ABSTRACT

We construct a novel family of difference-permutation oper-
ators and prove that they are diagonalized by the wreath
Macdonald P-polynomials. Our operators arise from the ac-
tion of the horizontal Heisenberg subalgebra in the vertex
representation of the quantum toroidal algebra.

1. Wreath Frobenius characteristic

Fix an integer » > 0. Consider the wreath product of the
symmetric group >, and Z/rZ:

L, =X Z/rZ =%, X (Z/rZ)"
We have a wreath Frobenius characteristic:

69 Rep(I',) = A®"

n

where A is the ring of symmetric functions. The irreducibles
V5] € Rep(I',) are indexed by r-tuples of partitions A with
X =n. For x= (A% ..., \1), let

Sy =Sy & Sy

where sy, € A i1s the Schur function. The wreath Frobenius
characteristic sends [V;] to sy.

2. Cores and quotients

For a box [J = (4, j) in a partition, we call ¢([0) := j — ¢ its
content. We call the class of ¢([J) mod r its color.

The r-content vector of a partition A is the vector

(ag, ..., Q1)

such that

az':#{

There 1s a bijection

e X c() =i mod r}

{partitions} <> {r-cores} x {r-tuples of partitions}
A — (core(A), quot(A))

Fach square in the r-quotient quot(\) records a ribbon of
length 7 in A—the square sits in the ¢th coordinate if the
northwesternmost square of the ribbon has color 2. The r-core
core(\) records what is left over when all ribbons of length r
are peeled off.

Example: r =3, A = (4,4, 2)
core(A) = (3,1)
= quot%\% = E( ),(0),(2))

FACT: core()\) is determined by the r-content vector mod the
diagonal, i.e. by an element of the A,_; root lattice Q).
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3. Wreath Macdonald polynomials

Let b, be the reflection representation of I',. Haiman [1]
formulated the following definition:

Definition: For A with |quot(A\)] = n, Hy, € C(q,t) ®

Rep(I',) is characterized by

1LHy, @ Y. (=@ A'bX] lies in the span of
{Viuot(w) | core(p) = core(A) and p > A};

2. Hy, ® S (=t)"A'[bY] lies in the span of

{[unot(u)] | core(A) = core(p) and p < A};

3. the coeflicient of the trivial representation is 1.

This is a generalization of the transformed Macdonald poly-
nomials. Any fixed r-core produces an ordering on r-tuples
of partitions by using the core-quotient bijection and domi-
nance order on single partitions.

The P-polynomial P, is obtained by performing the tensor
product in condition (2), inverting ¢, and then normalizing
so that the coefficient of [Vie(n) is 1.

4. Finitization

For finitely many variables, we will use an alphabet for each
tensorand of A®" i.e. {ng)}ivil for the ¢th tensorand. Let

Ne=(No,.o o, Noo), Xo= | {3l
€L/
When specializing Py, we impose the following:

Compatibility condition: N and the r-content vector of A
are congruent mod the diagonal.

This is really a compatibility between N, and core(\).

5. Cyclic-shift operators

Define a shift pattern of Xy, to be a subset of Xy, that
contains no more than one variable of each color. A shift
pattern contains the color p € Z/rZ if it contains a variable
of color p. Let Sh,(Xy,) denote the set of all shift patterns
contaming p.

For a shift pattern J, let J C Z/rZ denote the set of colors

of the variables in J. We denote the variables in J by £L’§),

so J = {:1:9}@-6 7. To J we associate the following:

1. Gap labels: For i € Z/rZ let ¥ € J be the first element
less than or equal to 7 in the cyclic order. We stipulate
that 0 < ¢ —14Y <r — 1. Define

xg = q@_iv)xf}é )

In particular :13?% = :133> ife € J.

2. A cyclic-shift operator: For i € J, let 1Y € J be the
first element strictly less than ¢ in the cyclic order. We set
1 <i—14Y <r, where r occurs if and only if |J| = {¢}.
We then define the operator Ty on C(q, t)[Xn,] by
. [ =17 07) s _ ..
5 q x; e Jand =2
Ty(z)) = < W - -

&4 otherwise.

For an n-tuple J = (Jy,...,J,) of shift patterns and 0 <
k < n, we denote

’J‘ :ilun'uinCXN.a
Jl<k = U---UJ, C Xy,
Jop=J,U--- UL, C X,

If J is an n-tuple of shitt patterns all containing color p,

we say J is p-distinct it the p-colored variables :z:gj are all

distinct. Let S hz[jn](XN.) denote the set of all p-distinct n-
tuples of shift patterns containing color p.

6. Wreath Macdonald operators

The wreath Macdonald operators depend on a color p € Z/rZ and degree n < N,

€L/ (l:1_ g
\ iAD xll#xig

(1 — gt 1)Ll xgz_l) x?”l;@za
1 ) (p) N,
A, ONR0)
H (xJa 20y )
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7. Main result

INJ= ) N

i€Z/rZ

Let

Our main result [3] is:

Theorem: For A having r-core compatible with N, and
((N) < |N,|, P\ Xn,;q,t] satisfies (and is uniquely deter-
mined by) the eigenfunction equations:

Dp,n(X_N.3 q,t) P\ XN,; q,1]

V.|

e | Y

b=1
b—A\y=p+1mod r

N P Xy g, ).

For the eigenvalue, we have used plethystic notation—we
merely mean the elementary symmetric polynomial evaluated
at the characters within the summation. In the case r = 1, we
do indeed obtain the usual Macdonald operators after some
simplification.

8. Quantum toroidal and shuffle
algebras

Our proof relies on work of the third author [4], which re-
lates wreath Macdonald polynomials to the rank r quantum
toroidal algebra Uq,a(sulr) and its vertex representation W.
Specifically, W can be identified with C(q,t) ® A*" @ C|Q)]
as a vector space, and there is a natural way to situate { Py}
in W such that they diagonalize the horizontal Heisenberg
subalgebra of qua(ﬁu[g). We discovered our operators by ex-
plicitly computing the action on W of well-chosen elements of
this subalgebra. To carry out this computation, we use work
of Negut [2] realizing U, o(sl¢) as a shuffle algebra.

References

1] M. Haiman. Combinatorics, symmetric functions, and

Hilbert schemes. Current developments in mathematics,
2002, 39-111, Int. Press, Somerville, MA, 2003.

2] A. Negut. Quantum toroidal and shuffle algebras. Adv.
Math. 372 (2020), 107288, 60 pp.

3] D. Orr, M. Shimozono, and J. J. Wen. Wreath Macdonald
operators. arXiv:2211.03851.

4] J. J. Wen. Wreath Macdonald polynomials as eigenstates.
arX1v:1904.05015.

BTEX TikZposter



