma \in \Sigma_{\lambda}} \prod_{i=1}^{\mu_i} (x^{(i)}_{\nu} - x^{(i)}_{\mu})}
\]

References

