Using Slice Rank & Partition Rank

Mohamed Omar Department of Mathematics & Statistics York University Department of Mathematics Harvey Mudd College

> FPSAC 2023 UC Davis

July 20, 2023

Mohamed Omar Department of Mathemati Using Slice Rank & Partition Rank

July 20, 2023

Overarching Goal:

• Use slice-rank and partition-rank: Given

- finite set A subset of vector space V
- A avoids a property \mathcal{P}

Goal: maximize |A|

• Strengthen opportunities to use these using

Partition lattices Π_n

 $S \subseteq \mathbb{F}_3^n$ is a **cap set** if S has no 3 collinear points

Goal: Find c(n): Largest size of a cap set $S \subset \mathbb{F}_3^n$

イロト イボト イヨト イヨト

 $S \subseteq \mathbb{F}_3^n$ is a **cap set** if S has no 3 collinear points

Goal: Find c(n): Largest size of a cap set $S \subset \mathbb{F}_3^n$

July 20, 2023

< □ > < 同 > < 回 >

Goal: Find c(n): Largest size of $S \subseteq \mathbb{F}_3^n$, no 3 points collinear

$$c(1) = 2$$
 $c(2) = 4$ $c(3) = 9$ $c(4) = 20$ $c(5) = 45$

Mohamed Omar Department of Mathemati

Using Slice Rank & Partition Rank

July 20, 2023

Goal: Find c(n): Largest size of $S \subseteq \mathbb{F}_3^n$, no 3 points collinear Why??

ヘロト ヘヨト ヘヨト ヘヨト

Goal: Find c(n): Largest size of $S \subseteq \mathbb{F}_3^n$, no 3 points collinear Why??

The following are equivalent:

- $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_3^n$ are collinear
- for every *i*,

$$x_i = y_i = z_i$$
 or $\{x_i, y_i, z_i\} = \{0, 1, 2\}$

۲

 $\vec{x}, \vec{y}, \vec{z}$ form arithmetic progression

Important: Additive Combinatorics & Number Theory

< ロ > < 同 > < 三 > < 三 >

Goal: Find c(n): Largest size of $S \subseteq \mathbb{F}_3^n$, no 3 points collinear

History:

- Quick: $c(n) \ge 2^n$ (select all points $\{0,1\}^n$)
- Meshulam (1995): $c(n) \leq \frac{2}{n} \cdot 3^n$
- Bateman, Katz (2011): $c(n) < \frac{1}{n^{1+\epsilon}} \cdot 3^n$ JAMS paper

Goal: Find c(n): Largest size of $S \subseteq \mathbb{F}_3^n$, no 3 points collinear

History:

- Quick: $c(n) \ge 2^n$ (select all points $\{0,1\}^n$)
- Meshulam (1995): $c(n) \le \frac{2}{n} \cdot 3^n$
- Bateman, Katz (2011): $c(n) < \frac{1}{n^{1+\epsilon}} \cdot 3^n$ JAMS paper

• Question (Frankl, Graham, Rödl / Alon):

$$c(n) = O(K^n)$$
 for $K < 3$?

Tao:

"one of the most intriguing open problems in additive combinatorics and Ramsey theory for over 20 years"

ロト (同) (三) (三) (○) (

Tao:

"one of the most intriguing open problems in additive combinatorics and Ramsey theory for over 20 years"

• Question (Frankl, Graham, Rödl / Alon):

 $c(n) = O(K^n)$ for K < 3?

Yes! 2 Annals Papers!

Theorem (Croot, Lev, Pach / Ellenberg, Gijswijt (2017)) If $S \subset \mathbb{F}_3^n$ does not contain a triple of collinear points then

 $|S| \le 2.756^n$

Slice Rank Polynomial Method

SLICE RANK POLYNOMIAL METHOD

Mohamed Omar Department of Mathemati Using Slice Rank & Partition Rank

July 20, 2023

Definition

A function $f: X^k \to \mathbb{F}$ is a slice if

$$f(x_1, x_2, ..., x_k) = g(x_i)h(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k)$$

for some tensors $g: X \to \mathbb{F}$ and $h: X^{k-1} \to \mathbb{F}$.

Definition

A function $f: X^k \to \mathbb{F}$ is a slice if

$$f(x_1, x_2, ..., x_k) = g(x_i)h(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k)$$

for some tensors $g: X \to \mathbb{F}$ and $h: X^{k-1} \to \mathbb{F}$.

• Is slice
$$f : \mathbb{R}^3 \to \mathbb{R}$$
,
 $f(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3^2 = x_2 \cdot h(x_1, x_3)$

Definition

A function $f: X^k \to \mathbb{F}$ is a slice if

$$f(x_1, x_2, ..., x_k) = g(x_i)h(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k)$$

for some tensors $g: X \to \mathbb{F}$ and $h: X^{k-1} \to \mathbb{F}$.

• Is slice
$$f : \mathbb{R}^3 \to \mathbb{R}$$
,
 $f(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3^2 = x_2 \cdot h(x_1, x_3)$
• Is slice $f : \mathbb{F}_3^3 \to \mathbb{F}_2$.

b Is slice
$$f : \mathbb{F}_2^3 \to \mathbb{F}_2$$
,
 $f(x_1, x_2, x_3) = x_1 x_2^3 + x_2$

Definition

A function $f: X^k \to \mathbb{F}$ is a slice if

$$f(x_1, x_2, ..., x_k) = g(x_i)h(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k)$$

for some tensors $g: X \to \mathbb{F}$ and $h: X^{k-1} \to \mathbb{F}$.

• Is slice
$$f : \mathbb{R}^3 \to \mathbb{R}$$
,
 $f(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3^2 = x_2 \cdot h(x_1, x_3)$

• Is slice
$$f : \mathbb{F}_2^3 \to \mathbb{F}_2$$
,
$$f(x_1, x_2, x_3) = x_1 x_2^3 + x_2$$

• Is NOT slice $f : \mathbb{R}^3 \to \mathbb{R}$,

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

Mohamed Omar Department of Mathemati

Using Slice Rank & Partition Rank

July 20, 2023

↓ = ↓ = ↓ = √QQ

Definition

The slice rank of A function $f: X^k \to \mathbb{F}$ is the minimum r such that

$$f = \sum_{i=1}^r f_i$$

where f_i are slices.

Definition

The slice rank of A function $f: X^k \to \mathbb{F}$ is the minimum r such that

 $f = \sum_{i=1}^r f_i$

where f_i are slices.

• Is NOT slice $f : \mathbb{R}^3 \to \mathbb{R}$,

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

so slice rank f is ≥ 2 .

Definition

The slice rank of A function $f: X^k \to \mathbb{F}$ is the minimum r such that

$$f = \sum_{i=1}^r f_i$$

where f_i are slices.

• Is NOT slice
$$f : \mathbb{R}^3 \to \mathbb{R}$$
,

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

so slice rank f is ≥ 2 .

۲

$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3 = x_1(x_2 + x_3) + x_2(x_3)$$

so slice rank f is 2.

イロト イヨト イヨト

Theorem (Tao, 2016) If $f: X^k \to \mathbb{F}$ is diagonal, i.e.

$$f(x_1, x_2, \dots, x_k) \neq 0 \iff x_1 = x_2 = \dots = x_k$$

then

slice-rank(f) = |X|.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Tao, 2016)

If $f: X^k \to \mathbb{F}$ is <u>diagonal</u>, i.e.

$$f(x_1, x_2, \ldots, x_k) \neq 0 \iff x_1 = x_2 = \cdots = x_k$$

then

slice-rank(f) = |X|.

Example: If $X = \{0, 1, 2\}$ and $f : \{0, 1, 2\}^2 \rightarrow \mathbb{F}$ we can write

$$f(x_1, x_2) = \mathbb{1}_{x_1=0} \cdot f(0, x_2) + \mathbb{1}_{x_1=1} \cdot f(1, x_2) + \mathbb{1}_{x_1=2} \cdot f(2, x_2)$$

so slice-rank $(f) \leq 3$.

July 20, 2023

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Theorem (Tao, 2016)

If $f: X^k \to \mathbb{F}$ is <u>diagonal</u>, i.e.

$$f(x_1, x_2, \ldots, x_k) \neq 0 \iff x_1 = x_2 = \cdots = x_k$$

then

slice-rank(f) = |X|.

Example: If $X = \{0, 1, 2\}$ and $f : \{0, 1, 2\}^2 \rightarrow \mathbb{F}$ we can write

$$f(x_1, x_2) = \mathbb{1}_{x_1=0} \cdot f(0, x_2) + \mathbb{1}_{x_1=1} \cdot f(1, x_2) + \mathbb{1}_{x_1=2} \cdot f(2, x_2)$$

so slice-rank $(f) \leq 3$. Theorem above says it is exactly 3.

July 20, 2023

Strategy

Goal: $X \subseteq \mathbb{F}_3^n$, no 3 points collinear $\implies |X| \le 2.756^n$

Theorem (Tao, 2016)

If $f: X^k \to \mathbb{F}$ is <u>diagonal</u>, i.e.

$$f(x_1, x_2, \ldots, x_k) \neq 0 \iff x_1 = x_2 = \cdots = x_k$$

then

slice-rank(f) = |X|.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Strategy

Goal: $X \subseteq \mathbb{F}_3^n$, no 3 points collinear $\implies |X| \le 2.756^n$

Theorem (Tao, 2016)

If $f: X^k \to \mathbb{F}$ is <u>diagonal</u>, i.e.

$$f(x_1, x_2, \ldots, x_k) \neq 0 \iff x_1 = x_2 = \cdots = x_k$$

then

slice-rank(f) = |X|.

Strategy:

• Step 1: $X \subset \mathbb{F}_3^n$ has no collinear triple, find a diagonal tensor

$$f:X^3\to \mathbb{F}$$

• Step 2: Find upper bound on slice-rank(f), then:

$$|X| = slice-rank(f) \le upper bound$$

Strategy:

• Step 1: $X \subset \mathbb{F}_3^n$ has no collinear triple, find a diagonal tensor

 $f:X^3\to \mathbb{F}$

• Step 2: Find upper bound on slice-rank(f), then:

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

イロト 不得 トイヨト イヨト 二日

Strategy:

• Step 1: $X \subset \mathbb{F}_3^n$ has no collinear triple, find a diagonal tensor

$$f:X^3\to \mathbb{F}$$

Step 2: Find upper bound on slice-rank(f), then:

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

Step 1: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$

Recall: $\vec{x}, \vec{y}, \vec{z}$ collinear iff

$$x_i = y_i = z_i$$
 or $\{x_i, y_i, z_i\} = \{0, 1, 2\}$

July 20, 2023

イロト 不得 トイヨト イヨト 二日

Strategy:

• Step 1: $X \subset \mathbb{F}_3^n$ has no collinear triple, find a diagonal tensor

 $f:X^3\to \mathbb{F}$

• Step 2: Find upper bound on slice-rank(f), then:

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

Step 2: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$
$$|X| = \text{slice-rank}(f) \le \text{upper bound}$$

July 20, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 2: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

July 20, 2023

Step 2: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

$$\prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2) = \sum_{\alpha, \beta, \gamma \in \{0, 1, 2\}^n} c_{\alpha, \beta, \gamma} \left(\prod_{i=1}^{n} x_i^{\alpha_i}\right) \left(\prod_{i=1}^{n} y_i^{\beta_i}\right) \left(\prod_{i=1}^{n} z_i^{\gamma_i}\right)$$

July 20, 2023

Step 2: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

$$\prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2) = \sum_{\alpha, \beta, \gamma \in \{0, 1, 2\}^n} c_{\alpha, \beta, \gamma} \left(\prod_{i=1}^{n} x_i^{\alpha_i}\right) \left(\prod_{i=1}^{n} y_i^{\beta_i}\right) \left(\prod_{i=1}^{n} z_i^{\gamma_i}\right)$$

f has degree 2n. At least one of the variables in each monomial appears with total degree at most 2n/3:

Step 2: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

$$\prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2) = \sum_{\alpha, \beta, \gamma \in \{0, 1, 2\}^n} c_{\alpha, \beta, \gamma} \left(\prod_{i=1}^{n} x_i^{\alpha_i}\right) \left(\prod_{i=1}^{n} y_i^{\beta_i}\right) \left(\prod_{i=1}^{n} z_i^{\gamma_i}\right)$$

f has degree 2n. At least one of the variables in each monomial appears with total degree at most 2n/3:

$$= \sum_{\substack{\alpha \in \{0,1,2\}^n \\ \sum \alpha_i \le 2n/3}} \left(\prod_{i=1}^n x_i^{\alpha_i}\right) f_\alpha(\vec{y}, \vec{z}) + \sum_{\substack{\beta \in \{0,1,2\}^n \\ \sum \beta_i \le 2n/3}} \left(\prod_{i=1}^n y_i^{\beta}\right) f_\beta(\vec{x}, \vec{z}) + \sum_{\substack{\gamma \in \{0,1,2\}^n \\ \sum \gamma \le 2n/3}} \left(\prod_{i=1}^n z_i^{\gamma_i}\right) f_\gamma(\vec{x}, \vec{y})$$

Mohamed Omar Department of Mathemati Using Slice Rank & Partition Rank

July 20, 2023

Step 2: Let $f : X^3 \to \mathbb{F}_3$

$$f(\vec{x}, \vec{y}, \vec{z}) = \prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2).$$

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

$$\prod_{i=1}^{n} (x_i + y_i + z_i - 1)(x_i + y_i + z_i - 2) = \sum_{\alpha, \beta, \gamma \in \{0, 1, 2\}^n} c_{\alpha, \beta, \gamma} \left(\prod_{i=1}^{n} x_i^{\alpha_i}\right) \left(\prod_{i=1}^{n} y_i^{\beta_i}\right) \left(\prod_{i=1}^{n} z_i^{\gamma_i}\right)$$

f has degree 2n. At least one of the variables in each monomial appears with total degree at most 2n/3:

$$= \sum_{\substack{\alpha \in \{0,1,2\}^n \\ \sum \alpha_i \le 2n/3}} \left(\prod_{i=1}^n x_i^{\alpha_i}\right) f_\alpha(\vec{y}, \vec{z}) + \sum_{\substack{\beta \in \{0,1,2\}^n \\ \sum \beta_i \le 2n/3}} \left(\prod_{i=1}^n y_i^{\beta}\right) f_\beta(\vec{x}, \vec{z}) + \sum_{\substack{\gamma \in \{0,1,2\}^n \\ \sum \gamma \le 2n/3}} \left(\prod_{i=1}^n z_i^{\gamma_i}\right) f_\gamma(\vec{x}, \vec{y})$$

This is a sum of slices, the number of which is

$$3 \cdot \left| \left\{ \vec{e} \in \{0, 1, 2\}^n : e_1 + e_2 + \dots + e_n \le \frac{2n}{3} \right\} \right| \le 2.756^n.$$

Overview

Strategy:

• Step 1: $X \subset \mathbb{F}^n$ avoids a property, find a diagonal tensor

 $f:X^k\to \mathbb{F}$

• Step 2: Find upper bound on slice-rank(f), then:

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

イロト 不得 トイヨト イヨト 二日

Overview

Strategy:

• Step 1: $X \subset \mathbb{F}^n$ avoids a property, find a diagonal tensor

 $f:X^k\to \mathbb{F}$

• Step 2: Find upper bound on slice-rank(f), then:

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

Many Discoveries!

- Upper bounds on Sunflower-Free Sets: Naslund and Sawin (2017)
- Monochromatic Equilateral Triangles in Unit Distance Graph: Naslund (2019)
- Erdős-Ginzburg-Ziv Constant: Naslund (2019)
- Sets avoiding Right Corners: Ge, Shangguan (2020)
- Solutions to Linear Systems in Finite Fields: Sauermann (2021)

Overview

Strategy:

• Step 1: $X \subset \mathbb{F}^n$ avoids a property, find a diagonal tensor

 $f:X^k\to \mathbb{F}$

• Step 2: Find upper bound on slice-rank(f), then:

 $|X| = \text{slice-rank}(f) \leq \text{upper bound}$

Many Discoveries!

- Upper bounds on Sunflower-Free Sets: Naslund and Sawin (2017)
- Monochromatic Equilateral Triangles in Unit Distance Graph: Naslund (2019)
- Erdős-Ginzburg-Ziv Constant: Naslund (2019)
- Sets avoiding Right Corners: Ge, Shangguan (2020)
- Solutions to Linear Systems in Finite Fields: Sauermann (2021)

Right Corners (Ge & Shangguan, 2020)

Goal: Maximize |A| for $A \subset \mathbb{F}_q^n$ if A has no <u>right corner</u>: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_q^n$ with

 $\left(\vec{z}-\vec{x}\right)\cdot\left(\vec{z}-\vec{y}\right)=0.$

イロト 不得 トイヨト イヨト 二日

Right Corners (Ge & Shangguan, 2020)

Goal: Maximize |A| for $A \subset \mathbb{F}_q^n$ if A has no <u>right corner</u>: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_q^n$ with

$$(\vec{z}-\vec{x})\cdot(\vec{z}-\vec{y})=0.$$

Attempt: $T : A^3 \to \mathbb{F}_q$

$$T(\vec{x}, \vec{y}, \vec{z}) = \mathbb{1}_{\vec{y}\neq\vec{z}} \cdot \left(\left(\vec{z} - \vec{x} \right) \cdot \left(\vec{z} - \vec{y} \right) \right)^{q-1}$$

くロ と く 同 と く ヨ と 一

Right Corners (Ge & Shangguan, 2020)

Goal: Maximize |A| for $A \subset \mathbb{F}_q^n$ if A has no <u>right corner</u>: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_q^n$ with

$$(\vec{z}-\vec{x})\cdot(\vec{z}-\vec{y})=0.$$

Attempt: $T : A^3 \to \mathbb{F}_q$

$$T(\vec{x}, \vec{y}, \vec{z}) = \mathbb{1}_{\vec{y}\neq\vec{z}} \cdot \left(\left(\vec{z} - \vec{x} \right) \cdot \left(\vec{z} - \vec{y} \right) \right)^{q-1}$$

Issue: Not Diagonal!

$$T(\vec{x}, \vec{y}, \vec{z}) = \begin{cases} 0 & \text{if } \vec{x} = \vec{y} \text{ or } \vec{x} = \vec{z} \text{ or } \vec{y} = \vec{z} \\ 1 & \text{otherwise} \end{cases}$$

・ロト ・雪 ト ・ヨ ト ・

Right Corners (Ge & Shangguan, 2020)

Goal: Maximize |A| for $A \subset \mathbb{F}_q^n$ if A has no <u>right corner</u>: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_q^n$ with

$$(\vec{z}-\vec{x})\cdot(\vec{z}-\vec{y})=0.$$

Attempt: $T : A^3 \to \mathbb{F}_q$

$$T(\vec{x}, \vec{y}, \vec{z}) = \mathbb{1}_{\vec{y}\neq\vec{z}} \cdot \left((\vec{z} - \vec{x}) \cdot (\vec{z} - \vec{y}) \right)^{q-1}$$

Issue: Not Diagonal!

$$T(\vec{x}, \vec{y}, \vec{z}) = \begin{cases} 0 & \text{if } \vec{x} = \vec{y} \text{ or } \vec{x} = \vec{z} \text{ or } \vec{y} = \vec{z} \\ 1 & \text{otherwise} \end{cases}$$

Fix: Diagonalize

$$T(\vec{x}, \vec{y}, \vec{z}) = 2 \cdot \mathbbm{1}_{\vec{x} = \vec{y} = \vec{z}} - \mathbbm{1}_{\vec{x} = \vec{y}} - \mathbbm{1}_{\vec{x} = \vec{z}} - \mathbbm{1}_{\vec{y} = \vec{z}} + 1$$

Right Corners (Ge & Shangguan, 2020)

Goal: Maximize |A| for $A \subset \mathbb{F}_q^n$ if A has no <u>right corner</u>: no distinct triple $\vec{x}, \vec{y}, \vec{z} \in \mathbb{F}_q^n$ with

$$(\vec{z}-\vec{x})\cdot(\vec{z}-\vec{y})=0.$$

Attempt: $T : A^3 \to \mathbb{F}_q$

$$T(\vec{x}, \vec{y}, \vec{z}) = \mathbb{1}_{\vec{y}\neq\vec{z}} \cdot \left((\vec{z} - \vec{x}) \cdot (\vec{z} - \vec{y}) \right)^{q-1}$$

Issue: Not Diagonal!

$$T(\vec{x}, \vec{y}, \vec{z}) = \begin{cases} 0 & \text{if } \vec{x} = \vec{y} \text{ or } \vec{x} = \vec{z} \text{ or } \vec{y} = \vec{z} \\ 1 & \text{otherwise} \end{cases}$$

Fix: Diagonalize

$$T(\vec{x}, \vec{y}, \vec{z}) = 2 \cdot \mathbb{1}_{\vec{x} = \vec{y} = \vec{z}} - \mathbb{1}_{\vec{x} = \vec{y}} - \mathbb{1}_{\vec{x} = \vec{z}} - \mathbb{1}_{\vec{y} = \vec{z}} + 1$$

$$\begin{split} & \mathbb{1}_{\vec{x}=\vec{y}=\vec{z}} = \frac{1}{2} \left(T(\vec{x},\vec{y},\vec{z}) + \mathbb{1}_{\vec{x}=\vec{y}} + \mathbb{1}_{\vec{x}=\vec{z}} + \mathbb{1}_{\vec{y}=\vec{z}} - 1 \right) \\ & |A| = \mathsf{slice}\mathsf{-rank}(\mathbb{1}_{\vec{x}=\vec{y}=\vec{z}}) \leq \mathsf{slice}\mathsf{-rank}(\mathcal{T}) + 3. \end{split}$$

Attempt: $T : A^3 \to \mathbb{F}_q$

$$T(\vec{x}, \vec{y}, \vec{z}) = \mathbb{1}_{\vec{y}\neq\vec{z}} \cdot \left(\left(\vec{z} - \vec{x} \right) \cdot \left(\vec{z} - \vec{y} \right) \right)^{q-1}$$

Issue: Not Diagonal!

$$T(\vec{x}, \vec{y}, \vec{z}) = \begin{cases} 0 & \text{if } \vec{x} = \vec{y} \text{ or } \vec{x} = \vec{z} \text{ or } \vec{y} = \vec{z} \\ 1 & \text{otherwise} \end{cases}$$

Fix: Diagonalize

$$T(\vec{x}, \vec{y}, \vec{z}) = 2 \cdot \mathbb{1}_{\vec{x} = \vec{y} = \vec{z}} - \mathbb{1}_{\vec{x} = \vec{y}} - \mathbb{1}_{\vec{x} = \vec{z}} - \mathbb{1}_{\vec{y} = \vec{z}} + 1$$

$$\mathbb{1}_{\vec{x} = \vec{y} = \vec{z}} = \frac{1}{2} \left(T(\vec{x}, \vec{y}, \vec{z}) + \mathbb{1}_{\vec{x} = \vec{y}} + \mathbb{1}_{\vec{x} = \vec{z}} + \mathbb{1}_{\vec{y} = \vec{z}} - 1 \right)$$

$$|A| = \text{slice-rank}(\mathbb{1}_{\vec{x} = \vec{y} = \vec{z}}) \leq \text{slice-rank}(T) + 3.$$

Key: Can diagonalize T since it is constant on partitions.

・ロト ・四ト ・ヨト ・ヨト

Definition (Naslund 2020)

Distinct $x_1, \ldots, x_k, x_{k+1} \in \mathbb{F}_q^n$ form a <u>k-right corner</u> if they are distinct and

 $x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$

are pairwise orthogonal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Naslund 2020)

Distinct $x_1, \ldots, x_k, x_{k+1} \in \mathbb{F}_q^n$ form a <u>k-right corner</u> if they are distinct and

$$x_1-x_{k+1},\ldots,x_k-x_{k+1}$$

are pairwise orthogonal.

Slice-Rank Attempt:

$$F_{k} = \prod_{j < \ell \le k} \left(1 - \langle x_{j} - x_{k+1}, x_{\ell} - x_{k+1} \rangle^{q-1} \right).$$

Definition (Naslund 2020)

Distinct $x_1, \ldots, x_k, x_{k+1} \in \mathbb{F}_q^n$ form a <u>k-right corner</u> if they are distinct and

$$x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$$

are pairwise orthogonal.

Slice-Rank Attempt:

$$F_k = \prod_{j < \ell \le k} \left(1 - \left\langle x_j - x_{k+1}, x_\ell - x_{k+1} \right\rangle^{q-1} \right).$$

Issue:

$$F_k = \begin{cases} 1 & \text{if } x_1 - x_{k+1}, \dots, x_k - x_{k+1} \text{ are pairwise orthogonal,} \\ 0 & \text{otherwise.} \end{cases}$$

July 20, 2023

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Naslund 2020)

Distinct $x_1, \ldots, x_k, x_{k+1} \in \mathbb{F}_q^n$ form a <u>k-right corner</u> if they are distinct and

$$x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$$

are pairwise orthogonal.

Slice-Rank Attempt:

$$F_k = \prod_{j < \ell \le k} \left(1 - \left\langle x_j - x_{k+1}, x_\ell - x_{k+1} \right\rangle^{q-1} \right).$$

Issue:

 $F_k = \begin{cases} 1 & \text{if } x_1 - x_{k+1}, \dots, x_k - x_{k+1} \text{ are pairwise orthogonal,} \\ 0 & \text{otherwise.} \end{cases}$

Not Diagonal! Example:

 $x_1 - x_{k+1} \perp x_2 - x_{k+1}$, $x_2 - x_{k+1}$ self orthogonal, $x_i = x_2$ for $2 \le i \le k$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $A \subset \mathbb{F}_{q}^{n}$, no distinct *k*-tuple has property \mathcal{P}
- "Easy" To Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ (not necessarily distinct!) satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$$

イロト 不得 トイヨト イヨト 二日

- $A \subset \mathbb{F}_q^n$, no distinct k-tuple has property \mathcal{P}
- "Easy" To Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ (not necessarily distinct!) satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$$

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k)\cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k .

(日)

- $A \subset \mathbb{F}_q^n$, no distinct k-tuple has property \mathcal{P}
- "Easy" To Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ (not necessarily distinct!) satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$$

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k)\cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k . Mostly done ad-hoc in literature:

- Upper bounds on Sunflower-Free Sets: Naslund and Sawin (2017)
- Monochromatic Equilateral Triangles in Unit Distance Graph: Naslund (2019)
- Erdős-Ginzburg-Ziv Constant: Naslund (2019)
- Sets avoiding Right Corners: Ge, Shangguan (2020)
- Solutions to Linear Systems in Finite Fields: Sauermann (2021)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- $A \subset \mathbb{F}_q^n$, no distinct *k*-tuple has property \mathcal{P}
- "Easy" To Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

 $F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ (not necessarily distinct!) satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

 $F_k(x_1,\ldots,x_k)\cdot H_k(x_1,\ldots,x_k)$

is diagonal on A^k .

イロト 不得 トイヨト イヨト 二日

- $A \subset \mathbb{F}_q^n$, no distinct *k*-tuple has property \mathcal{P}
- "Easy" To Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

 $F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ (not necessarily distinct!) satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$

Diagonalize: Create H_k(x₁,...,x_k) so that

$$F_k(x_1,\ldots,x_k)\cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k .

•
$$H_3(x_1, x_2, x_3) = 1 - \mathbb{1}_{x_1 = x_2} - \mathbb{1}_{x_1 = x_3} - \mathbb{1}_{x_2 = x_3}$$

Möbius Inversion on Π₃

$$H_3(x_1, x_2, x_3) = \begin{cases} 1 & \text{if } x_1, x_2, x_3 \text{ distinct} \\ -2 & \text{if } x_1 = x_2 = x_3 \\ 0 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $A \subset \mathbb{F}_q^n$, no distinct *k*-tuple has property \mathcal{P}
- "Easy" To Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

 $F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ (not necessarily distinct!) satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$

Diagonalize: Create H_k(x₁,...,x_k) so that

$$F_k(x_1,\ldots,x_k) \cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k .

•
$$H_3(x_1, x_2, x_3) = 1 - \mathbb{1}_{x_1 = x_2} - \mathbb{1}_{x_1 = x_3} - \mathbb{1}_{x_2 = x_3}$$

Möbius Inversion on Π₃

$$H_3(x_1, x_2, x_3) = \begin{cases} 1 & \text{if } x_1, x_2, x_3 \text{ distinct} \\ -2 & \text{if } x_1 = x_2 = x_3 \\ 0 & \text{otherwise} \end{cases}$$

• |A| bounded above by slice-rank $(F_3 \cdot H_3)$

 $\mathsf{slice}\mathsf{-rank}(F_3) + \mathsf{slice}\mathsf{-rank}(\mathbb{1}_{x_1=x_2} \cdot F_3) + \mathsf{slice}\mathsf{-rank}(\mathbb{1}_{x_1=x_3} \cdot F_3) + \mathsf{slice}\mathsf{-rank}(\mathbb{1}_{x_2=x_3} \cdot F_3)$

- $A \subset \mathbb{F}_q^n$, no distinct k-tuple has property \mathcal{P}
- Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1,\ldots,x_k) = \begin{cases} c_1 & \text{if } x_1,\ldots\\ c_2 & (\neq 0) & \text{if } x_1 = x\\ 0 & \text{otherwise} \end{cases}$$

if x_1, \ldots, x_k satisfies \mathcal{P} if $x_1 = x_2 = \cdots = x_k$ otherwise

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k)\cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k .

۲

$$\begin{aligned} H_4(x_1, x_2, x_3, x_4) = & 1 - \mathbb{1}_{x_1 = x_2} - \mathbb{1}_{x_1 = x_3} - \mathbb{1}_{x_2 = x_3} - \mathbb{1}_{x_1 = x_4} - \mathbb{1}_{x_2 = x_4} - \mathbb{1}_{x_3 = x_4} \\ & + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_3} + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_4} + 2 \cdot \mathbb{1}_{x_1 = x_3 = x_4} + 2 \cdot \mathbb{1}_{x_2 = x_3 = x_4} \\ & + \mathbb{1}_{x_1 = x_2} \cdot \mathbb{1}_{x_3 = x_4} + \mathbb{1}_{x_1 = x_3} \cdot \mathbb{1}_{x_2 = x_4} + \mathbb{1}_{x_1 = x_4} \cdot \mathbb{1}_{x_2 = x_3} \\ & = \mathbf{6} \cdot \mathbb{1}_{x_1 = x_2 = x_3 = x_4} \text{ on } A^4 \text{ (Möbius inversion on } \Pi_4 \text{)} \end{aligned}$$

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

- $A \subset \mathbb{F}_q^n$, no distinct k-tuple has property \mathcal{P}
- Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1,\ldots,x_k) = \begin{cases} c_1 & \text{if } x_1,\ldots,x_k \text{ satisfi} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \cdots = x_k \\ 0 & \text{otherwise} \end{cases}$$

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k)\cdot H_k(x_1,\ldots,x_k)$$

satisfies \mathcal{P}

is diagonal on A^k .

۲

$$\begin{aligned} H_4(x_1, x_2, x_3, x_4) = & 1 - \mathbb{1}_{x_1 = x_2} - \mathbb{1}_{x_1 = x_3} - \mathbb{1}_{x_2 = x_3} - \mathbb{1}_{x_1 = x_4} - \mathbb{1}_{x_2 = x_4} - \mathbb{1}_{x_3 = x_4} \\ & + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_3} + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_4} + 2 \cdot \mathbb{1}_{x_1 = x_3 = x_4} + 2 \cdot \mathbb{1}_{x_2 = x_3 = x_4} \\ & + \mathbb{1}_{x_1 = x_2} \cdot \mathbb{1}_{x_3 = x_4} + \mathbb{1}_{x_1 = x_3} \cdot \mathbb{1}_{x_2 = x_4} + \mathbb{1}_{x_1 = x_4} \cdot \mathbb{1}_{x_2 = x_3} \\ & = 6 \cdot \mathbb{1}_{x_1 = x_2 = x_3 = x_4} \text{ on } A^4 \text{ (Möbius inversion on } \Pi_4 \text{)} \end{aligned}$$

•
$$|A|$$
 bounded above by
...+slice-rank $(\mathbb{1}_{x_1=x_2} \cdot \mathbb{1}_{x_3=x_4} \cdot F_4)$ +slice-rank $(\mathbb{1}_{x_1=x_3} \cdot \mathbb{1}_{x_2=x_4} \cdot F_4)$ +slice-rank $(\mathbb{1}_{x_1=x_4} \cdot \mathbb{1}_{x_2=x_3} \cdot F_4)$
????????

Mohamed Omar Department of Mathemati Using Slice Rank & Partition Rank

July 20, 2023

Partition Rank Method (Naslund 2020)

PARTITION RANK POLYNOMIAL METHOD

Mohamed Omar Department of Mathemati Using Slice Rank & Partition Rank

July 20, 2023

Partition Rank Method

Strategy:

• Step 1: $X \subset \mathbb{F}^n$ avoids a property, find a diagonal tensor

$$f:X^k\to \mathbb{F}$$

• Step 2: Find upper bound on slice-rank(f) partition-rank(f), then:

$$|X| = \underbrace{\text{partition-rank}(f)}_{\leq \text{ slice-rank}(f)} \leq \text{upper bound}$$

イロト イポト イヨト イヨト

Partition Rank Method

Strategy:

• Step 1: $X \subset \mathbb{F}^n$ avoids a property, find a diagonal tensor

$$f:X^k\to \mathbb{F}$$

• Step 2: Find upper bound on slice-rank(f) partition-rank(f), then:

$$|X| = \underbrace{\text{partition-rank}(f)}_{\leq \text{ slice-rank}(f)} \leq \text{upper bound}$$

イロト イポト イヨト イヨト

Partition Rank Method (Naslund 2020)

Definition

A function $f: X^k \to \mathbb{F}$ has partition rank 1 if there is a set partition π of $\{1, 2, \dots, k\}$ with blocks $\pi_1, \pi_2, \dots, \pi_\ell$ so that

$$f(x_1, x_2, \ldots, x_k) = \prod_{i=1}^{\ell} f_{\pi_i}$$

where f_{π_i} is a function in the variables $\{x_j : j \in \pi_i\}$

Example

If $f: X^4 \to \mathbb{F}$ with

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if } x_1 = x_2 \text{ and } x_3 = x_4 \\ 0 & \text{otherwise} \end{cases}$$

then $f(x_1, x_2, x_3, x_4) = \mathbb{1}_{x_1=x_2} \cdot \mathbb{1}_{x_3=x_4}$ so it has partition rank 1. Its slice rank is ???

<ロト < 同ト < ヨト < ヨト

Partition Rank Method (Naslund 2020)

Definition

A function $f: X^k \to \mathbb{F}$ has partition rank 1 if there is a set partition π of $\{1, 2, \dots, k\}$ with blocks $\pi_1, \pi_2, \dots, \pi_\ell$ so that

$$f(x_1, x_2, \ldots, x_k) = \prod_{i=1}^{\ell} f_{\pi_i}(x_1, \ldots, x_k)$$

where f_{π_i} is a function in the variables $\{x_j : j \in \pi_i\}$

Definition

The partition rank of $f: X^k \to \mathbb{F}$ is

$$\min\left\{r : f = \sum_{i=1}^{r} f_i, f_i \text{ has partition rank } 1\right\}.$$

イロト イポト イヨト イヨト 三日

Partition Rank

Definition

The partition rank of $f: X^k \to \mathbb{F}$ is

$$\min\left\{r : f = \sum_{i=1}^{r} f_i, f_i \text{ has partition rank } 1\right\}.$$

Theorem (Naslund 2019)

If $f: X^k \to \mathbb{F}$ is diagonal, i.e.

$$f(x_1, x_2, \dots, x_k) \neq 0 \iff x_1 = x_2 = \dots = x_k$$

then

$$partition-rank(f) = |X|.$$

▶ ≣ ∽ ⊂ July 20, 2023

イロト イボト イヨト イヨト

- $A \subset \mathbb{F}_q^n$, no distinct *k*-tuple has property \mathcal{P}
- Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1,\ldots,x_k) = \begin{cases} c_1 & \text{if} \\ c_2 \ (\neq 0) & \text{if} \\ 0 & \text{ot} \end{cases}$$

if
$$x_1, \ldots, x_k$$
 satisfies \mathcal{P}
if $x_1 = x_2 = \cdots = x_k$
otherwise

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k) \cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k .

٢

$$\begin{aligned} H_4(x_1, x_2, x_3, x_4) = & 1 - \mathbb{1}_{x_1 = x_2} - \mathbb{1}_{x_1 = x_3} - \mathbb{1}_{x_2 = x_3} - \mathbb{1}_{x_1 = x_4} - \mathbb{1}_{x_2 = x_4} - \mathbb{1}_{x_3 = x_4} \\ & + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_3} + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_4} + 2 \cdot \mathbb{1}_{x_1 = x_3 = x_4} + 2 \cdot \mathbb{1}_{x_2 = x_3 = x_4} \\ & + \mathbb{1}_{x_1 = x_2} \cdot \mathbb{1}_{x_3 = x_4} + \mathbb{1}_{x_1 = x_3} \cdot \mathbb{1}_{x_2 = x_4} + \mathbb{1}_{x_1 = x_4} \cdot \mathbb{1}_{x_2 = x_3} \\ & = \mathbf{6} \cdot \mathbb{1}_{x_1 = x_2 = x_3 = x_4} \text{ on } A^4 \text{ (Möbius inversion on } \Pi_4) \end{aligned}$$

July 20, 2023

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $A \subset \mathbb{F}_q^n$, no distinct k-tuple has property \mathcal{P}
- Create $F_k : (\mathbb{F}_q^n)^k \to \mathbb{F}$ with

$$F_k(x_1,\ldots,x_k) = \begin{cases} c_1 & \text{if } x_1 \\ c_2 \ (\neq 0) & \text{if } x_1 \\ 0 & \text{othe} \end{cases}$$

if
$$x_1, \ldots, x_k$$
 satisfies \mathcal{P}
if $x_1 = x_2 = \cdots = x_k$
otherwise

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k) \cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k .

$$\begin{aligned} H_4(x_1, x_2, x_3, x_4) = & 1 - \mathbb{1}_{x_1 = x_2} - \mathbb{1}_{x_1 = x_3} - \mathbb{1}_{x_2 = x_3} - \mathbb{1}_{x_1 = x_4} - \mathbb{1}_{x_2 = x_4} - \mathbb{1}_{x_3 = x_4} \\ & + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_3} + 2 \cdot \mathbb{1}_{x_1 = x_2 = x_4} + 2 \cdot \mathbb{1}_{x_1 = x_3 = x_4} + 2 \cdot \mathbb{1}_{x_2 = x_3 = x_4} \\ & + \mathbb{1}_{x_1 = x_2} \cdot \mathbb{1}_{x_3 = x_4} + \mathbb{1}_{x_1 = x_3} \cdot \mathbb{1}_{x_2 = x_4} + \mathbb{1}_{x_1 = x_4} \cdot \mathbb{1}_{x_2 = x_3} \\ & = \mathbf{6} \cdot \mathbb{1}_{x_1 = x_2 = x_3 = x_4} \text{ on } A^4 \text{ (Möbius inversion on } \Pi_4) \end{aligned}$$

|A| bounded above by

$$\cdots + \text{partition-rank}(\mathbb{1}_{x_1=x_2} \cdot \mathbb{1}_{x_3=x_4} \cdot F_k) + \text{partition-rank}(\mathbb{1}_{x_1=x_3} \cdot \mathbb{1}_{x_2=x_4} \cdot F_k) + \cdots$$

Partition Rank & Partition Lattices (0. 2023+)

- $A \subset X$, no distinct k-tuple has property \mathcal{P}
- Create $F_k : X^k \to \mathbb{F}$ with

$$F_k(x_1,\ldots,x_k) = \begin{cases} c_1 \\ c_2 \ (\neq 0) \\ 0 \end{cases}$$

if x_1, \ldots, x_k satisfies \mathcal{P} if $x_1 = x_2 = \cdots = x_k$ otherwise

 $F_k(x_1,\ldots,x_k)$ is constant on partitions

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k) \cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k exploiting Möbius inversion.

イロト イボト イヨト イヨト

Partition Rank & Partition Lattices (O. 2023+)

- $A \subset X$, no distinct k-tuple has property \mathcal{P}
- Create $F_k : X^k \to \mathbb{F}$ with

$$F_k(x_1, \dots, x_k) = \begin{cases} c_1 & \text{if } x_1, \dots, x_k \text{ satisfies } \mathcal{P} \\ c_2 \ (\neq 0) & \text{if } x_1 = x_2 = \dots = x_k \\ 0 & \text{otherwise} \end{cases}$$

 $F_k(x_1,\ldots,x_k)$ is constant on partitions

• **Diagonalize:** Create $H_k(x_1, \ldots, x_k)$ so that

$$F_k(x_1,\ldots,x_k) \cdot H_k(x_1,\ldots,x_k)$$

is diagonal on A^k exploiting Möbius inversion.

• Unifies approaches in papers of Naslund:

distinctness indicator \implies partition indicator

- Finite field analogue of problem of Erdös
- Generalizes work of Burscis, Matolcsi, Pach, Schrettner

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

THANKS

Mohamed Omar Department of Mathemati Using Slice Rank & Partition Rank

July 20, 2023

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●