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Coxeter Polytopes

A polytope P in Euclidean, spherical, or hyperbolic space is called a
Coxeter polytope if all of its dihedral angles (angles between facets) are
equal to π/m for some m ∈ N.

Their study was popularized by Coxeter’s classifications in Euclidean
and spherical space in 1934.

These polytopes are heavily involved in the study of minimal volume
orbifolds [see work of Meyeroff, Kellerhals, and Hild].
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Discrete Reflection Groups

Definition

A (discrete) reflection group in En, Sn, or Hn is a discrete group generated
by reflections over a set of hyperplanes.

Each reflection group is a Coxeter group
〈
rfi : r

2
fi
= e, (rfi rfj )

mij

〉
where fi

denote the facets and ∠fi fj = π/mij are the dihedral angles.
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Coxeter Diagrams
We represent Coxeter polytopes by Coxeter diagrams, which encode the
information of how the facets intersect.

Each facet fi is represented by a node, and the nodes are connected by
edges as follows:
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Euclidean and Spherical Coxeter Polytopes

Spherical Coxeter polytopes
have Coxeter diagrams that are
disjoint unions of elliptic
diagrams

Euclidean Coxeter polytopes
have Coxeter diagrams that are
disjoint unions of parabolic
diagrams

These are related to finite and affine Dynkin diagrams, respectively.
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Compact Hyperbolic Polytopes

A vertex on the boundary of hyperbolic space is called an ideal vertex.

A compact polytope in hyperbolic space is a polytope with no ideal
vertices. We will work entirely with compact polytopes.

Polytopes with ideal vertices can still have finite volume, and
finite-volume Coxeter polytopes are another area of much interest.
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Hyperbolic Classification History
By Dimension d

d = 2: all n-gons with angle sum < π(n − 2), by Poincaré (1882)

d = 3: completely characterized by Andreev (1970)

By Number of Facets n

n = d + 1: exist when 1 ≤ d ≤ 4, classified by Lannér (1950)

n = d + 2: exist when 2 ≤ d ≤ 5, classified by Kaplinskaya (1974)
and Esselmann (1996)

n = d + 3: exist when 2 ≤ d ≤ 6 and d = 8, classified by Tumarkin
(2007) using dimension bounds from Esselmann (1994)

n = d + 4: Felikson and Tumarkin (2008) showed these exist only
when d ≤ 7, with a unique polytope in d = 7.

n ≥ d + 5: only sporadic families are known

For more info, see Anna Felikson’s Hyperbolic Coxeter Polytopes webpage.
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Classification Strategy

For d-polytopes with d + 4 facets, we have

infinitely many polytopes for d = 2 and 3 (Poincaré and Andreev),

one polytope in dimension 7 (Felikson and Tumarkin), and

no polytopes in dimension greater than 7.

Thus, new polytopes can only arise in dimensions 4, 5, and 6.

We classify the polytopes in dimensions 4 and 5 by successively applying

geometric restrictions (via Gale diagrams),

graph theoretic restrictions (via Lannér subdiagrams), and

algebraic restrictions (via Gram matrices),

until the problem is reduced to a finite computation feasible for a
computer.
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Geometric Lens: Gale Diagrams
Let N be the normal vectors to the n = d + k facets of a d-polytope P.

By taking the dual of N as an oriented matroid in Rd+k+1, we obtain
an oriented matroid in Rk−1.

The resulting set of points in Rk−1 is the Gale diagram
G (P) = {pi}i∈[n] of P. By normalizing, we can assume G (P) ⊆ Sk−2.

The combinatorial type of a polytope is the information of which sets of
facets nontrivially intersect, and it is encoded in the Gale diagram by⋂

j∈J
fj ̸= ∅ ⇐⇒ 0 ∈ conv({pi : i /∈ J})
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Geometric Lens: Affine Gale Diagrams
We can reduce the dimension of the Gale diagram by one via taking a
signed projection to a hyperplane. The resulting signed set of points is an
affine Gale diagram for the polytope.

Note: this construction depends on the choice of hyperplane.

Lemma (B.)

Every compact Coxeter d-polytope with d + 4 facets has an affine Gale
diagram with points in general position and with exactly 2 positive points
that lie in the convex hull of the negative points.

How can we obtain a list of possible combinatorial types?
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Geometric Lens: Point Set Order Types

Definition

The order type of a set of points is the information of the orientation
(clockwise, counterclockwise, or collinear) of every ordered triple of points.

The order types of point sets containing <= 11 points were classified
by Aichholzer, Aurenhammer, and Krasser (2002).

By iterating over order types and choices of positive points for affine Gale
diagrams, we obtain a list of combinatorial types of simple d-polytopes
with d + 4 facets and at least two pairs of non-intersecting facets.

Dimension Combinatorial Types
Types Realized by
Coxeter Polytopes

4 34 (Grünbaum, Sreedharan) 14

5 186 6

6 265 ?
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Weighted Graph Lens: Lannér Diagrams

From the combinatorial type, we can determine a list of minimal
non-faces, also known as missing faces.

There is a limited list of Coxeter subdiagrams corresponding to
missing faces. These were classified by Lannér in 1950 and are called
Lannér diagrams.

Since there are relatively few Lannér diagrams on 2, 4, or 5 vertices, we can
start to “build” up Coxeter diagrams by placing Lannér diagrams.
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Algebraic Lens: Gram Matrices

Definition

The Gram matrix M of a polytope with facets f1, . . . , fn is given by

Mii = 1 and Mij =

{
− cos(θ) if ∠fi fj = θ

− cosh(dist(fi , fj)) if fi and fj diverge

A n × n matrix is the Gram matrix of a d-polytope if and only if its
entries are in the proper ranges and it has signature (d , 1, n − d − 1),
i.e., rank d + 1 and exactly one negative eigenvalue.

Most entries are determined by the dihedral angles.

Remaining entries can be viewed as variables in a system of equations
given by the rank condition.
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Classifying d-Polytopes with d + 4 Facets
Procedure for classification:

1 Fix a combinatorial type for the polytope.

2 Select a set of dihedral angles to take values at most π/6 (restricted
by combinatorial type). Iterate over all such choices.

3 Assign dihedral angles within missing faces of size 4 and 5 (limited by
the set of Lannér diagrams).

4 Assign the remaining dihedral angles of size at least π/5.

5 Solve (using, e.g., Mathematica) for the remaining Gram matrix
entries using the rank condition.

Theorem (B. 2021, Ma–Zheng 2022)

There are 348 hyperbolic Coxeter 4-polytopes with 8 facets, and 51
hyperbolic Coxeter 5-polytopes with 9 facets.

Dimension 6? We don’t expect many new polytopes.
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Interesting Examples

The classification includes the only known

polytope in dimension higher than 3 with a dihedral angle of less than
π
10 ,

polytope in dimension higher than 3 with a dihedral angle of π
7 , and

polytopes in dimension 5 with a dihedral angle of less than π
6 .

How is this classification useful?
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History of Dimension Bounds

Vinberg proved in 1984 that compact Coxeter polytopes do not arise
in dimensions higher than 29.

▶ For finite-volume polytopes, the upper bound is dimension 995.

So far, we only know of compact Coxeter polytopes of dimension at
most 8.

▶ The only known example in dimension 8 has 11 facets.

▶ We know of two examples in dimension 7, having 11 and 13 facets.

▶ These examples are all due to work of Bugaenko in 1992.

There are compact Coxeter polytopes with arbitrarily many facets in
dimension 6.

▶ Proved by Allcock in 2009 by repeatedly gluing copies of one of
Bugaenko’s polytopes together.
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Improved Dimension Bounds
Under mild conditions, a face of a Coxeter polytope is itself Coxeter.

Using the extended classification of Coxeter polytopes, we can restrict
the structure of these faces.

When there are no Coxeter faces, we can apply the following:

Theorem (B. 2021, Alexandrov 2022)

A compact 3-free Coxeter polytope, i.e., one having missing faces only of
size 2, has dimension at most 13 (since improved to 12 by Alexandrov).

Theorem (B.)

A compact Coxeter d-polytope with d + k facets has dimension bounded
above by

k 5 6 7 8 9 10
Dimension
Upper Bound

9 12 15 18 22 26
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