Fine Polyhedral Adjunction Theory Sofía Garzón Mora

Joint work with Christian Haase

Email: sofiag96@zedat.fu-berlin.de Freie Universität Berlin Departament of Mathematics Berlin, Germany

Some figures taken from Andreas Paffenholz.

FPSAC 2023

Adjunction Theory

Adjunction Theory \downarrow Polyhedral Adjunction Theory

Adjunction Theory \downarrow Polyhedral Adjunction Theory \downarrow Fine Polyhedral Adjunction Theory

Sofía Garzón Mora

Adjunction Theory ↓ Polyhedral Adjunction Theory ↓ Fine Polyhedral Adjunction Theory

Adjunction Theory

Adjunction Theory: Toric Geometry

Studies Polarized Varieties:

(X,L)

- X: Normal Projective Algebraic Variety
- L: Ample line bundle on X

Adjunction Theory: Toric Geometry

Studies Polarized Varieties:

(X,L)

- X: Normal Projective Algebraic Variety
- L: Ample line bundle on X

Precursor of minimal model program: Classification of varieties.

Miles Reid et al. (1985): Young Person's Guide to Canonical Singularities.

Adjunction Theory: Toric Geometry

Studies Polarized Varieties:

(X,L)

- X: Normal Projective Algebraic Variety
- L: Ample line bundle on X

Precursor of minimal model program: Classification of varieties.

Miles Reid et al. (1985): Young Person's Guide to Canonical Singularities.

Classification of toric varieties via duality:

Dickenstein, Di Rocco, Piene (2014): Higher Order Duality and Toric Embeddings.

Combinatorial Counterpart of Adjunction Theory

Using dictionary between polytopes and toric varieties.

Combinatorial Counterpart of Adjunction Theory

Using dictionary between polytopes and toric varieties.

Studies lattice polytopes.

- Polytopes whose vertices have integer coordinates.
- **Di Rocco, Haase, Nill, Paffenholz (2014):** Polyhedral Adjunction Theory.

Combinatorial Counterpart of Adjunction Theory

Using dictionary between polytopes and toric varieties.

Studies lattice polytopes.

- Polytopes whose vertices have integer coordinates.
- **Di Rocco, Haase, Nill, Paffenholz (2014):** Polyhedral Adjunction Theory.

Motivation: Fine Version used to construct Minimal Models.

Batyrev (Appeared 2020, Published July 2023): Canonical Models of Toric Hypersurfaces.

Let $P \subseteq \mathbb{R}^n$ a rational polytope of dimension *n*, i.e.,

$$\mathbf{P} = \{ x \in \mathbb{R}^n | \langle a_i, x \rangle \ge b_i, i = 1, ..., m \}$$

for a_i primitive rows of an integer matrix A and $b \in \mathbb{Q}^m$.

Each inequality $\langle a_i, \cdot \rangle \geq b_i$ defines a facet F_i of P.

Let $P \subseteq \mathbb{R}^n$ a rational polytope of dimension *n*, i.e.,

$$\mathbf{P} = \{ x \in \mathbb{R}^n | \langle a_i, x \rangle \ge b_i, i = 1, ..., m \}$$

for a_i primitive rows of an integer matrix A and $b \in \mathbb{Q}^m$.

Each inequality $\langle a_i, \cdot \rangle \geq b_i$ defines a facet F_i of P.

Definition

For any $s \ge 0$ the **adjoint polytope** is

$$\mathcal{P}^{(s)} = \{x \in \mathbb{R}^n | Ax \ge b + s\mathbb{1}\}$$

with $1 = (1, ..., 1)^T$.

Let $P \subseteq \mathbb{R}^n$ a rational polytope of dimension *n*, i.e.,

$$\mathbf{P} = \{ x \in \mathbb{R}^n | \langle a_i, x \rangle \ge b_i, i = 1, ..., m \}$$

for a_i primitive rows of an integer matrix A and $b \in \mathbb{Q}^m$.

Each inequality $\langle a_i, \cdot \rangle \geq b_i$ defines a facet F_i of P.

Definition

For any $s \ge 0$ the **adjoint polytope** is

$$\mathsf{P}^{(s)} = \{x \in \mathbb{R}^n | Ax \ge b + s\mathbb{1}\}$$

with $1 = (1, ..., 1)^T$.

Polyhedral Adjunction Theory: Study of $P^{(s)}$.

Figure: Original Polytope P.

Figure: Adjoint Polytope $P^{(s)}$ for s = 3/2.

Figure: Adjoint Polytope $P^{(s)}$ for s = 2.

Figure: Adjoint Polytope $P^{(s)}$ for s = 5/2.

Figure: Adjoint Polytope $P^{(s)}$ for s = 3.

The Q-codegree of P is

$$\mu(P) := (\sup\{s > 0 | P^{(s)} \neq \emptyset\})^{-1}.$$

The core of P is

 $core(P) := P^{(1/\mu(P))}.$

The Q-codegree of P is

$$\mu(P) := (\sup\{s > 0 | P^{(s)} \neq \emptyset\})^{-1}.$$

The core of P is

$$core(P) := P^{(1/\mu(P))}.$$

In our example:

The Q-codegree of P is

$$\mu(P) := (\sup\{s > 0 | P^{(s)} \neq \emptyset\})^{-1}.$$

The core of P is

$$core(P) := P^{(1/\mu(P))}.$$

In our example:

$$\mu(P) = \frac{1}{3}, \quad \text{core}(P) = P^{(3)}.$$

The codegree of P is

$$cd(P) := min\{k \in \mathbb{Z}_{>1} | int(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$$

The codegree of P is

$$cd(P) := min\{k \in \mathbb{Z}_{\geq 1} | int(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$$

For a lattice polytope P,

 $\operatorname{int}(P) \cap \mathbb{Z}^n = P^{(1)} \cap \mathbb{Z}^n.$

Hence,

 $\mu(P) \leq \operatorname{cd}(P) \leq n+1.$

Cayley Polytopes interesting from the *polytope* point of view:

Having Cayley Decomposition is a strong structural statement. Cayley Polytopes have projections onto unimodular simplexes.

Cayley Polytopes interesting from the *toric geometry* point of view:

Their corresponding polarized toric variety is birationally fibered.

Cayley Polytopes interesting from the *polytope* point of view:

Having Cayley Decomposition is a strong structural statement. Cayley Polytopes have projections onto unimodular simplexes.

Cayley Polytopes interesting from the *toric geometry* point of view:

Their corresponding polarized toric variety is birationally fibered.

Asking the reverse question:

Dimension of a polytope gives a bound for $\mu(P)$. Can we derive from $\mu(P)$ a bound for the dimension?

The lattice width of a polytope P is

 $w_P = \min\{w_P(u)|u \text{ is a non-zero integer linear form}\}$

where

$$w_P(u) := \max_{x \in P} \langle u, x \rangle - \min_{x \in P} \langle u, x \rangle.$$

The lattice width of a polytope P is

 $w_P = \min\{w_P(u)|u \text{ is a non-zero integer linear form}\}$

where

$$w_P(u) := \max_{x \in P} \langle u, x \rangle - \min_{x \in P} \langle u, x \rangle.$$

Definition

A Cayley Polytope is a lattice polytope of lattice width 1.

For lattice polytopes $P_0, ..., P_t$ in \mathbb{R}^k , the **Cayley** sum is

 $P_0 \star \cdots \star P_t := \operatorname{conv}(P_0 \times 0) \cup (P_1 \times e_1) \cup \cdots \cup (P_t \times e_t)$

for the standard basis $e_1, ..., e_t$ of \mathbb{R}^t .

$$P_0 \star \cdots \star P_t \subseteq \mathbb{R}^k \times \mathbb{R}^t.$$

Cayley Sums

Definition

For lattice polytopes $P_0, ..., P_t$ in \mathbb{R}^k , the **Cayley** sum is

$$P_0 \star \cdots \star P_t := \operatorname{conv}(P_0 \times 0) \cup (P_1 \times e_1) \cup \cdots \cup (P_t \times e_t)$$

for the standard basis $e_1, ..., e_t$ of \mathbb{R}^t .

$$P_0 \star \cdots \star P_t \subseteq \mathbb{R}^k \times \mathbb{R}^t.$$

Figure: Cayley Sum of Polytopes.

Cayley Sums

Definition

For lattice polytopes $P_0, ..., P_t$ in \mathbb{R}^k , the **Cayley** sum is

 $P_0 \star \cdots \star P_t := \operatorname{conv}(P_0 \times 0) \cup (P_1 \times e_1) \cup \cdots \cup (P_t \times e_t)$

for the standard basis $e_1, ..., e_t$ of \mathbb{R}^t .

$$P_0 \star \cdots \star P_t \subseteq \mathbb{R}^k \times \mathbb{R}^t.$$

Figure: Cayley Sum of Polytopes.

The Decomposition Theorem

$$d(P) = \begin{cases} 2(n - \lfloor \mu(P) \rfloor) & \text{if } \mu(P) \notin \mathbb{N} \\ 2(n - \mu(P)) + 1 & \text{if } \mu(P) \in \mathbb{N} \end{cases}$$

Theorem (Di Rocco, Haase, Nill, Paffenholz)

Let P an n-dimensional lattice polytope with $P \not\cong \Delta_n$. If n > d(P), then P is a Cayley sum of lattice polytopes in \mathbb{R}^m with $m \le d(P)$.

Q-Codegree Spectrum: What values can $\mu(P)$ take?

Characterization requires two conditions:

1 Bounded Q-Codegree: For $\varepsilon > 0$, $\mu(P) \ge \varepsilon$.

2 α -canonicity: The normal fan of *P* is α -canonical.

Q-Codegree Spectrum: What values can $\mu(P)$ take?

Characterization requires two conditions:

- **1** Bounded Q-Codegree: For $\varepsilon > 0$, $\mu(P) \ge \varepsilon$.
- **2** α -canonicity: The normal fan of *P* is α -canonical.

Any lattice point $p = \sum_i \lambda_i a_i$ on a cone of $\mathcal{N}(P)$ generated by a_i has $\sum_i \lambda_i \ge \alpha$.

Q-Codegree Spectrum: What values can $\mu(P)$ take?

Characterization requires two conditions:

- **1** Bounded Q-Codegree: For $\varepsilon > 0$, $\mu(P) \ge \varepsilon$.
- **2** α -canonicity: The normal fan of *P* is α -canonical.

Any lattice point $p = \sum_i \lambda_i a_i$ on a cone of $\mathcal{N}(P)$ generated by a_i has $\sum_i \lambda_i \ge \alpha$.

Theorem (Paffenholz)

Let $n \in \mathbb{N}$ and $\alpha, \varepsilon > 0$ be given. Then

$$\{\mu(P)|P \in \mathcal{S}^{can}_{\alpha}(n,\varepsilon)\}$$

is finite.

 $S_{\alpha}^{can}(n,\varepsilon)$: Set of *n*-dimensional lattice polytopes with $\mu(P) \ge \varepsilon$ and α -canonical normal fan.

Fine (1983): Resolution and completion of algebraic varieties.

Idea: Take adjoint polytopes with respect to all valid inequalities for P.

Idea: Take adjoint polytopes with respect to all valid inequalities for P.

Figure: Valid Inequalities for a polytope P.

For *s* > 0, the **Fine adjoint polytope** is

 $P^{F(s)} := \{x \in \mathbb{R}^n | d^F(x) \ge s\}$

The Fine Q-codegree of a rational polytope P is

$$\mu^{\mathsf{F}}(\mathsf{P}) := (\sup\{s > 0 | \mathsf{P}^{\mathsf{F}(s)} \neq \emptyset\})^{-1},$$

and the Fine core of P is

$$\operatorname{core}^{F}(P) := P^{F(1/\mu^{F}(P))}.$$

Figure: Original Adjoints

Figure: Fine Adjoints

Figure: Original Adjoints

Figure: Fine Adjoints

Figure: Original Adjoints

Figure: Fine Adjoints

Figure: Original Adjoints

Figure: Fine Adjoints

Define

$$d^{F}(P) := \begin{cases} 2(n - \lfloor \mu^{F}(P) \rfloor), \text{ if } \mu^{F}(P) \notin \mathbb{N} \\ 2(n - \mu^{F}(P)) + 1, \text{ if } \mu^{F}(P) \in \mathbb{N} \end{cases}$$

Define

$$d^{F}(P) := \begin{cases} 2(n - \lfloor \mu^{F}(P) \rfloor), \text{ if } \mu^{F}(P) \notin \mathbb{N} \\ 2(n - \mu^{F}(P)) + 1, \text{ if } \mu^{F}(P) \in \mathbb{N} \end{cases}$$

In general:

 $\mu(P) \leq \mu^F(P)$

Define

$$d^{F}(P) := \begin{cases} 2(n - \lfloor \mu^{F}(P) \rfloor), \text{ if } \mu^{F}(P) \notin \mathbb{N} \\ 2(n - \mu^{F}(P)) + 1, \text{ if } \mu^{F}(P) \in \mathbb{N} \end{cases}$$

In general:

 $\mu(P) \leq \mu^F(P)$

Theorem (G., Haase)

Let P an n-dimensional lattice polytope with $P \ncong \Delta_n$. If $n > d^F(P)$, then P is a Cayley sum of lattice polytopes in \mathbb{R}^m with $m \le d^F(P)$.

Define

$$d^{F}(P) := \begin{cases} 2(n - \lfloor \mu^{F}(P) \rfloor), \text{ if } \mu^{F}(P) \notin \mathbb{N} \\ 2(n - \mu^{F}(P)) + 1, \text{ if } \mu^{F}(P) \in \mathbb{N} \end{cases}$$

In general:

 $\mu(P) \leq \mu^F(P)$

Theorem (G., Haase)

Let P an n-dimensional lattice polytope with $P \ncong \Delta_n$. If $n > d^F(P)$, then P is a Cayley sum of lattice polytopes in \mathbb{R}^m with $m \le d^F(P)$.

This theorem is slightly stronger.

Main Result 2: Fine Q-Codegree Spectrum

Characterization now requires only **one** condition:

Bounded Fine Q-codegree: For $\varepsilon > 0$, $\mu^F(P) \ge \varepsilon$.

Main Result 2: Fine Q-Codegree Spectrum

Characterization now requires only **one** condition:

Bounded Fine Q-codegree: For $\varepsilon > 0$, $\mu^{F}(P) \ge \varepsilon$.

The α -canonicity assumption on the normal fan can be dropped.

Moving in by all valid inequalities heavily restricts the value that $\mu^{F}(P)$ can take.

Main Result 2: Fine Q-Codegree Spectrum

Characterization now requires only **one** condition:

Bounded Fine Q-codegree: For $\varepsilon > 0$, $\mu^F(P) \ge \varepsilon$.

The α -canonicity assumption on the normal fan can be dropped.

Moving in by all valid inequalities heavily restricts the value that $\mu^{F}(P)$ can take.

Theorem (G., Haase)

Let $n \in \mathbb{N}$ and $\varepsilon > 0$ be given. Then

$$\{\mu^F(P)|P\in \mathcal{S}^F(n,\varepsilon)\}$$

is finite.

 $\mathcal{S}^{\mathsf{F}}(n,\varepsilon)$: Set of *n*-dimensional lattice polytopes with $\mu^{\mathsf{F}}(\mathsf{P}) \geq \varepsilon$.

Start with original invariants and adjoints.

Redefine them by adding the word "Fine" to them.

Invariants play a role in the Cayley structure of polytopes and their \mathbb{Q} -codegree values.

We obtain stronger results and easier proofs about Cayley structures, projections and Fine \mathbb{Q} -codegree values.

Start with original invariants and adjoints.

Redefine them by adding the word "Fine" to them.

Invariants play a role in the Cayley structure of polytopes and their \mathbb{Q} -codegree values.

We obtain stronger results and easier proofs about Cayley structures, projections and Fine \mathbb{Q} -codegree values.

"Fine theory is nicer than the old theory".

-Christian Haase (2023)-

Bounds: Are there better bounds for the dimension of polytopes with Cayley structure? Studied by [Dickenstein, Nill], [Di Rocco, Haase, Nill, Paffenholz],...

Inverse game: How to translate Fine invariants into toric geometry?

• Further results: What other notions from Polyhedral Adjunction Theory can we translate to the Fine case?

Sofía Garzón Mora and Christian Haase, *Fine Polyhedral Adjunction Theory*, arXiv:2302.04074, 2023.

- Andreas Paffenholz, Polyhedral Adjunction Theory, Nov. 2012, https://polymake.org/polytopes/paffenholz/data/preprints/1211-sydney-talk.pdf
- Sandra Di Rocco, Christian Haase, Benjamin Nill, and Andreas Paffenholz. Polyhedral adjunction theory. Algebra & Number Theory 7, no. 10, 2417-2446, 2014.
- Andreas Paffenholz. Finiteness of the polyhedral Q-codegree spectrum. Proceedings of the American Mathematical Society 143, no. 11, 4863-4873, 2015.
- Miles Reid et al. Young person's guide to canonical singularities. Algebraic geometry, Bowdoin, 46:345–414, 1985.

The nef value of P is

$$\tau(P) := (\sup\{s > 0 | \mathcal{N}(P^{(s)}) = \mathcal{N}(P)\})^{-1}.$$

Pair (X, L):

- X a projective variety,
- \blacksquare L an ample line bundle on X.

Adjunction Theory studies adjoint linear systems $L + cK_X$.

• Nef-value:
$$\tau := (\sup\{c \in \mathbb{R} | L + cK_X \text{ is ample}\})^{-1}$$

•
$$\mathbb{Q}$$
-codegree: $\mu := (\sup\{c \in \mathbb{R} | L + cK_X \text{ is big}\})^{-1}$

Ample \Rightarrow Big: $\mu \leq \tau$.

Q-codegree and nef value in adjunction theory

Figure: Adjunction theory point of view

Before: Under natural projection π_P , if $Q = \pi_P(P)$, then $\mu(P) \le \mu(Q)$.

Theorem

The image $Q := \pi_P(P)$ of the natural projection of P is a rational polytope satisfying $\mu^F(Q) = \mu^F(P).$ Moreover, then $\operatorname{core}^F(Q)$ is the point $\pi_P(\operatorname{core}^F(P)).$

Natural Projection in the Fine Case

Figure: Behaviour of the Fine core.