

Introduction

The ring of symmetric functions has a central place in algebraic combinatorics and representation theory. A generalization of the ring of symmetric functions, called the ring of **almost-symmetric functions**, has appeared in recent years implicitly in the work of Carlsson-Mellit on the Shuffle Theorem [1] as well as in the work of Ion-Wu with their +stable-limit DAHA [4]. In this work we construct a weight basis of almost-symmetric functions \mathcal{P}_{as}^+ for the limit Cherednik operators of Ion and Wu. This basis, consisting of the stable-limit non-symmetric Macdonald functions, is built from classical nonsymmetric Macdonald polynomials in type GL along with Hall-Littlewood symmetric function creation operators. We investigate some of the combinatorial and algebraic properties that this basis possesses. A full version of the paper corresponding to this poster is on the arXiv [5].

Background

Symmetric Functions

The ring of **symmetric functions**, Λ , is the subalgebra of $\lim_{n \to \infty} \mathbb{Q}(q, t)[x_1, \dots, x_n]^{\mathfrak{S}_n}$ consisting of elements with bounded degree. Here \mathfrak{S}_n is the symmetric group on $\{1, \ldots, n\}$. Distinguished bases for Λ include the Schur functions $s_{\lambda}[X]$, the dual Hall-Littlewood symmetric functions $\mathcal{P}_{\lambda}[X;t]$, and the symmetric Macdonald functions $P_{\lambda}[X;q,t]$.

Cherednik Operators and Non-symmetric Macdonald Polynomials

Consider the following operators on the space of Laurent polynomials $\mathbb{Q}(q,t)[x_1^{\pm 1},\ldots,x_n^{\pm 1}]:$

- $\omega_n f(x_1, \dots, x_n) := f(q^{-1}x_n, x_1, \dots, x_{n-1})$
- $T_i f := s_i f + (1 t) x_i \frac{f s_i f}{x_i x_{i+1}}$
- $Y_i^{(n)} := t^{-(i-1)} T_{i-1} \cdots T_1 \omega_n^{-1} T_{n-1}^{-1} \cdots T_i^{-1}$.

The $Y_1^{(n)}, \ldots, Y_n^{(n)}$ are the **Cherednik operators**. The non-symmetric Macdonald polynomials E_{μ} introduced by Cherednik [2] for $\mu \in \mathbb{Z}^n$ are the unique basis of $\mathbb{Q}(q,t)[x_1^{\pm 1},\ldots,x_n^{\pm 1}]$ consisting of simultaneous eigenvectors for the Cherednik operators with a natural normalization condition.

Almost-symmetric Functions and Limit Cherednik Operators

The ring of almost-symmetric functions, \mathcal{P}_{as}^+ , is given by $\mathbb{Q}(q,t)[x_1,x_2,\ldots] \otimes \Lambda$. These are the bounded degree functions $f = f(x_1, x_2, ...)$ which are eventually symmetric i.e. there exists some $k \ge 0$ so that $s_i(f) = f$ for all i > k.

Ion and Wu [4] defined the **limit Cherednik operators** for all $i \ge 1$ using a new notion of convergence as

$$T_i := \lim t^{m-i+1} T_{i-1} \cdots T_1 \rho \omega_m^{-1} T_{m-1}^{-1} \cdots T_i^{-1} \pi_m.$$

Here $\pi_m: \mathcal{P}_{as}^+ \to \mathbb{Q}(q,t)[x_1,\ldots,x_m]$ is the natural projection and $\rho: \mathcal{P}_{as}^+ \to x_1\mathcal{P}_{as}^+$ is the projection which annihilates monomials not divisible by x_1 .

Example Calculation

$$\begin{aligned} \mathcal{Y}_{1}(x_{1}) &= \lim_{m} t^{m} \rho \omega_{m}^{-1} T_{m-1}^{-1} \cdots T_{1}^{-1} x_{1} \\ &= \lim_{m} t^{m} \rho \omega_{m}^{-1} t^{-(m-1)} x_{m} \\ &= \lim_{m} t \rho(q x_{1}) \\ &= q t x_{1}. \end{aligned}$$

Stable-Limit Non-symmetric Macdonald Functions in Type A

Milo James Bechtloff Weising, arXiv: 2307.05864

University of California, Davis

Problem 1

Is there a \mathcal{Y} -weight basis of \mathcal{P}_{as}^+ and if so how do the weight vectors relate to finite variable non-symmetric Macdonald polynomials?

Theorem 1 [BW 23]

There exists a homogeneous \mathcal{Y} -weight basis $\widetilde{E}_{(\mu|\lambda)}$ of \mathcal{P}_{as}^+ indexed by pairs of reduced compositions μ and partitions λ , with the following properties:

- $\widetilde{E}_{(\mu|\emptyset)} = \lim_{m \to 0^m} E_{\mu*0^m}$
- $\widetilde{E}_{(\emptyset|\lambda)} = (1-t)^{\ell(\lambda)} P_{\lambda}[X; q^{-1}, t]$ $\partial_{-}^{(r)} \left(\widetilde{E}_{(\mu_1, \dots, \mu_r|\lambda_1, \dots, \lambda_k)} \right) = \widetilde{E}_{(\mu_1, \dots, \mu_{r-1}|\mu_r, \lambda_1, \dots, \lambda_k)}$ whenever $\mu_r \ge \lambda_1$ and $\mu_{r-1} \ne 0$.

Examples

Here we give a few basic examples of stable-limit non-symmetric Macdonald functions expanded in the dual Hall-Littlewood basis \mathcal{P}_{λ} and their corresponding weights.

- $E_{(\emptyset|\emptyset)}$ = 1;• $E_{(1|\emptyset)}$ $= x_1;$
- $E_{(\emptyset|1)}$ $=\mathcal{P}_1[X];$
- $= x_1^2 + \frac{q^{-1}}{1 q^{-1}t} x_1 \mathcal{P}_1[x_2 + \ldots];$ • $\widetilde{E}_{(2|\emptyset)}$
- $= \mathcal{P}_2[X] + \frac{q^{-1}}{1 q^{-1}t} \mathcal{P}_{1,1}[X];$ • $\widetilde{E}_{(\emptyset|2)}$
- $= x_1 x_2 \mathcal{P}_1[x_3 + \ldots];$
- $E_{(1,1|1)}$
- $= x_1 \mathcal{P}_{1,1}[x_2 + \cdots];$ • $E_{(1|1,1)}$

Main Properties

- $E_{(\mu|\lambda)}$ is symmetric in the variables $\{x_{\ell(\mu)+1}, x_{\ell(\mu)+2}, \ldots\}$.
- $\tilde{E}_{(\mu|\lambda)}$ is homogeneous of degree $|\mu| + |\lambda|$.
- $\mathcal{Y}_i(\widetilde{E}_{(\mu|\lambda)}) = \widetilde{\alpha}_{(\mu|\lambda)}(i)\widetilde{E}_{(\mu|\lambda)}$ where

$$\widetilde{\alpha}_{(\mu|\lambda)}(i) = \begin{cases} \widetilde{\alpha}_{\mu*\lambda}(i) = q^{\mu_i} t^{\ell(\mu) + \ell(\lambda) + 1 - \beta_{\mu}}, \\ 0 \end{cases}$$

where

• For a reduced composition
$$\mu$$
 there is an HHL-like α

$$\emptyset) = \sum_{\substack{\lambda \text{ partition} \\ |\lambda| \le |\mu|}} m_{\lambda} [x_{n+1} + \cdots] \sum_{\substack{\sigma: \mu * 0^{\ell(\lambda)} \to [n+\ell] \\ \text{non-attacking} \\ \forall i=1,\dots,\ell(\lambda) \\ \lambda_i = |\sigma^{-1}(n+i)|}}$$

where

$$\widetilde{\Gamma}(\widehat{\sigma}) := q^{-\operatorname{maj}(\widehat{\sigma})} t^{\operatorname{coinv}(\widehat{\sigma})} \prod_{\substack{u \in dg'(\mu * 0^{\ell(\lambda)})\\\widehat{\sigma}(u) \neq \widehat{\sigma}(d(u))\\u \text{ not in row } 1}} \left(\frac{1 - q^{-(\lg(u))}}{1 - q^{-(\lg(u))}} \right)^{-1}$$

weight $\widetilde{\alpha}_{(\emptyset|\emptyset)} = (0, 0, \ldots)$

weight $\widetilde{lpha}_{(1|\emptyset)} = (qt, 0, \ldots)$

weight $\widetilde{\alpha}_{(\emptyset|1)} = (0, 0, \ldots)$

weight $\widetilde{lpha}_{(2|\emptyset)} = (q^2 t, 0, \ldots)$

weight $\widetilde{\alpha}_{(\emptyset|2)} = (0, 0, \ldots)$

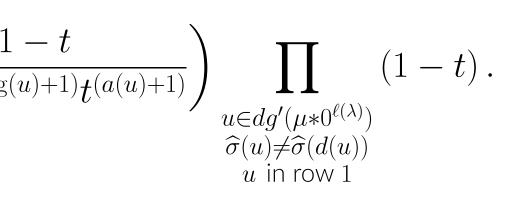
weight $\widetilde{lpha}_{(1,1|1)} = (qt^3, qt^2, 0, \ldots)$ weight $\widetilde{lpha}_{(1|1,1)} = (qt^3, 0, \ldots)$

 $_{\mu*\lambda}(i)$ $i \leq \ell(\mu), \mu_i \neq 0$ otherwise

 $\beta_{\nu}(i) := \#\{j : 1 \le j \le i, \nu_j \le \nu_i\} + \#\{j : i < j \le n, \nu_i > \nu_j\}.$

combinatorial formula given by $\sum m_{1}[x_{n+1} + \cdots] \qquad \sum m_{1}[\sigma^{-1}(1)] \cdots x_{n}^{|\sigma^{-1}(n)|} \widetilde{\Gamma}(\widehat{\sigma})$

$$(\lambda)]$$



As can be seen from the previous examples, the \mathcal{Y} -weight spaces of \mathcal{P}_{as}^+ are not 1dimensional. In particular, each \mathcal{Y}_i annihilates Λ . Can we find another operator which commutes with the \mathcal{Y} -action which distinguishes between those \mathcal{Y} -weight vectors with identical weight?

Theorem 2 [BW 23]

those *Y*-weight vectors with identical *Y*-weight.

Ψ_{p_1} and 1-Dimensional Weight Spaces in \mathcal{P}_{as}^+

Explicitly, the operator Ψ_{p_1} is given by

On the stable-limit non-symmetric Macdonald function basis Ψ_{p_1} acts by

where for a partition $\nu = (\nu_1, \ldots, \nu_r)$

 $\kappa_{
u}(q,t)$

Let Y denote the subalgebra of $End_{\mathbb{Q}(q,t)}(\mathcal{P}_{as}^+)$ generated by the operator Ψ_{p_1} and the action of the operators \mathcal{Y}_i . Then \mathcal{P}_{as}^+ has a basis of Y-weight vectors all with distinct weights.

The following stable-limit non-symmetric Macdonald functions all have degree 10, are symmetric in the variables $\{x_2, x_3, \ldots\}$, and have the same \mathcal{Y} -weight $(q^2t^3, 0, \ldots)$. However, they have different Ψ_{p_1} eigenvalues.

•
$$\Psi_{p_1}(\widetilde{E}_{(2|6,2)}) = (q^6t + q^2t^2 + q^2t^3 + q^2t^3)$$

•
$$\Psi_{p_1}(\widetilde{E}_{(2|5,3)}) = (q^5t + q^3t^2 + q^2t^3 + q^2t^3)$$

•
$$\Psi_{p_1}(\widetilde{E}_{(2|4,4)}) = (q^4t + q^4t^2 + q^2t^3 + q^4t^4)$$

- DAHA operators?
- polynomials of Goodberry [3]?
- Is there a geometric interpretation for the operator Ψ_{p_1} ?
- MR1974888
- [3] Ben Goodberry, Partially-symmetric macdonald polynomials, Ph.D. Thesis, 2022.
- of Jussieu (2022), 1-46.

Problem 2

There exists an operator $\Psi_{p_1} \in End_{\mathbb{Q}(q,t)}(\mathcal{P}_{as}^+)$ constructed as a limit of operators from finite variable DAHAs which is diagonal in the $\widetilde{E}_{(\mu|\lambda)}$ basis and distinguishes between

 $\Psi_{p_1}(f) = \lim_{m} t^m (Y_1^{(m)} + \ldots + Y_m^{(m)}) \pi_m(f).$

 $\Psi_{p_1}(\tilde{E}_{(\mu|\lambda)}) = \kappa_{\operatorname{sort}(\mu*\lambda)}(q,t)\tilde{E}_{(\mu|\lambda)}$

$$(t) = \sum_{i=1}^{r} q^{\nu_i} t^i + \frac{t^{r+1}}{1-t}.$$

Examples

 $\frac{t^{4}}{1-t} \widetilde{E}_{(2|6,2)}$ $\frac{t^{4}}{1-t} \widetilde{E}_{(2|5,3)}$ $\frac{t^{4}}{1-t} \widetilde{E}_{(2|4,4)}$

Future Questions

• Are there analogous operators Ψ_F for $F \in \Lambda$ built from a limit of finite variable

• What is the relationship between the $E_{(\mu|\lambda)}$ and the partially-symmetric Macdonald

References

[1] Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. **31** (2018), no. 3, 661–697. MR3787405 [2] Ivan Cherednik, Double affine Hecke algebras and difference Fourier transforms, Invent. Math. 152 (2003), no. 2, 213–303

[4] Bogdan Ion and Dongyu Wu, The stable limit daha and the double dyck path algebra, Journal of the Institute of Mathematics

[5] Milo James Bechtloff Weising, Stable-limit non-symmetric macdonald functions, arXiv:2307.05864 (2023).