Wreath Macdonald operators

Daniel Orr ${ }^{1,2}$, Mark Shimozono ${ }^{1}$, and Joshua Jeishing Wen ${ }^{3}$

${ }^{1}$ Virginia Tech, ${ }^{2}$ MPIM, ${ }^{3}$ Northeastern Contact: j.wen@northeastern.edu

ABSTRACT

We construct a novel family of difference-permutation operators and prove that they are diagonalized by the wreath Macdonald P-polynomials. Our operators arise from the action of the horizontal Heisenberg subalgebra in the vertex representation of the quantum toroidal algebra.

1. Wreath Frobenius characteristic

 Fix an integer $r>0$. Consider the wreath product of the symmetric group Σ_{n} and $\mathbb{Z} / r \mathbb{Z}$.$$
\Gamma_{n}:=\Sigma_{n} \imath \mathbb{Z} / r \mathbb{Z}=\Sigma_{n} \ltimes(\mathbb{Z} / r \mathbb{Z})^{n}
$$

We have a wreath Frobenius characteristic:

$$
\bigoplus \operatorname{Rep}\left(\Gamma_{n}\right) \cong \Lambda^{\otimes}
$$

where Λ is the ring of symmetric functions. The irreducibles $V_{\vec{\imath}} \mid \in \operatorname{Rep}\left(\Gamma_{n}\right)$ are indexed by r-tuples of partitions λ with $|\vec{\lambda}|=n$. For $\vec{\lambda}=\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)$, let

$$
s_{\widehat{\lambda}}:=s_{\lambda^{0}} \otimes \cdots \otimes s_{\lambda^{r-1}}
$$

where $s_{\lambda} \in \Lambda$ is the Schur function. The wreath Frobenius characteristic sends $\left[V_{\vec{\lambda}}\right]$ to $s_{\mathfrak{\imath}}$.

2. Cores and quotients

For a box $\square=(i, j)$ in a partition, we call $c(\square):=j-i$ its content. We call the class of $c(\square) \bmod r$ its color.
The r-content vector of a partition λ is the vector

$$
\left(a_{0}, \ldots, a_{r-1}\right)
$$

such that

$$
a_{i}=\#\{\square \in \lambda \mid c(\square) \equiv i \bmod r\}
$$

There is a bijection
\{partitions $\} \leftrightarrow\{r$-cores $\} \times\{r$-tuples of partitions $\}$

$$
\lambda \mapsto(\operatorname{core}(\lambda), q u o t(\lambda))
$$

Each square in the r-quotient quot (λ) records a ribbon of length r in λ-the square sits in the i th coordinate if the northwesternmost square of the ribbon has color i. The r-core core (λ) records what is left over when all ribbons of length r are peeled off.
Example: $\left.\begin{array}{rl}r=3, \lambda=(4,4,2) \\ & \operatorname{core}(\lambda)\end{array}\right)=(3,1)$

FACT: core (λ) is determined by the r-content vector mod the diagonal, i.e. by an element of the A_{r-1} root lattice Q

3. Wreath Macdonald polynomials

Let \mathfrak{h}_{n} be the reflection representation of Γ_{n}. Haiman [1] formulated the following definition:

Definition: For λ with $|q u o t(\lambda)|=n, H_{\lambda} \in \mathbb{C}(q, t) \otimes$ $\operatorname{Rep}\left(\Gamma_{n}\right)$ is characterized by
 Rep $H_{\lambda} \otimes \sum_{i=0}^{n}(-q)^{i} \bigwedge^{i}\left[\mathfrak{h}_{n}^{*}\right]$ lies in the span of
 $\left\{\left[V_{\text {quot }(\mu)}\right] \mid \operatorname{core}(\mu)=\operatorname{core}(\lambda)\right.$ and $\left.\mu \geq \lambda\right\}$;
 2. $H_{\lambda} \otimes \sum_{i=0}^{n}(-t)^{-i} \bigwedge^{i}\left[\mathfrak{h}_{n}^{*}\right]$ lies in the span of
 $\left\{\left[V_{\text {quot }}(\mu)\right] \mid \operatorname{core}(\lambda)=\operatorname{core}(\mu)\right.$ and $\left.\mu \leq \lambda\right\}$;
 3 the coefficient of the trivial representation is 1 .

This is a generalization of the transformed Macdonald polynomials. Any fixed r-core produces an ordering on r-tuples of partitions by using the core-quotient bijection and dominance order on single partitions.

The P-polynomial P_{λ} is obtained by performing the tenso product in condition (2), inverting t, and then normalizing so that the coefficient of $\left[V_{\text {quot }}(\lambda)\right.$ is 1 .

4. Finitization

For finitely many variables, we will use an alphabet for each tensorand of $\Lambda^{\otimes r}$, i.e. $\left\{x_{a}^{(i)}\right\}_{a=1}^{N_{i}}$ for the i th tensorand. Let

$$
N_{\bullet}=\left(N_{0}, \ldots, N_{r-1}\right), \quad X_{N_{\bullet}}=\bigcup_{i \in \mathbb{Z} / r \mathbb{Z}}\left\{x_{a}^{(i)}\right\}_{a=1}^{N_{i}}
$$

When specializing P_{λ}, we impose the following:

Compatibility condition: N_{\bullet} and the r-content vector of λ are congruent mod the diagonal.

This is really a compatibility between N_{\bullet} and core (λ)

6. Wreath Macdonald operators

The wreath Macdonald operators depend on a color $p \in \mathbb{Z} / r \mathbb{Z}$ and degree $n \leq N_{p}$

$$
\begin{aligned}
& \left.\times\left(\prod_{\substack{i \in \mathbb{Z} \mid r \mathbb{Z} \\
i \neq p}} \prod_{\substack{l=1 \\
x_{l}^{l i} \neq x_{J_{a}}^{(i)}}}^{N_{i}} \frac{\left(t x_{\underline{I}_{a}^{-}}^{(i-1)}-x_{l}^{(i)}\right)}{\left(x_{\underline{I}_{a}^{-}}^{(i)}-x_{l}^{(i)}\right)}\right)\left(\prod_{i \in J_{a} \backslash\{p\}} \frac{q^{-1} t T_{\underline{I}_{a}} x_{\underline{I}_{a}}^{(i)}}{\left(x_{\underline{I}_{a}}^{(i)}-T_{\underline{J}_{a}} x_{\underline{I}_{a}}^{(i)}\right)}\right) T_{\underline{J}_{a}}\right\}
\end{aligned}
$$

7. Main result

Let

$$
\left|N_{\mathbf{\bullet}}\right|=\sum_{i \in \mathbb{Z} / r \mathbb{Z}} N_{i} .
$$

Our main result [3] is.

For the eigenvalue, we have used plethystic notation-we merely mean the elementary symmetric polynomial evaluated at the characters within the summation. In the case $r=1$, we do indeed obtain the usual Macdonald operators after some simplification.
8. Quantum toroidal and shuffle

algebras

Our proof relies on work of the third author [4], which re lates wreath Macdonald polynomials to the rank r quantum toroidal algebra $U_{\mathfrak{q}, \mathfrak{d}}\left(\ddot{\mathfrak{s}}_{r}\right)$ and its vertex representation W Specifically, W can be identified with $\mathbb{C}(q, t) \otimes \Lambda^{\otimes r} \otimes \mathbb{C}[Q]$ as a vector space, and there is a natural way to situate $\left\{P_{\lambda}\right\}$ in W such that they diagonalize the horizontal Heisenberg subalgebra of $U_{q, 0}\left(\tilde{s i t}_{\ell}\right)$. We discovered our operators by explicitly computing the action on W of well-chosen elements of phis subal of Negut [2] realizing $U_{q, 0}\left(\tilde{\mathfrak{s}} \boldsymbol{l}_{\ell}\right)$ as a shuffle algebra

References

[1] M. Haiman. Combinatorics, symmetric functions, and Hilbert schemes. Current developments in mathematics, 2002, 39-111, Int. Press, Somerville, MA, 2003
[2] A. Negutt. Quantum toroidal and shuffle algebras. Adv Math. 372 (2020), 107288, 60 pp
[3] D. Orr, M. Shimozono, and J. J. Wen. Wreath Macdonald operators. arXiv:2211.03851.
[4] J. J. Wen. Wreath Macdonald polynomials as eigenstates arXiv:1904.05015.

