## Using Slice Rank \& Partition Rank

Mohamed Omar<br>Department of Mathematics \& Statistics<br>York University<br>Department of Mathematics Harvey Mudd College

FPSAC 2023<br>UC Davis

July 20, 2023

## Overarching Goal:

- Use slice-rank and partition-rank: Given
- finite set $A$ subset of vector space $V$
- $A$ avoids a property $\mathcal{P}$

Goal: maximize $|A|$

- Strengthen opportunities to use these using

Partition lattices $\Pi_{n}$

## Cap Set

$S \subseteq \mathbb{F}_{3}^{n}$ is a cap set if $S$ has no 3 collinear points
Goal: Find $c(n)$ : Largest size of a cap set $S \subset \mathbb{F}_{3}^{n}$

## Cap Set

$S \subseteq \mathbb{F}_{3}^{n}$ is a cap set if $S$ has no 3 collinear points
Goal: Find $c(n)$ : Largest size of a cap set $S \subset \mathbb{F}_{3}^{n}$




## Cap Set

Goal: Find $c(n)$ : Largest size of $S \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear

$$
c(1)=2 \quad c(2)=4 \quad c(3)=9 \quad c(4)=20 \quad c(5)=45
$$



## Cap Set

## Goal: Find $c(n)$ : Largest size of $S \subseteq \mathbb{F}_{3}^{n}$, no $\mathbf{3}$ points collinear

## Why??

## Cap Set

Goal: Find $c(n)$ : Largest size of $S \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear
Why??

The following are equivalent:

- $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_{3}^{n}$ are collinear
- for every $i$,

$$
x_{i}=y_{i}=z_{i} \quad \text { or } \quad\left\{x_{i}, y_{i}, z_{i}\right\}=\{0,1,2\}
$$

$\vec{x}, \vec{y}, \vec{z}$ form arithmetic progression
Important: Additive Combinatorics \& Number Theory

## Cap Set

Goal: Find $c(n)$ : Largest size of $S \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear

## History:

- Quick: $c(n) \geq 2^{n}$ (select all points $\{0,1\}^{n}$ )
- Meshulam (1995): $c(n) \leq \frac{2}{n} \cdot 3^{n}$
- Bateman, Katz (2011): $c(n)<\frac{1}{n^{1+\epsilon}} \cdot 3^{n}$ JAMS paper


## Cap Set

Goal: Find $c(n)$ : Largest size of $S \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear

## History:

- Quick: $c(n) \geq 2^{n}$ (select all points $\{0,1\}^{n}$ )
- Meshulam (1995): $c(n) \leq \frac{2}{n} \cdot 3^{n}$
- Bateman, Katz (2011): $c(n)<\frac{1}{n^{1+\epsilon}} \cdot 3^{n}$ JAMS paper
- Question (Frankl, Graham, Rödl / Alon):

$$
c(n)=O\left(K^{n}\right) \text { for } K<3 ?
$$

- Tao:
"one of the most intriguing open problems in additive combinatorics and Ramsey theory for over 20 years"
- Tao:
"one of the most intriguing open problems in additive combinatorics and Ramsey theory for over 20 years"
- Question (Frankl, Graham, Rödl / Alon):

$$
c(n)=O\left(K^{n}\right) \text { for } K<3 ?
$$

## Yes! 2 Annals Papers!

Theorem (Croot, Lev, Pach / Ellenberg, Gijswijt (2017))
If $S \subset \mathbb{F}_{3}^{n}$ does not contain a triple of collinear points then

$$
|S| \leq 2.756^{n}
$$

## Slice Rank Polynomial Method

## SLICE RANK POLYNOMIAL METHOD

## Slice

## Definition

A function $f: X^{k} \rightarrow \mathbb{F}$ is a slice if

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=g\left(x_{i}\right) h\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

for some tensors $g: X \rightarrow \mathbb{F}$ and $h: X^{k-1} \rightarrow \mathbb{F}$.

## Slice

## Definition

A function $f: X^{k} \rightarrow \mathbb{F}$ is a slice if

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=g\left(x_{i}\right) h\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

for some tensors $g: X \rightarrow \mathbb{F}$ and $h: X^{k-1} \rightarrow \mathbb{F}$.

- Is slice $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}^{2}=x_{2} \cdot h\left(x_{1}, x_{3}\right)
$$

## Slice

## Definition

A function $f: X^{k} \rightarrow \mathbb{F}$ is a slice if

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=g\left(x_{i}\right) h\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

for some tensors $g: X \rightarrow \mathbb{F}$ and $h: X^{k-1} \rightarrow \mathbb{F}$.

- Is slice $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}^{2}=x_{2} \cdot h\left(x_{1}, x_{3}\right)
$$

- Is slice $f: \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{3}+x_{2}
$$

## Slice

## Definition

A function $f: X^{k} \rightarrow \mathbb{F}$ is a slice if

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=g\left(x_{i}\right) h\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

for some tensors $g: X \rightarrow \mathbb{F}$ and $h: X^{k-1} \rightarrow \mathbb{F}$.

- Is slice $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}^{2}=x_{2} \cdot h\left(x_{1}, x_{3}\right)
$$

- Is slice $f: \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{3}+x_{2}
$$

- Is NOT slice $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

## Slice Rank

## Definition

The slice rank of A function $f: X^{k} \rightarrow \mathbb{F}$ is the minimum $r$ such that

$$
f=\sum_{i=1}^{r} f_{i}
$$

where $f_{i}$ are slices.

## Slice Rank

## Definition

The slice rank of A function $f: X^{k} \rightarrow \mathbb{F}$ is the minimum $r$ such that

$$
f=\sum_{i=1}^{r} f_{i}
$$

where $f_{i}$ are slices.

- Is NOT slice $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

so slice rank $f$ is $\geq 2$.

## Slice Rank

## Definition

The slice rank of A function $f: X^{k} \rightarrow \mathbb{F}$ is the minimum $r$ such that

$$
f=\sum_{i=1}^{r} f_{i}
$$

where $f_{i}$ are slices.

- Is NOT slice $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

so slice rank $f$ is $\geq 2$.

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=x_{1}\left(x_{2}+x_{3}\right)+x_{2}\left(x_{3}\right)
$$

so slice rank $f$ is 2 .

## Slice Rank

Theorem (Tao, 2016)
If $f: X^{k} \rightarrow \mathbb{F}$ is diagonal, i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0 \Longleftrightarrow x_{1}=x_{2}=\cdots=x_{k}
$$

then

$$
\text { slice-rank }(f)=|X| \text {. }
$$

## Slice Rank

Theorem (Tao, 2016)
If $f: X^{k} \rightarrow \mathbb{F}$ is diagonal, i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0 \Longleftrightarrow x_{1}=x_{2}=\cdots=x_{k}
$$

then

$$
\text { slice-rank }(f)=|X| \text {. }
$$

Example: If $X=\{0,1,2\}$ and $f:\{0,1,2\}^{2} \rightarrow \mathbb{F}$ we can write

$$
f\left(x_{1}, x_{2}\right)=\mathbb{1}_{x_{1}=0} \cdot f\left(0, x_{2}\right)+\mathbb{1}_{x_{1}=1} \cdot f\left(1, x_{2}\right)+\mathbb{1}_{x_{1}=2} \cdot f\left(2, x_{2}\right)
$$

so slice-rank $(f) \leq 3$.

## Slice Rank

Theorem (Tao, 2016)
If $f: X^{k} \rightarrow \mathbb{F}$ is diagonal, i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0 \Longleftrightarrow x_{1}=x_{2}=\cdots=x_{k}
$$

then

$$
\text { slice-rank }(f)=|X| \text {. }
$$

Example: If $X=\{0,1,2\}$ and $f:\{0,1,2\}^{2} \rightarrow \mathbb{F}$ we can write

$$
f\left(x_{1}, x_{2}\right)=\mathbb{1}_{x_{1}=0} \cdot f\left(0, x_{2}\right)+\mathbb{1}_{x_{1}=1} \cdot f\left(1, x_{2}\right)+\mathbb{1}_{x_{1}=2} \cdot f\left(2, x_{2}\right)
$$

so slice-rank $(f) \leq 3$. Theorem above says it is exactly 3 .

## Strategy

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

Theorem (Tao, 2016)
If $f: X^{k} \rightarrow \mathbb{F}$ is diagonal, i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0 \Longleftrightarrow x_{1}=x_{2}=\cdots=x_{k}
$$

then

$$
\text { slice-rank }(f)=|X| .
$$

## Strategy

$$
\text { Goal: } X \subseteq \mathbb{F}_{3}^{n} \text {, no } 3 \text { points collinear } \Longrightarrow|X| \leq 2.756^{n}
$$

## Theorem (Tao, 2016)

If $f: X^{k} \rightarrow \mathbb{F}$ is diagonal, i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0 \Longleftrightarrow x_{1}=x_{2}=\cdots=x_{k}
$$

then

$$
\text { slice-rank }(f)=|X| .
$$

## Strategy:

- Step 1: $X \subset \mathbb{F}_{3}^{n}$ has no collinear triple, find a diagonal tensor

$$
f: X^{3} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\text { slice-rank }(f) \leq \text { upper bound }
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

## Strategy:

- Step 1: $X \subset \mathbb{F}_{3}^{n}$ has no collinear triple, find a diagonal tensor

$$
f: X^{3} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\operatorname{slice-rank}(f) \leq \text { upper bound }
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

## Strategy:

- Step 1: $X \subset \mathbb{F}_{3}^{n}$ has no collinear triple, find a diagonal tensor

$$
f: X^{3} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\operatorname{slice-rank}(f) \leq \text { upper bound }
$$

Step 1: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
f(\vec{x}, \vec{y}, \vec{z})=\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right)
$$

Recall: $\vec{x}, \vec{y}, \vec{z}$ collinear iff

$$
x_{i}=y_{i}=z_{i} \text { or }\left\{x_{i}, y_{i}, z_{i}\right\}=\{0,1,2\}
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

## Strategy:

- Step 1: $X \subset \mathbb{F}_{3}^{n}$ has no collinear triple, find a diagonal tensor

$$
f: X^{3} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\text { slice-rank }(f) \leq \text { upper bound }
$$

Step 2: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
\begin{gathered}
f(\vec{x}, \vec{y}, \vec{z})=\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right) \\
|X|=\operatorname{slice-rank}(f) \leq \text { upper bound }
\end{gathered}
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

Step 2: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
\begin{aligned}
f(\vec{x}, \vec{y}, \vec{z}) & =\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right) \\
|X| & =\operatorname{slice-rank}(f) \leq \text { upper bound }
\end{aligned}
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

Step 2: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
\begin{gathered}
f(\vec{x}, \vec{y}, \vec{z})=\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right) . \\
|X|=\operatorname{slice-rank}(f) \leq \text { upper bound }
\end{gathered}
$$

$$
\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right)=\sum_{\alpha, \beta, \gamma \in\{0,1,2\}^{n}} c_{\alpha, \beta, \gamma}\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)\left(\prod_{i=1}^{n} y_{i}^{\beta_{i}}\right)\left(\prod_{i=1}^{n} z_{i}^{\gamma_{i}}\right)
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

Step 2: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
\begin{gathered}
f(\vec{x}, \vec{y}, \vec{z})=\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right) \\
|X|=\operatorname{slice-rank}(f) \leq \text { upper bound }
\end{gathered}
$$

$$
\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right)=\sum_{\alpha, \beta, \gamma \in\{0,1,2\}^{n}} c_{\alpha, \beta, \gamma}\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)\left(\prod_{i=1}^{n} y_{i}^{\beta_{i}}\right)\left(\prod_{i=1}^{n} z_{i}^{\gamma_{i}}\right)
$$

$f$ has degree $2 n$. At least one of the variables in each monomial appears with total degree at most $2 n / 3$ :

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

Step 2: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
\begin{gathered}
f(\vec{x}, \vec{y}, \vec{z})=\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right) . \\
|X|=\text { slice-rank }(f) \leq \text { upper bound }
\end{gathered}
$$

$$
\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right)=\sum_{\alpha, \beta, \gamma \in\{0,1,2\}^{n}} c_{\alpha, \beta, \gamma}\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)\left(\prod_{i=1}^{n} y_{i}^{\beta_{i}}\right)\left(\prod_{i=1}^{n} z_{i}^{\gamma_{i}}\right)
$$

$f$ has degree $2 n$. At least one of the variables in each monomial appears with total degree at most $2 n / 3$ :

$$
=\sum_{\substack{\alpha \in\{0,1,2\}^{n} \\ \sum \alpha_{i} \leq 2 n / 3}}\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right) f_{\alpha}(\vec{y}, \vec{z})+\sum_{\substack{\beta \in\{0,1,2\}^{n} \\ \sum \beta_{i} \leq 2 n / 3}}\left(\prod_{i=1}^{n} y_{i}^{\beta}\right) f_{\beta}(\vec{x}, \vec{z})+\sum_{\substack{\gamma \in\{0,1,2\}^{n} \\ \sum \gamma \leq 2 n / 3}}\left(\prod_{i=1}^{n} z_{i}^{\gamma_{i}}\right) f_{\gamma}(\vec{x}, \vec{y})
$$

## Goal: $X \subseteq \mathbb{F}_{3}^{n}$, no 3 points collinear $\Longrightarrow|X| \leq 2.756^{n}$

Step 2: Let $f: X^{3} \rightarrow \mathbb{F}_{3}$

$$
\begin{aligned}
f(\vec{x}, \vec{y}, \vec{z}) & =\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right) \\
|X| & =\operatorname{slice-rank}(f) \leq \text { upper bound }
\end{aligned}
$$

$$
\prod_{i=1}^{n}\left(x_{i}+y_{i}+z_{i}-1\right)\left(x_{i}+y_{i}+z_{i}-2\right)=\sum_{\alpha, \beta, \gamma \in\{0,1,2\}^{n}} c_{\alpha, \beta, \gamma}\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)\left(\prod_{i=1}^{n} y_{i}^{\beta_{i}}\right)\left(\prod_{i=1}^{n} z_{i}^{\gamma_{i}}\right)
$$

$f$ has degree $2 n$. At least one of the variables in each monomial appears with total degree at most $2 n / 3$ :

$$
=\sum_{\substack{\alpha \in\{0,1,2\}^{n} \\ \sum \alpha_{i} \leq 2 n / 3}}\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right) f_{\alpha}(\vec{y}, \vec{z})+\sum_{\substack{\beta \in\{0,1,2\}^{n} \\ \sum \beta_{i} \leq 2 n / 3}}\left(\prod_{i=1}^{n} y_{i}^{\beta}\right) f_{\beta}(\vec{x}, \vec{z})+\sum_{\substack{\gamma \in\{0,1,2\}^{n} \\ \sum \gamma \leq 2 n / 3}}\left(\prod_{i=1}^{n} z_{i}^{\gamma_{i}}\right) f_{\gamma}(\vec{x}, \vec{y})
$$

This is a sum of slices, the number of which is

$$
3 \cdot\left|\left\{\vec{e} \in\{0,1,2\}^{n}: e_{1}+e_{2}+\cdots+e_{n} \leq \frac{2 n}{3}\right\}\right| \leq 2.756^{n} .
$$

## Overview

## Strategy:

- Step 1: $X \subset \mathbb{F}^{n}$ avoids a property, find a diagonal tensor

$$
f: X^{k} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\text { slice-rank }(f) \leq \text { upper bound }
$$

## Overview

## Strategy:

- Step 1: $X \subset \mathbb{F}^{n}$ avoids a property, find a diagonal tensor

$$
f: X^{k} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\text { slice-rank }(f) \leq \text { upper bound }
$$

## Many Discoveries!

- Upper bounds on Sunflower-Free Sets: Naslund and Sawin (2017)
- Monochromatic Equilateral Triangles in Unit Distance Graph: Naslund (2019)
- Erdős-Ginzburg-Ziv Constant: Naslund (2019)
- Sets avoiding Right Corners: Ge, Shangguan (2020)
- Solutions to Linear Systems in Finite Fields: Sauermann (2021)


## Overview

## Strategy:

- Step 1: $X \subset \mathbb{F}^{n}$ avoids a property, find a diagonal tensor

$$
f: X^{k} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank( $f$ ), then:

$$
|X|=\text { slice-rank }(f) \leq \text { upper bound }
$$

## Many Discoveries!

- Upper bounds on Sunflower-Free Sets: Naslund and Sawin (2017)
- Monochromatic Equilateral Triangles in Unit Distance Graph: Naslund (2019)
- Erdős-Ginzburg-Ziv Constant: Naslund (2019)
- Sets avoiding Right Corners: Ge, Shangguan (2020)
- Solutions to Linear Systems in Finite Fields: Sauermann (2021)


## Right Corners (Ge \& Shangguan, 2020)

Goal: Maximize $|A|$ for $A \subset \mathbb{F}_{q}^{n}$ if $A$ has no right corner: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_{q}^{n}$ with

$$
(\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y})=0 .
$$

## Right Corners (Ge \& Shangguan, 2020)

Goal: Maximize $|A|$ for $A \subset \mathbb{F}_{q}^{n}$ if $A$ has no right corner: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_{q}^{n}$ with

$$
(\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y})=0 .
$$

Attempt: $T: A^{3} \rightarrow \mathbb{F}_{q}$

$$
T(\vec{x}, \vec{y}, \vec{z})=\mathbb{1}_{\vec{y} \neq \vec{z}} \cdot((\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y}))^{q-1}
$$

## Right Corners (Ge \& Shangguan, 2020)

Goal: Maximize $|A|$ for $A \subset \mathbb{F}_{q}^{n}$ if $A$ has no right corner: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_{q}^{n}$ with

$$
(\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y})=0 .
$$

Attempt: $T: A^{3} \rightarrow \mathbb{F}_{q}$

$$
T(\vec{x}, \vec{y}, \vec{z})=\mathbb{1}_{\vec{y} \neq \vec{z}} \cdot((\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y}))^{q-1}
$$

Issue: Not Diagonal!

$$
T(\vec{x}, \vec{y}, \vec{z})= \begin{cases}0 & \text { if } \vec{x}=\vec{y} \text { or } \vec{x}=\vec{z} \text { or } \vec{y}=\vec{z} \\ 1 & \text { otherwise }\end{cases}
$$

## Right Corners (Ge \& Shangguan, 2020)

Goal: Maximize $|A|$ for $A \subset \mathbb{F}_{q}^{n}$ if $A$ has no right corner: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_{q}^{n}$ with

$$
(\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y})=0 .
$$

Attempt: $T: A^{3} \rightarrow \mathbb{F}_{q}$

$$
T(\vec{x}, \vec{y}, \vec{z})=\mathbb{1}_{\vec{y} \neq \vec{z}} \cdot((\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y}))^{q-1}
$$

Issue: Not Diagonal!

$$
T(\vec{x}, \vec{y}, \vec{z})= \begin{cases}0 & \text { if } \vec{x}=\vec{y} \text { or } \vec{x}=\vec{z} \text { or } \vec{y}=\vec{z} \\ 1 & \text { otherwise }\end{cases}
$$

Fix: Diagonalize

$$
T(\vec{x}, \vec{y}, \vec{z})=2 \cdot \mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}-\mathbb{1}_{\vec{x}=\vec{y}}-\mathbb{1}_{\vec{x}=\vec{z}}-\mathbb{1}_{\vec{y}=\vec{z}}+1
$$

## Right Corners (Ge \& Shangguan, 2020)

Goal: Maximize $|A|$ for $A \subset \mathbb{F}_{q}^{n}$ if $A$ has no right corner: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_{q}^{n}$ with

$$
(\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y})=0 .
$$

Attempt: $T: A^{3} \rightarrow \mathbb{F}_{q}$

$$
T(\vec{x}, \vec{y}, \vec{z})=\mathbb{1}_{\vec{y} \neq \vec{z}} \cdot((\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y}))^{q-1}
$$

Issue: Not Diagonal!

$$
T(\vec{x}, \vec{y}, \vec{z})= \begin{cases}0 & \text { if } \vec{x}=\vec{y} \text { or } \vec{x}=\vec{z} \text { or } \vec{y}=\vec{z} \\ 1 & \text { otherwise }\end{cases}
$$

Fix: Diagonalize

$$
\begin{gathered}
T(\vec{x}, \vec{y}, \vec{z})=2 \cdot \mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}-\mathbb{1}_{\vec{x}=\vec{y}}-\mathbb{1}_{\vec{x}=\vec{z}}-\mathbb{1}_{\vec{y}=\vec{z}}+1 \\
\mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}=\frac{1}{2}\left(T(\vec{x}, \vec{y}, \vec{z})+\mathbb{1}_{\vec{x}=\vec{y}}+\mathbb{1}_{\vec{x}=\vec{z}}+\mathbb{1}_{\vec{y}=\vec{z}}-1\right) \\
|A|=\text { slice-rank }\left(\mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}\right) \leq \operatorname{slice-rank}(T)+3 .
\end{gathered}
$$

Attempt: $T: A^{3} \rightarrow \mathbb{F}_{q}$

$$
T(\vec{x}, \vec{y}, \vec{z})=\mathbb{1}_{\vec{y} \neq \vec{z}} \cdot((\vec{z}-\vec{x}) \cdot(\vec{z}-\vec{y}))^{q-1}
$$

Issue: Not Diagonal!

$$
T(\vec{x}, \vec{y}, \vec{z})= \begin{cases}0 & \text { if } \vec{x}=\vec{y} \text { or } \vec{x}=\vec{z} \text { or } \vec{y}=\vec{z} \\ 1 & \text { otherwise }\end{cases}
$$

Fix: Diagonalize

$$
\begin{gathered}
T(\vec{x}, \vec{y}, \vec{z})=2 \cdot \mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}-\mathbb{1}_{\vec{x}=\vec{y}}-\mathbb{1}_{\vec{x}=\vec{z}}-\mathbb{1}_{\vec{y}=\vec{z}}+1 \\
\mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}=\frac{1}{2}\left(T(\vec{x}, \vec{y}, \vec{z})+\mathbb{1}_{\vec{x}=\vec{y}}+\mathbb{1}_{\vec{x}=\vec{z}}+\mathbb{1}_{\vec{y}=\vec{z}}-1\right) \\
|A|=\text { slice-rank }\left(\mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}\right) \leq \text { slice-rank }(T)+3 .
\end{gathered}
$$

Key: Can diagonalize $T$ since it is constant on partitions.

## k-Right Corners (Naslund 2020)

## Definition (Naslund 2020)

Distinct $x_{1}, \ldots, x_{k}, x_{k+1} \in \mathbb{F}_{q}^{n}$ form a $k$-right corner if they are distinct and

$$
x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}
$$

are pairwise orthogonal.

## k-Right Corners (Naslund 2020)

## Definition (Naslund 2020)

Distinct $x_{1}, \ldots, x_{k}, x_{k+1} \in \mathbb{F}_{q}^{n}$ form a $k$-right corner if they are distinct and

$$
x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}
$$

are pairwise orthogonal.

- Slice-Rank Attempt:

$$
F_{k}=\prod_{j<\ell \leq k}\left(1-\left\langle x_{j}-x_{k+1}, x_{\ell}-x_{k+1}\right\rangle^{q-1}\right) .
$$

## k-Right Corners (Naslund 2020)

## Definition (Naslund 2020)

Distinct $x_{1}, \ldots, x_{k}, x_{k+1} \in \mathbb{F}_{q}^{n}$ form a $k$-right corner if they are distinct and

$$
x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}
$$

are pairwise orthogonal.

- Slice-Rank Attempt:

$$
F_{k}=\prod_{j<\ell \leq k}\left(1-\left\langle x_{j}-x_{k+1}, x_{\ell}-x_{k+1}\right\rangle^{q-1}\right) .
$$

- Issue:

$$
F_{k}= \begin{cases}1 & \text { if } x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1} \text { are pairwise orthogonal } \\ 0 & \text { otherwise }\end{cases}
$$

## k-Right Corners (Naslund 2020)

## Definition (Naslund 2020)

Distinct $x_{1}, \ldots, x_{k}, x_{k+1} \in \mathbb{F}_{q}^{n}$ form a $k$-right corner if they are distinct and

$$
x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}
$$

are pairwise orthogonal.

- Slice-Rank Attempt:

$$
F_{k}=\prod_{j<\ell \leq k}\left(1-\left\langle x_{j}-x_{k+1}, x_{\ell}-x_{k+1}\right\rangle^{q-1}\right) .
$$

- Issue:

$$
F_{k}=\left\{\begin{array}{ll}
1 & \text { if } x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1} \\
0 & \text { otherwise }
\end{array}\right. \text { are pairwise orthogonal }
$$

Not Diagonal! Example:

$$
x_{1}-x_{k+1} \perp x_{2}-x_{k+1}, x_{2}-x_{k+1} \text { self orthogonal, } x_{i}=x_{2} \text { for } 2 \leq i \leq k
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- "Easy" To Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k}(\text { not necessarily distinct!) satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- "Easy" To Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k}(\text { not necessarily distinct!) satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- "Easy" To Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k}(\text { not necessarily distinct!) satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$. Mostly done ad-hoc in literature:

- Upper bounds on Sunflower-Free Sets: Naslund and Sawin (2017)
- Monochromatic Equilateral Triangles in Unit Distance Graph: Naslund (2019)
- Erdős-Ginzburg-Ziv Constant: Naslund (2019)
- Sets avoiding Right Corners: Ge, Shangguan (2020)
- Solutions to Linear Systems in Finite Fields: Sauermann (2021)


## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- "Easy" To Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k}(\text { not necessarily distinct!) satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- "Easy" To Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k}(\text { not necessarily distinct!) satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

- $H_{3}\left(x_{1}, x_{2}, x_{3}\right)=1-\mathbb{1}_{x_{1}=x_{2}}-\mathbb{1}_{x_{1}=x_{3}}-\mathbb{1}_{x_{2}=x_{3}}$
- Möbius Inversion on $\Pi_{3}$

$$
H_{3}\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}1 & \text { if } x_{1}, x_{2}, x_{3} \text { distinct } \\ -2 & \text { if } x_{1}=x_{2}=x_{3} \\ 0 & \text { otherwise }\end{cases}
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- "Easy" To Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)=\left\{\begin{array}{l}
c_{1} \\
c_{2}(\neq 0) \\
0
\end{array}\right.
$$

if $x_{1}, \ldots, x_{k}$ (not necessarily distinct!) satisfies $\mathcal{P}$
if $x_{1}=x_{2}=\cdots=x_{k}$
otherwise

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

- $H_{3}\left(x_{1}, x_{2}, x_{3}\right)=1-\mathbb{1}_{x_{1}=x_{2}}-\mathbb{1}_{x_{1}=x_{3}}-\mathbb{1}_{x_{2}=x_{3}}$
- Möbius Inversion on $\Pi_{3}$

$$
H_{3}\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}1 & \text { if } x_{1}, x_{2}, x_{3} \text { distinct } \\ -2 & \text { if } x_{1}=x_{2}=x_{3} \\ 0 & \text { otherwise }\end{cases}
$$

- $|A|$ bounded above by slice-rank $\left(F_{3} \cdot H_{3}\right)$

$$
\operatorname{slice-rank}\left(F_{3}\right)+\operatorname{slice-rank}\left(\mathbb{1}_{x_{1}=x_{2}} \cdot F_{3}\right)+\operatorname{slice}-r a n k\left(\mathbb{1}_{x_{1}=x_{3}} \cdot F_{3}\right)+\operatorname{slice-rank}\left(\mathbb{1}_{x_{2}=x_{3}} \cdot F_{3}\right)
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)=\left\{\begin{array}{l}
c_{1} \\
c_{2}(\neq 0) \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } x_{1}, \ldots, x_{k} \text { satisfies } \mathcal{P} \\
& \text { if } x_{1}=x_{2}=\cdots=x_{k} \\
& \text { otherwise }
\end{aligned}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

$$
\begin{aligned}
H_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1-\mathbb{1}_{x_{1}=x_{2}}-\mathbb{1}_{x_{1}=x_{3}}-\mathbb{1}_{x_{2}=x_{3}}-\mathbb{1}_{x_{1}=x_{4}}-\mathbb{1}_{x_{2}=x_{4}}-\mathbb{1}_{x_{3}=x_{4}} \\
& +2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}}+2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{4}}+2 \cdot \mathbb{1}_{x_{1}=x_{3}=x_{4}}+2 \cdot \mathbb{1}_{x_{2}=x_{3}=x_{4}} \\
& +\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}}+\mathbb{1}_{x_{1}=x_{3}} \cdot \mathbb{1}_{x_{2}=x_{4}}+\mathbb{1}_{x_{1}=x_{4}} \cdot \mathbb{1}_{x_{2}=x_{3}} \\
& =6 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}=x_{4}} \text { on } A^{4}\left(\text { Möbius inversion on } \Pi_{4}\right)
\end{aligned}
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k} \text { satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

$$
\begin{aligned}
H_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1-\mathbb{1}_{x_{1}=x_{2}}-\mathbb{1}_{x_{1}=x_{3}}-\mathbb{1}_{x_{2}=x_{3}}-\mathbb{1}_{x_{1}=x_{4}}-\mathbb{1}_{x_{2}=x_{4}}-\mathbb{1}_{x_{3}=x_{4}} \\
& +2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}}+2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{4}}+2 \cdot \mathbb{1}_{x_{1}=x_{3}=x_{4}}+2 \cdot \mathbb{1}_{x_{2}=x_{3}=x_{4}} \\
& +\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}}+\mathbb{1}_{x_{1}=x_{3}} \cdot \mathbb{1}_{x_{2}=x_{4}}+\mathbb{1}_{x_{1}=x_{4}} \cdot \mathbb{1}_{x_{2}=x_{3}} \\
& \left.=6 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}=x_{4}} \text { on } A^{4} \text { (Möbius inversion on } \Pi_{4}\right)
\end{aligned}
$$

- $|A|$ bounded above by
$\cdots+$ slice-rank $\left(\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}} \cdot F_{4}\right)+\operatorname{slice}-r a n k\left(\mathbb{1}_{x_{1}=x_{3}} \cdot \mathbb{1}_{x_{2}=x_{4}} \cdot F_{4}\right)+\operatorname{slice}-\operatorname{rank}\left(\mathbb{1}_{x_{1}=x_{4}} \cdot \mathbb{1}_{x_{2}=x_{3}} \cdot F_{4}\right)$ ????????


## Partition Rank Method (Naslund 2020)

## PARTITION RANK POLYNOMIAL



## Overview

## Partition Rank Method

## Strategy:

- Step 1: $X \subset \mathbb{F}^{n}$ avoids a property, find a diagonal tensor

$$
f: X^{k} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank(f) partition-rank(f), then:

$$
|X|=\underbrace{\text { partition-rank }(f)}_{\leq \text {slice-rank }(f)} \leq \text { upper bound }
$$

## Overview

## Partition Rank Method

## Strategy:

- Step 1: $X \subset \mathbb{F}^{n}$ avoids a property, find a diagonal tensor

$$
f: X^{k} \rightarrow \mathbb{F}
$$

- Step 2: Find upper bound on slice-rank(f) partition-rank(f), then:

$$
|X|=\underbrace{\text { partition-rank }(f)}_{\leq \text {slice-rank }(f)} \leq \text { upper bound }
$$

## Partition Rank Method (Naslund 2020)

## Definition

A function $f: X^{k} \rightarrow \mathbb{F}$ has partition rank 1 if there is a set partition $\pi$ of $\{1,2, \ldots, k\}$ with blocks $\pi_{1}, \pi_{2}, \ldots, \pi_{\ell}$ so that

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=1}^{\ell} f_{\pi_{i}}
$$

where $f_{\pi_{i}}$ is a function in the variables $\left\{x_{j}: j \in \pi_{i}\right\}$

## Example

If $f: X^{4} \rightarrow \mathbb{F}$ with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if } x_{1}=x_{2} \text { and } x_{3}=x_{4} \\ 0 & \text { otherwise }\end{cases}
$$

then $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}}$ so it has partition rank 1 . Its slice rank is ???

## Partition Rank Method (Naslund 2020)

## Definition

A function $f: X^{k} \rightarrow \mathbb{F}$ has partition rank 1 if there is a set partition $\pi$ of $\{1,2, \ldots, k\}$ with blocks $\pi_{1}, \pi_{2}, \ldots, \pi_{\ell}$ so that

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=1}^{\ell} f_{\pi_{i}}\left(x_{1}, \ldots, x_{k}\right)
$$

where $f_{\pi_{i}}$ is a function in the variables $\left\{x_{j}: j \in \pi_{i}\right\}$

## Definition

The partition rank of $f: X^{k} \rightarrow \mathbb{F}$ is

$$
\min \left\{r: f=\sum_{i=1}^{r} f_{i}, f_{i} \text { has partition rank } 1\right\} .
$$

## Partition Rank

## Definition

The partition rank of $f: X^{k} \rightarrow \mathbb{F}$ is

$$
\min \left\{r: f=\sum_{i=1}^{r} f_{i}, f_{i} \text { has partition rank } 1\right\} .
$$

Theorem (Naslund 2019)
If $f: X^{k} \rightarrow \mathbb{F}$ is diagonal, i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0 \Longleftrightarrow x_{1}=x_{2}=\cdots=x_{k}
$$

then

$$
\operatorname{partition-rank}(f)=|X| .
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)=\left\{\begin{array}{l}
c_{1} \\
c_{2}(\neq 0) \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } x_{1}, \ldots, x_{k} \text { satisfies } \mathcal{P} \\
& \text { if } x_{1}=x_{2}=\cdots=x_{k} \\
& \text { otherwise }
\end{aligned}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

$$
\begin{aligned}
H_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1-\mathbb{1}_{x_{1}=x_{2}}-\mathbb{1}_{x_{1}=x_{3}}-\mathbb{1}_{x_{2}=x_{3}}-\mathbb{1}_{x_{1}=x_{4}}-\mathbb{1}_{x_{2}=x_{4}}-\mathbb{1}_{x_{3}=x_{4}} \\
& +2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}}+2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{4}}+2 \cdot \mathbb{1}_{x_{1}=x_{3}=x_{4}}+2 \cdot \mathbb{1}_{x_{2}=x_{3}=x_{4}} \\
& +\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}}+\mathbb{1}_{x_{1}=x_{3}} \cdot \mathbb{1}_{x_{2}=x_{4}}+\mathbb{1}_{x_{1}=x_{4}} \cdot \mathbb{1}_{x_{2}=x_{3}} \\
& =6 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}=x_{4}} \text { on } A^{4}\left(\text { Möbius inversion on } \Pi_{4}\right)
\end{aligned}
$$

## General Framework

- $A \subset \mathbb{F}_{q}^{n}$, no distinct $k$-tuple has property $\mathcal{P}$
- Create $F_{k}:\left(\mathbb{F}_{q}^{n}\right)^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k} \text { satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$.

$$
\begin{aligned}
H_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1-\mathbb{1}_{x_{1}=x_{2}}-\mathbb{1}_{x_{1}=x_{3}}-\mathbb{1}_{x_{2}=x_{3}}-\mathbb{1}_{x_{1}=x_{4}}-\mathbb{1}_{x_{2}=x_{4}}-\mathbb{1}_{x_{3}=x_{4}} \\
& +2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}}+2 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{4}}+2 \cdot \mathbb{1}_{x_{1}=x_{3}=x_{4}}+2 \cdot \mathbb{1}_{x_{2}=x_{3}=x_{4}} \\
& +\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}}+\mathbb{1}_{x_{1}=x_{3}} \cdot \mathbb{1}_{x_{2}=x_{4}}+\mathbb{1}_{x_{1}=x_{4}} \cdot \mathbb{1}_{x_{2}=x_{3}} \\
& =6 \cdot \mathbb{1}_{x_{1}=x_{2}=x_{3}=x_{4}} \text { on } A^{4}\left(\text { Möbius inversion on } \mathbb{\Pi}_{4}\right)
\end{aligned}
$$

- $|A|$ bounded above by
$\cdots+$ partition-rank $\left(\mathbb{1}_{x_{1}=x_{2}} \cdot \mathbb{1}_{x_{3}=x_{4}} \cdot F_{k}\right)+$ partition-rank $\left(\mathbb{1}_{x_{1}=x_{3}} \cdot \mathbb{1}_{x_{2}=x_{4}} \cdot F_{k}\right)+\cdots$


## Partition Rank \& Partition Lattices (O. 2023+)

- $A \subset X$, no distinct $k$-tuple has property $\mathcal{P}$
- Create $F_{k}: X^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k} \text { satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

$F_{k}\left(x_{1}, \ldots, x_{k}\right)$ is constant on partitions

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$ exploiting Möbius inversion.

## Partition Rank \& Partition Lattices (O. 2023+)

- $A \subset X$, no distinct $k$-tuple has property $\mathcal{P}$
- Create $F_{k}: X^{k} \rightarrow \mathbb{F}$ with

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}c_{1} & \text { if } x_{1}, \ldots, x_{k} \text { satisfies } \mathcal{P} \\ c_{2}(\neq 0) & \text { if } x_{1}=x_{2}=\cdots=x_{k} \\ 0 & \text { otherwise }\end{cases}
$$

$F_{k}\left(x_{1}, \ldots, x_{k}\right)$ is constant on partitions

- Diagonalize: Create $H_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right) \cdot H_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

is diagonal on $A^{k}$ exploiting Möbius inversion.

- Unifies approaches in papers of Naslund:

$$
\text { distinctness indicator } \Longrightarrow \text { partition indicator }
$$

- Finite field analogue of problem of Erdös
- Generalizes work of Burscis, Matolcsi, Pach, Schrettner


## THANKS

