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Adjunction Theory: Toric Geometry

Studies Polarized Varieties:

(X,L)

X : Normal Projective Algebraic Variety

L: Ample line bundle on X

Precursor of minimal model program: Classification of varieties.
Miles Reid et al. (1985): Young Person’s Guide to Canonical Singularities.

Classification of toric varieties via duality:
Dickenstein, Di Rocco, Piene (2014): Higher Order Duality and Toric
Embeddings.
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Introduction

Polyhedral Adjunction Theory
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Polyhedral Adjunction Theory

Combinatorial Counterpart of Adjunction Theory
Using dictionary between polytopes and toric varieties.

Studies lattice polytopes.
Polytopes whose vertices have integer coordinates.

Di Rocco, Haase, Nill, Paffenholz (2014): Polyhedral Adjunction Theory.

Motivation: Fine Version used to construct Minimal Models.
Batyrev (Appeared 2020, Published July 2023): Canonical Models of Toric
Hypersurfaces.
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First Definitions

Definition
Let P ⊆ Rn a rational polytope of dimension n, i.e.,

P = {x ∈ Rn|⟨ai , x⟩ ≥ bi , i = 1, ...,m}
for ai primitive rows of an integer matrix A and b ∈ Qm.

Each inequality ⟨ai , ·⟩ ≥ bi defines a facet Fi of P.

Definition
For any s ≥ 0 the adjoint polytope is

P(s) = {x ∈ Rn|Ax ≥ b + s1}
with 1 = (1, ..., 1)T .

Polyhedral Adjunction Theory: Study of P(s).
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Example

Figure: Original Polytope P.
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Example

Figure: Adjoint Polytope P(s) for s = 3/2.
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Example

Figure: Adjoint Polytope P(s) for s = 2.
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Example

Figure: Adjoint Polytope P(s) for s = 5/2.
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Example

Figure: Adjoint Polytope P(s) for s = 3.
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A First Invariant

Definition
The Q-codegree of P is

µ(P) := (sup{s > 0|P(s) ̸= ∅})−1.

The core of P is
core(P) := P(1/µ(P)).

In our example:

µ(P) =
1
3
, core(P) = P(3).
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A Second Invariant

Definition
The codegree of P is

cd(P) := min{k ∈ Z≥1| int(kP) ∩ Zn ̸= ∅}.

For a lattice polytope P,

int(P) ∩ Zn = P(1) ∩ Zn.

Hence,

µ(P) ≤ cd(P) ≤ n + 1.
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Invariants and Cayley Decompositions

Cayley Polytopes interesting from the polytope point of view:
Having Cayley Decomposition is a strong structural statement. Cayley Polytopes
have projections onto unimodular simplexes.

Cayley Polytopes interesting from the toric geometry point of view:
Their corresponding polarized toric variety is birationally fibered.

Asking the reverse question:
Dimension of a polytope gives a bound for µ(P).

Can we derive from µ(P) a bound for the dimension?
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Cayley Polytopes

Definition
The lattice width of a polytope P is

wP = min{wP(u)|u is a non-zero integer linear form}
where

wP(u) := max
x∈P

⟨u, x⟩ −min
x∈P

⟨u, x⟩.

Definition
A Cayley Polytope is a lattice polytope of lattice width 1.
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Cayley Sums

Definition
For lattice polytopes P0, ...,Pt in Rk , the Cayley
sum is

P0⋆· · ·⋆Pt := conv(P0×0)∪(P1×e1)∪· · ·∪(Pt×et )

for the standard basis e1, ..., et of Rt .

P0 ⋆ · · · ⋆ Pt ⊆ Rk × Rt .

Figure: Cayley Sum of Polytopes.
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The Decomposition Theorem

d(P) =

{
2(n − ⌊µ(P)⌋) if µ(P) /∈ N

2(n − µ(P)) + 1 if µ(P) ∈ N

Theorem (Di Rocco, Haase, Nill, Paffenholz)

Let P an n-dimensional lattice polytope with P ≇ ∆n. If n > d(P), then P is a Cayley
sum of lattice polytopes in Rm with m ≤ d(P).
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Q-Codegree Spectrum: What values can µ(P) take?

Characterization requires two conditions:

1 Bounded Q-Codegree: For ε > 0, µ(P) ≥ ε.

2 α-canonicity: The normal fan of P is α-canonical.

Any lattice point p =
∑

i λi ai on a cone of N (P) generated by ai has
∑

i λi ≥ α.

Theorem (Paffenholz)

Let n ∈ N and α, ε > 0 be given. Then

{µ(P)|P ∈ Scan
α (n, ε)}

is finite.

Scan
α (n, ε) : Set of n-dimensional lattice polytopes with µ(P) ≥ ε and α-canonical

normal fan.
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Can we improve this?

Fine Polyhedral Adjunction Theory

Fine (1983): Resolution and completion of algebraic varieties.
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Fine Polyhedral Adjunction Theory

Idea: Take adjoint polytopes with respect to all valid inequalities for P.

Figure: Valid Inequalities for a polytope P.
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New Definitions

Definition
For s > 0, the Fine adjoint polytope is

PF (s) := {x ∈ Rn|dF (x) ≥ s}
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New Definitions

Definition
The Fine Q-codegree of a rational polytope P is

µF (P) := (sup{s > 0|PF (s) ̸= ∅})−1,

and the Fine core of P is
coreF (P) := PF (1/µF (P)).
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Adjoints vs. Fine Adjoints

Figure: Original Adjoints Figure: Fine Adjoints
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Main Result 1: Fine Decomposition Theorem

Define

dF (P) :=

{
2(n − ⌊µF (P)⌋), if µF (P) /∈ N

2(n − µF (P)) + 1, if µF (P) ∈ N

In general:
µ(P) ≤ µF (P)

Theorem (G., Haase)

Let P an n-dimensional lattice polytope with P ≇ ∆n. If n > dF (P), then P is a Cayley
sum of lattice polytopes in Rm with m ≤ dF (P).

This theorem is slightly stronger.
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Main Result 2: Fine Q-Codegree Spectrum

Characterization now requires only one condition:

Bounded Fine Q-codegree: For ε > 0, µF (P) ≥ ε.

The α-canonicity assumption on the normal fan can be dropped.
Moving in by all valid inequalities heavily restricts the value that µF (P) can take.

Theorem (G., Haase)

Let n ∈ N and ε > 0 be given. Then

{µF (P)|P ∈ SF (n, ε)}
is finite.

SF (n, ε) : Set of n-dimensional lattice polytopes with µF (P) ≥ ε.
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Summary

Start with original invariants
and adjoints.

↓
Redefine them by adding the
word “Fine” to them.

Invariants play a role in the
Cayley structure of polytopes
and their Q-codegree values.

↓
We obtain stronger results and
easier proofs about Cayley
structures, projections and Fine
Q-codegree values.

“Fine theory is nicer than the old theory”.

-Christian Haase (2023)-
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Open Questions

Bounds: Are there better bounds for the dimension of polytopes
with Cayley structure?
Studied by [Dickenstein, Nill], [Di Rocco, Haase, Nill, Paffenholz],...

Inverse game: How to translate Fine invariants into toric
geometry?

Further results: What other notions from Polyhedral Adjunction
Theory can we translate to the Fine case?

· · ·
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A Third Invariant

Definition
The nef value of P is

τ(P) := (sup{s > 0|N (P(s)) = N (P)})−1.
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Polarized Varieties

Pair (X ,L):
X a projective variety,
L an ample line bundle on X .

Adjunction Theory studies adjoint linear systems L + cKX .

Nef-value: τ := (sup{c ∈ R|L + cKX is ample})−1

Q-codegree: µ := (sup{c ∈ R|L + cKX is big})−1

Ample ⇒ Big: µ ≤ τ .
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Q-codegree and nef value in adjunction theory

Figure: Adjunction theory point of view
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Natural Projection in the Fine case

Before: Under natural projection πP , if Q = πP(P), then

µ(P) ≤ µ(Q).

Theorem
The image Q := πP(P) of the natural projection of P is a rational polytope satisfying

µF (Q) = µF (P).

Moreover, then coreF (Q) is the point πP(coreF (P)).
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Natural Projection in the Fine Case

Figure: Behaviour of the Fine core.
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