Compact Hyperbolic Coxeter d-Polytopes with $d+4$ Facets and Related Dimension Bounds

Amanda Burcroff

Harvard University

FPSAC

July 20, 2023

Based on a master's thesis advised by Pavel Tumarkin

Coxeter Polytopes

A polytope P in Euclidean, spherical, or hyperbolic space is called a Coxeter polytope if all of its dihedral angles (angles between facets) are equal to π / m for some $m \in \mathbb{N}$.

- Their study was popularized by Coxeter's classifications in Euclidean and spherical space in 1934.
- These polytopes are heavily involved in the study of minimal volume orbifolds [see work of Meyeroff, Kellerhals, and Hild].

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \quad\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \xrightarrow{\text { reflection over facets }}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \underset{\text { fundamental domain }}{\stackrel{\text { reflection over facets }}{\stackrel{\text { r }}{ }}}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \underset{\text { fundamental domain }}{\stackrel{\text { reflection over facets }}{\stackrel{\text { r }}{\rightleftarrows}}}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \underset{\text { fundamental domain }}{\stackrel{\text { reflection over facets }}{\stackrel{\text { r }}{\rightleftarrows}}}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \underset{\text { fundamental domain }}{\stackrel{\text { reflection over facets }}{\longleftrightarrow}}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \underset{\text { fundamental domain }}{\stackrel{\text { reflection over facets }}{\stackrel{\text { r }}{ }}}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}$

Discrete Reflection Groups

Definition

A (discrete) reflection group in \mathbb{E}^{n}, S^{n}, or \mathbb{H}^{n} is a discrete group generated by reflections over a set of hyperplanes.
$\{$ Coxeter polytopes $\} \underset{\text { fundamental domain }}{\stackrel{\text { reflection over facets }}{\stackrel{~}{\longleftrightarrow}}\left\{\begin{array}{c}\text { discrete reflection } \\ \text { groups }\end{array}\right\}, ~}$

Each reflection group is a Coxeter group $\left\langle r_{f_{i}}: r_{f_{i}}^{2}=e,\left(r_{f_{i}} r_{f_{j}}\right)^{m_{i j}}\right\rangle$ where f_{i} denote the facets and $\angle f_{i} f_{j}=\pi / m_{i j}$ are the dihedral angles.

Coxeter Diagrams

We represent Coxeter polytopes by Coxeter diagrams, which encode the information of how the facets intersect.

Each facet f_{i} is represented by a node, and the nodes are connected by edges as follows:

$$
\begin{gathered}
\text { edge of } \\
\text { multiplicity } \\
m_{i j}-2
\end{gathered}\left\{\begin{array}{lll}
\bullet & \bullet & \text { if } \angle f_{i} f_{j}=\pi / 2 \\
\bullet & \bullet & \text { if } \angle f_{i} f_{j}=\pi / 3 \\
\bullet & \text { if } \angle f_{i} f_{j}=\pi / 4 \\
\bullet & \text { if } \angle f_{i} f_{j}=\pi / 5
\end{array}\right.
$$

$\bullet{ }^{m_{i j}}$ - if $\angle f_{i} f_{j}=\pi / m_{i j}$
\bullet - if $f_{i} \cap f_{j}=\emptyset$
\bullet if $f_{i} \cap f_{j} \in \partial \mathbb{H}^{n}$

Coxeter Diagrams

We represent Coxeter polytopes by Coxeter diagrams, which encode the information of how the facets intersect.

Each facet f_{i} is represented by a node, and the nodes are connected by edges as follows:

$$
\begin{gathered}
\text { edge of } \\
\text { multiplicity } \\
m_{i j}-2
\end{gathered}\left\{\begin{array}{lll}
\bullet & \bullet & \text { if } \angle f_{i} f_{j}=\pi / 2 \\
\bullet & \bullet & \text { if } \angle f_{i} f_{j}=\pi / 3 \\
\bullet & \bullet & \text { if } \angle f_{i} f_{j}=\pi / 4 \\
\bullet & \text { if } \angle f_{i} f_{j}=\pi / 5
\end{array}\right.
$$

Coxeter Diagrams

We represent Coxeter polytopes by Coxeter diagrams, which encode the information of how the facets intersect.

Each facet f_{i} is represented by a node, and the nodes are connected by edges as follows:

$$
\begin{gathered}
\text { edge of } \\
\text { multiplicity } \\
m_{i j}-2
\end{gathered}\left\{\begin{array}{llll}
\bullet & \bullet & \text { if } \angle f_{i} f_{j}=\pi / 2 & \bullet m_{i j} \\
\bullet & \text { if } \angle f_{i} f_{j}=\pi / m_{i j} \\
\bullet & \text { if } \angle f_{i} f_{j}=\pi / 3 & \bullet \cdots & \text { if } f_{i} \cap f_{j}=\emptyset \\
\bullet & \text { if } \angle f_{i} f_{j}=\pi / 4 & \bullet & \bullet \\
\bullet & \text { if } f_{i} \cap f_{j} \in \partial \mathbb{H}^{n}
\end{array}\right.
$$

Euclidean and Spherical Coxeter Polytopes

Spherical Coxeter polytopes have Coxeter diagrams that are disjoint unions of elliptic diagrams

Euclidean Coxeter polytopes have Coxeter diagrams that are disjoint unions of parabolic diagrams

These are related to finite and affine Dynkin diagrams, respectively.

Compact Hyperbolic Polytopes

- A vertex on the boundary of hyperbolic space is called an ideal vertex.
- A compact polytope in hyperbolic space is a polytope with no ideal vertices. We will work entirely with compact polytopes.
- Polytopes with ideal vertices can still have finite volume, and finite-volume Coxeter polytopes are another area of much interest.

Hyperbolic Classification History

By Dimension d

- $d=2$: all n-gons with angle sum $<\pi(n-2)$, by Poincaré (1882)
- $d=3$: completely characterized by Andreev (1970)

Hyperbolic Classification History

By Dimension d

- $d=2$: all n-gons with angle sum $<\pi(n-2)$, by Poincaré (1882)
- $d=3$: completely characterized by Andreev (1970)

By Number of Facets n

- $n=d+1$: exist when $1 \leq d \leq 4$, classified by Lannér (1950)
- $n=d+2$: exist when $2 \leq d \leq 5$, classified by Kaplinskaya (1974) and Esselmann (1996)
- $n=d+3$: exist when $2 \leq d \leq 6$ and $d=8$, classified by Tumarkin (2007) using dimension bounds from Esselmann (1994)

Hyperbolic Classification History

By Dimension d

- $d=2$: all n-gons with angle sum $<\pi(n-2)$, by Poincaré (1882)
- $d=3$: completely characterized by Andreev (1970)

By Number of Facets n

- $n=d+1$: exist when $1 \leq d \leq 4$, classified by Lannér (1950)
- $n=d+2$: exist when $2 \leq d \leq 5$, classified by Kaplinskaya (1974) and Esselmann (1996)
- $n=d+3$: exist when $2 \leq d \leq 6$ and $d=8$, classified by Tumarkin (2007) using dimension bounds from Esselmann (1994)
- $n=d+4$: Felikson and Tumarkin (2008) showed these exist only when $d \leq 7$, with a unique polytope in $d=7$.

Hyperbolic Classification History

By Dimension d

- $d=2$: all n-gons with angle sum $<\pi(n-2)$, by Poincaré (1882)
- $d=3$: completely characterized by Andreev (1970)

By Number of Facets n

- $n=d+1$: exist when $1 \leq d \leq 4$, classified by Lannér (1950)
- $n=d+2$: exist when $2 \leq d \leq 5$, classified by Kaplinskaya (1974) and Esselmann (1996)
- $n=d+3$: exist when $2 \leq d \leq 6$ and $d=8$, classified by Tumarkin (2007) using dimension bounds from Esselmann (1994)
- $n=d+4$: Felikson and Tumarkin (2008) showed these exist only when $d \leq 7$, with a unique polytope in $d=7$.
- $n \geq d+5$: only sporadic families are known

For more info, see Anna Felikson's Hyperbolic Coxeter Polytopes webpage.

Classification Strategy

For d-polytopes with $d+4$ facets, we have

- infinitely many polytopes for $d=2$ and 3 (Poincaré and Andreev),
- one polytope in dimension 7 (Felikson and Tumarkin), and
- no polytopes in dimension greater than 7.

Thus, new polytopes can only arise in dimensions 4,5 , and 6.

Classification Strategy

For d-polytopes with $d+4$ facets, we have

- infinitely many polytopes for $d=2$ and 3 (Poincaré and Andreev),
- one polytope in dimension 7 (Felikson and Tumarkin), and
- no polytopes in dimension greater than 7.

Thus, new polytopes can only arise in dimensions 4,5 , and 6.

We classify the polytopes in dimensions 4 and 5 by successively applying

- geometric restrictions (via Gale diagrams),
- graph theoretic restrictions (via Lannér subdiagrams), and
- algebraic restrictions (via Gram matrices),
until the problem is reduced to a finite computation feasible for a computer.

Geometric Lens: Gale Diagrams

Let N be the normal vectors to the $n=d+k$ facets of a d-polytope P.

- By taking the dual of N as an oriented matroid in \mathbb{R}^{d+k+1}, we obtain an oriented matroid in \mathbb{R}^{k-1}.
- The resulting set of points in \mathbb{R}^{k-1} is the Gale diagram $G(P)=\left\{p_{i}\right\}_{i \in[n]}$ of P. By normalizing, we can assume $G(P) \subseteq S^{k-2}$.

Geometric Lens: Gale Diagrams

Let N be the normal vectors to the $n=d+k$ facets of a d-polytope P.

- By taking the dual of N as an oriented matroid in \mathbb{R}^{d+k+1}, we obtain an oriented matroid in \mathbb{R}^{k-1}.
- The resulting set of points in \mathbb{R}^{k-1} is the Gale diagram $G(P)=\left\{p_{i}\right\}_{i \in[n]}$ of P. By normalizing, we can assume $G(P) \subseteq S^{k-2}$.

4-dimensional
polytope
with
8 facets

Geometric Lens: Gale Diagrams

Let N be the normal vectors to the $n=d+k$ facets of a d-polytope P.

- By taking the dual of N as an oriented matroid in \mathbb{R}^{d+k+1}, we obtain an oriented matroid in \mathbb{R}^{k-1}.
- The resulting set of points in \mathbb{R}^{k-1} is the Gale diagram $G(P)=\left\{p_{i}\right\}_{i \in[n]}$ of P. By normalizing, we can assume $G(P) \subseteq S^{k-2}$.

The combinatorial type of a polytope is the information of which sets of facets nontrivially intersect, and it is encoded in the Gale diagram by

$$
\bigcap_{j \in J} f_{j} \neq \emptyset \Longleftrightarrow 0 \in \operatorname{conv}\left(\left\{p_{i}: i \notin J\right\}\right)
$$

Geometric Lens: Affine Gale Diagrams

We can reduce the dimension of the Gale diagram by one via taking a signed projection to a hyperplane. The resulting signed set of points is an affine Gale diagram for the polytope.

- Note: this construction depends on the choice of hyperplane.

Lemma (B.)

Every compact Coxeter d-polytope with d +4 facets has an affine Gale diagram with points in general position and with exactly 2 positive points that lie in the convex hull of the negative points.

How can we obtain a list of possible combinatorial types?

Geometric Lens: Point Set Order Types

Definition

The order type of a set of points is the information of the orientation (clockwise, counterclockwise, or collinear) of every ordered triple of points.

- The order types of point sets containing $<=11$ points were classified by Aichholzer, Aurenhammer, and Krasser (2002).

By iterating over order types and choices of positive points for affine Gale diagrams, we obtain a list of combinatorial types of simple d-polytopes with $d+4$ facets and at least two pairs of non-intersecting facets.

Dimension	Combinatorial Types	Types Realized by Coxeter Polytopes
4	34 (Grünbaum, Sreedharan)	14
5	186	6
6	265	$?$

Weighted Graph Lens: Lannér Diagrams

- From the combinatorial type, we can determine a list of minimal non-faces, also known as missing faces.
- There is a limited list of Coxeter subdiagrams corresponding to missing faces. These were classified by Lannér in 1950 and are called Lannér diagrams.

order	2	3	4	5
diagrams	$\bullet \bullet$	where $\begin{gathered} 2 \leq p, q, r \in \mathbb{N} \\ \text { and } \\ \frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1 \end{gathered}$		$\bullet \bullet \bullet \bullet$

Since there are relatively few Lannér diagrams on 2,4 , or 5 vertices, we can start to "build" up Coxeter diagrams by placing Lannér diagrams.

Algebraic Lens: Gram Matrices

Definition

The Gram matrix M of a polytope with facets f_{1}, \ldots, f_{n} is given by

$$
M_{i i}=1 \text { and } M_{i j}= \begin{cases}-\cos (\theta) & \text { if } \angle f_{i} f_{j}=\theta \\ -\cosh \left(\operatorname{dist}\left(f_{i}, f_{j}\right)\right) & \text { if } f_{i} \text { and } f_{j} \text { diverge }\end{cases}
$$

- A $n \times n$ matrix is the Gram matrix of a d-polytope if and only if its entries are in the proper ranges and it has signature $(d, 1, n-d-1)$, i.e., rank $d+1$ and exactly one negative eigenvalue.
- Most entries are determined by the dihedral angles.
- Remaining entries can be viewed as variables in a system of equations given by the rank condition.

Classifying d-Polytopes with $d+4$ Facets

Procedure for classification:

(1) Fix a combinatorial type for the polytope.
(2) Select a set of dihedral angles to take values at most $\pi / 6$ (restricted by combinatorial type). Iterate over all such choices.
(3) Assign dihedral angles within missing faces of size 4 and 5 (limited by the set of Lannér diagrams).
(9) Assign the remaining dihedral angles of size at least $\pi / 5$.
(5) Solve (using, e.g., Mathematica) for the remaining Gram matrix entries using the rank condition.

Classifying d-Polytopes with $d+4$ Facets

Procedure for classification:

(1) Fix a combinatorial type for the polytope.
(2) Select a set of dihedral angles to take values at most $\pi / 6$ (restricted by combinatorial type). Iterate over all such choices.
(3) Assign dihedral angles within missing faces of size 4 and 5 (limited by the set of Lannér diagrams).
(9) Assign the remaining dihedral angles of size at least $\pi / 5$.
(5) Solve (using, e.g., Mathematica) for the remaining Gram matrix entries using the rank condition.

Theorem (B. 2021, Ma-Zheng 2022)

There are 348 hyperbolic Coxeter 4-polytopes with 8 facets, and 51 hyperbolic Coxeter 5-polytopes with 9 facets.

Classifying d-Polytopes with $d+4$ Facets

Procedure for classification:

(1) Fix a combinatorial type for the polytope.
(2) Select a set of dihedral angles to take values at most $\pi / 6$ (restricted by combinatorial type). Iterate over all such choices.
(3) Assign dihedral angles within missing faces of size 4 and 5 (limited by the set of Lannér diagrams).
(9) Assign the remaining dihedral angles of size at least $\pi / 5$.
(6) Solve (using, e.g., Mathematica) for the remaining Gram matrix entries using the rank condition.

Theorem (B. 2021, Ma-Zheng 2022)

There are 348 hyperbolic Coxeter 4-polytopes with 8 facets, and 51 hyperbolic Coxeter 5-polytopes with 9 facets.

Dimension 6? We don't expect many new polytopes.

Interesting Examples

The classification includes the only known

- polytope in dimension higher than 3 with a dihedral angle of less than $\frac{\pi}{10}$,
- polytope in dimension higher than 3 with a dihedral angle of $\frac{\pi}{7}$, and
- polytopes in dimension 5 with a dihedral angle of less than $\frac{\pi}{6}$.

Interesting Examples

The classification includes the only known

- polytope in dimension higher than 3 with a dihedral angle of less than $\frac{\pi}{10}$,
- polytope in dimension higher than 3 with a dihedral angle of $\frac{\pi}{7}$, and
- polytopes in dimension 5 with a dihedral angle of less than $\frac{\pi}{6}$.

How is this classification useful?

History of Dimension Bounds

- Vinberg proved in 1984 that compact Coxeter polytopes do not arise in dimensions higher than 29.
- For finite-volume polytopes, the upper bound is dimension 995.

History of Dimension Bounds

- Vinberg proved in 1984 that compact Coxeter polytopes do not arise in dimensions higher than 29.
- For finite-volume polytopes, the upper bound is dimension 995.
- So far, we only know of compact Coxeter polytopes of dimension at most 8.
- The only known example in dimension 8 has 11 facets.
- We know of two examples in dimension 7, having 11 and 13 facets.
- These examples are all due to work of Bugaenko in 1992.

History of Dimension Bounds

- Vinberg proved in 1984 that compact Coxeter polytopes do not arise in dimensions higher than 29.
- For finite-volume polytopes, the upper bound is dimension 995.
- So far, we only know of compact Coxeter polytopes of dimension at most 8.
- The only known example in dimension 8 has 11 facets.
- We know of two examples in dimension 7, having 11 and 13 facets.
- These examples are all due to work of Bugaenko in 1992.
- There are compact Coxeter polytopes with arbitrarily many facets in dimension 6.
- Proved by Allcock in 2009 by repeatedly gluing copies of one of Bugaenko's polytopes together.

Improved Dimension Bounds

- Under mild conditions, a face of a Coxeter polytope is itself Coxeter.
- Using the extended classification of Coxeter polytopes, we can restrict the structure of these faces.

Improved Dimension Bounds

- Under mild conditions, a face of a Coxeter polytope is itself Coxeter.
- Using the extended classification of Coxeter polytopes, we can restrict the structure of these faces.

When there are no Coxeter faces, we can apply the following:
Theorem (B. 2021, Alexandrov 2022)
A compact 3-free Coxeter polytope, i.e., one having missing faces only of size 2 , has dimension at most 13 (since improved to 12 by Alexandrov).

Improved Dimension Bounds

- Under mild conditions, a face of a Coxeter polytope is itself Coxeter.
- Using the extended classification of Coxeter polytopes, we can restrict the structure of these faces.

When there are no Coxeter faces, we can apply the following:

Theorem (B. 2021, Alexandrov 2022)

A compact 3 -free Coxeter polytope, i.e., one having missing faces only of size 2 , has dimension at most 13 (since improved to 12 by Alexandrov).

Theorem (B.)
A compact Coxeter d-polytope with $d+k$ facets has dimension bounded above by

\mathbf{k}	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Dimension Upper Bound	9	12	15	18	22	26

References

[1] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types for small point sets with applications. Order, 19 (2002), 265-281.
[2] Vadim Olegovich Bugaenko. Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring $\mathbb{Z}\left[\frac{\sqrt{5}+1}{2}\right]$. Mosc. Univ. Math. Bull., 39 (1984), 6-14.
[3] Amanda Burcroff. Near classification of compact hyperbolic Coxeter d-polytopes with $d+4$ facets and related dimension bounds. arXiv:2201.03437 [math.CO], (2022), based on 2021 master's thesis.
[4] Frank Esselmann. Über kompakte hyperbolische Coxeter-polytope mit wenigen facetten. Sonderforschungsbereich 343 (1994), Preprint 94-087.
[5] Anna Felikson \& Pavel Tumarkin. On compact hyperbolic d-polytopes with $d+4$ facets. Trans. Mosc. Math. Soc., 69 (2008), 105-151.
[6] Ernest Borisovich Vinberg. Hyperbolic reflection groups. Russ. Math. Surv., 40 (1985), 31-75.

Some images due to M.C. Escher, Bill Casselman, and Malin Christersson.

