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We say a graph G is a topological minor of a graph G ′ if a
subdivision of G is isomorphic to a subgraph of G ′. We will
write G ≤ G ′ to denote that G is a topological minor of G ′.

One of the great early triumphs of topological graph theory is
the theorem of Kuratowski, which states that A graph can
be embedded into the plane if and only if neither K5 nor
K3,3 appear as a topological minor. In other words,
containment in the topological minor closed family of planar
graphs is decided by a finite list of forbidden minors.
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This leads to the natural follow-up question: Is it the case
that all topological minor closed families are similarly
determined by a finite list of forbidden minors? In other
words, is ≤ a well-quasi-order?

It turns out the answer is no as the following family illustrates.
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It was observed by Robertson (and others) that many
counter-examples to the WQO property were build out of
chains of triangles in a similar fashion. We call such chains
Robertson chains.

Very recently, Liu and Thomas [LT] proved a conjecture of
Robertson that made this observation precise:

Robertson’s Conjecture

Let Gd denote the class of graphs which do not contain a
Robertson chain of length d or higher as a topological minor.
Then containment in any topological minor closed family within Gd

is determined by a finite list of forbidden minors.
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Next we will move on to an object of importance from
topological combinatorics: graph configuration spaces.

Definition: Configuration Space

Let G be a graph, thought of as a 1-dimensional topological space.
Then the n-pointed configuration space on G is the topological
space

Fn(G ) := {(x1, . . . , xn) ∈ Gn | xi ̸= xj}/Sn

These spaces arise naturally in topological robotics and
motion planning questions.

What will be relevant to us is the following list of theorems,
each of which points to some kind of underlying uniformity of
these spaces across all graphs.
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Uniform boundedness of Torsion [KP]

For any graph G , The largest torsion appearing in H1(Fn(G )) has
order at most 2.

Universality of generators for trees [F]

If G is a tree, and i , n ≥ 1, then Hi (Fn(G )) is generated by
products of H1 classes pushed forward along embeddings of star
trees into G .

Universality of planar generators for H2 [AK]

There exists a finite set of graphs, depending only on n, such that
for any planar graph G , H2(Fn(G )) is generated by push forwards
of classes along embeddings of the members of this finite list into
G .
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To make sense of the possible underlying mechanism causing
the uniformity displayed in the prior theorems, let’s take a
second to take stock of what tools we have.

Fix for now an integer d , and suppose we are working only
with graphs not containing Robertson chains of length longer
than d (e.g. in Gd). We observe that if G ≤ G ′, then for any
n ≥ 1 there is a natural continuous map Fn(G ) → Fn(G

′).

These continuous maps at the level of topological spaces will
induce homomorphisms for each i ≥ 0 at the level of
homology groups Hi (Fn(G )) → Hi (Fn(G

′)).

At this point, we find ourselves in the realm of
“categorification,” where combinatorial objects become vector
spaces, and maps become homomorphisms. Our dream is now
that this categorification is Robust enough that it carries the
most important bits of combinatorics (e.g. Robertson’s
conjecture) into the realm of algebra. We make this dream
precise with the following.
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Definition: Gd -modules and finite generation

For any integer d ≥ 1, a Gd -module is a collection of abelian
groups {V (G )}, one for each graph in Gd , such that whenever
G ≤ G ′ there is a natural homomorphism V (G ) → V (G ′). We say
V is finitely generated whenever there is a finite list of graphs in
Gd , {G1, . . . ,Gr} such that for any graph G , V (G ) is spanned by
classes coming from the groups V (Gi ).



The Categorical Robertson Conjecture

For any integer d ≥ 1, if V is a finitely generated Gd -module, then
all submodules of V are also finitely generated.

If this conjecture seems out of reach, note that other
well-known WQO theorems have been categorified in a similar
fashion, including Krüskal’s tree theorem and even a weakened
graph minor theorem [MR][RS]!

Corollary: Finite generation of graph configuration spaces

For any integers d , i , n ≥ 1, the Gd -module Hi (Fn(•)) is finitely
generated.
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