# The BCFW Tiling of the Amplituhedron



Tsviga Lakrec



Universität Zürich<sup>uz</sup><sup>H</sup>

Ran Tessler

מכוז ויצמו למדע Weizmann Institute Of science

# The Totally Nonnegative

## Grassmannian



## Totally Nonnegative Grassmannian Gr(k,n) = { V c R<sup>n</sup> : dim V = k }

# **Totally Nonnegative Grassmannian** $Gr(k,n) = \{ V c R^n : dim V = k \}$ $Gr_k(k,n) = \{ C \in Gr(k,n) :$ $P_{T}(C) \geq 0 \quad \forall I \in [n], |I|=k \}$

Lusztig, Postnikov, Rietsch, Fomin Zelevinsky, Marsh, ...

**Totally Nonnegative Grassmannian**  $Gr(k,n) = \{ V c R^n : dim V = k \}$  $Gr_{k,n} = \{ C \in Gr(k,n) :$  $P_{T}(C) \geq 0 \quad \forall I \in [n], |I|=k \}$  $\begin{pmatrix} 1 & 2 & 0 & 0 & -6 & -5 \\ 0 & 3 & 0 & 4 & 5 & 0 & 0 \end{pmatrix} \in Gr, (2,7)$ 

**Totally Nonnegative Grassmannian**  $Gr(k,n) = \{ V c R^n : dim V = k \}$  $Gr_{k,n} = \{ C \in Gr(k,n) : P_{T}(C) \geq 0 \}$ **∀Ic[n]**, **|I|=k**}  $P_{24} = 8 \ge 0$  $\begin{pmatrix} 1 & 2 & 0 & 0 & 0 & -6 & -5 \\ 0 & 3 & 0 & 4 & 5 & 0 & 0 \end{pmatrix} \in Gr, (2,7)$ 1 2 3 4 5 6 7

## Totally Nonnegative Grassmannian Positroids cells: which Plückers are positive? $S_M = \{ C \in Gr_{\geq}(k,n) : P_I(C) > 0 \text{ iff } I \in M \}$

# **Totally Nonnegative Grassmannian** Positroids cells: which Plückers are positive? $S_{M} = \{ C \in Gr_{k,n} : P_{I}(C) > 0 \text{ iff } I \in M \}$ $S_{\{12,13,14\}} = \{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & a & b \end{pmatrix} : a, b \in (0, \infty)^2 \}$

#### **Totally Nonnegative Grassmannian** Positroids cells: which Plückers are positive? $S_{M} = \{ C \in Gr_{k,n} : P_{I}(C) > 0 \text{ iff } I \in M \}$ regular CW complex [Postnikov] • parametrized by: $(0, \infty)^d$ [d = dim $S_M$ ] indexed by: matroids / plabic graphs / 0 0 0 +decorated permutations / (0/1)-tableaux



Arkani-Hamed and Trnka 2013

#### Arkani-Hamed and Trnka 2013

Fix Z  $\in$  Mat<sup>\*</sup><sub>n × (k+m)</sub> means: all (k+m)×(k+m) dets > 0 n ≥ k+m



#### Arkani-Hamed and Trnka 2013

Fix  $Z \in Mat^{*}_{n \times (k+m)}$  example: Vandermonde



Arkani-Hamed and Trnka 2013

Fix Z  $\epsilon$  Mat<sup>></sup><sub>n × (k+m)</sub>

 $Z: Gr_{k}(k,n) \rightarrow Gr(k,k+m)$   $n \qquad y=CZ \qquad k+m$   $k \qquad C \qquad k \qquad y=CZ \qquad k \qquad y$ 

Arkani-Hamed and Trnka 2013

Fix Z  $\in$  Mat<sup>></sup><sub>n × (k+m)</sub>

 $Z : Gr_{k}(k,n) \rightarrow Gr(k,k+m)$   $n \qquad y=CZ \qquad k+m$   $k \qquad C \qquad k \qquad k+m$ 

Def: The Amplituhedron A(n,k,m,Z) is the image

 $A(n,k,m,Z) = \{ CZ : C \in Gr_{2}(k,n) \} \text{ for } Z \in Mat_{n \times (k+m)}^{2}$ • Well-defined in Gr(k,k+m) - no singularities!

- $A(n,k,m,Z) = \{ CZ : C \in Gr_{\geq}(k,n) \} \text{ for } Z \in Mat_{n \times (k+m)}^{>}$
- Well-defined in Gr(k,k+m) no singularities!
- Compact, connected, full dimensional: km

- $A(n,k,m,Z) = \{ CZ : C \in Gr_{\geq}(k,n) \} \text{ for } Z \in Mat_{n \times (k+m)}^{>}$
- Well-defined in Gr(k,k+m) no singularities!
- Compact, connected, full dimensional: km
- "Combinatorial structure" should not depend on Z

- $A(n,k,m,Z) = \{ CZ : C \in Gr_{\geq}(k,n) \} \text{ for } Z \in Mat_{n \times (k+m)}^{>}$
- Well-defined in Gr(k,k+m) no singularities!
- Compact, connected, full dimensional: km
- $\cdot$  "Combinatorial structure" should not depend on Z
- "Volume" related to scattering amplitudes (Physics, m=4)







- $A(n,k,m,Z) = \{ CZ : C \in Gr_{\geq}(k,n) \} \text{ for } Z \in Mat_{n \times (k+m)}^{>}$
- Well-defined in Gr(k,k+m) no singularities!
- Compact, connected, full dimensional: km
- "Combinatorial structure" should not depend on Z
- "Volume" related to scattering amplitudes (Physics, m=4)

 $(A_5)$ 

A<sub>4</sub>

• BCFW recursion (2005) Britto Cachazo Feng Witten  $A_6$ 

- $A(n,k,m,Z) = \{ CZ : C \in Gr_{\geq}(k,n) \} \text{ for } Z \in Mat_{n \times (k+m)}^{>}$
- Well-defined in Gr(k,k+m) no singularities!
- Compact, connected, full dimensional: km
- "Combinatorial structure" should not depend on Z
- "Volume" related to scattering amplitudes (Physics, m=4)
- BCFW recursion translates to a tiling of A(n,k,4)

conjectured by Arkani-Hamed and Trnka 2013



### Main result E Lakrec Tessler BCFW<sub>n,k</sub> = a collection of 4k-dim positroids in $Gr_{\geq}(k,n)$

## Main result E Lakrec Tessler BCFW<sub>n,k</sub> = a collection of 4k-dim positroids in $Gr_{\geq}(k,n)$ For every Z $\in$ Mat<sup>></sup><sub>n × (k+4)</sub>:

Main result E Lakrec Tessler  $BCFW_{n,k} = a$  collection of 4k-dim positroids in  $Gr_{2}(k,n)$ For every Z  $\epsilon$  Mat<sup>2</sup><sub>n × (k+4)</sub>: 1. Z : S -> A(n,k,4,Z) injective for each S  $\epsilon$  BCFW<sub>n,k</sub>

Main result E Lakrec Tessler

 $BCFW_{n,k} = a \text{ collection of } 4k-dim \text{ positroids in } Gr_{\geq}(k,n)$ 

For every  $Z \in Mat^{*}_{n \times (k+4)}$ :

1. Z: S -> A(n,k,4,Z) injective for each S  $\in BCFW_{n,k}$ 

2. Z-images of S,S'  $\in$  BCFW<sub>n,k</sub> are disjoint for S $\neq$ S'

- Main result E Lakrec Tessler
- $BCFW_{n,k}$  = a collection of 4k-dim positroids in  $Gr_{\geq}(k,n)$
- For every Z  $\in$  Mat<sup>></sup><sub>n x (k+4)</sub>:
- 1. Z: S -> A(n,k,4,Z) injective for each S  $\in BCFW_{n,k}$
- 2. Z-images of S,S'  $\in$  BCFW<sub>n,k</sub> are disjoint for S≠S'
- 3. Union of Z-images is open dense in A(n,k,4,Z)

- A(n,k=1,m) is a cyclic polytope in RP<sup>m</sup>
- A(n,k=n-m,m) is the totally nonnegative  $Gr_{2}(k,n)$

- A(n,k=1,m) is a cyclic polytope in RP<sup>m</sup>
- A(n,k=n-m,m) is the totally nonnegative  $Gr_{2}(k,n)$
- A(n,k,m=1) is the bounded part of a

cyclic hyperplane arrangement Karp Williams

- A(n,k=1,m) is a cyclic polytope in RP<sup>m</sup>
- A(n,k=n-m,m) is the totally nonnegative  $Gr_{2}(k,n)$
- A(n,k,m=1) cyclic hyperplane arrangement KW
- A(n,k,m) and A(n,n-m-k,m) "dual" for even m

**Galashin Lam** 

- A(n,k=1,m) is a cyclic polytope in RP<sup>m</sup>
- A(n,k=n-m,m) is the totally nonnegative  $Gr_{2}(k,n)$
- A(n,k,m=1) cyclic hyperplane arrangement KW
- A(n,k,m=even) dual to A(n,n-m-k,m) GL
- A(n,k,m=2) admits "BCFW-type" tiling Bao He

more tilings, map to hypersimplex  $\Delta_{k+1,n}$ , ... Lukowski Parisi Spradlin Volovich, Parisi Sherman-Bennett Williams

- A(n,k=1,m) is a cyclic polytope in RP<sup>m</sup>
- A(n,k=n-m,m) is the totally nonnegative  $Gr_{2}(k,n)$
- A(n,k,m=1) cyclic hyperplane arrangement KW
- A(n,k,m=even) dual to A(n,n-m-k,m) GL
- A(n,k,m=2) tilings, hypersimplex BH, LPSV, PSW
- A(n,k,m=4) conjectured BCFW<sub>n,k</sub> "domino form"

Karp Williams Zhang + Thomas

## The BCFW Tiles



#### Chord Diagrams

#### Let $CD_{n,k}$ be the set of all chord diagrams,



#### Chord Diagrams

#### Let $CD_{n,k}$ be the set of all chord diagrams,



Rules: No 🖌 No 斗
#### Let $CD_{n,k}$ be the set of all chord diagrams,



#### Let $CD_{n,k}$ be the set of all chord diagrams,



No + No +

#### Let $CD_{n,k}$ be the set of all chord diagrams,



No A No A No A

#### Let $CD_{n,k}$ be the set of all chord diagrams,



 $N_0 + A_+ N_0 + A_- N_0 + A_-$ 

#### Let $CD_{n,k}$ be the set of all chord diagrams,



## $|CD_{n,k}| = \frac{1}{k+1} \binom{n-3}{k} \binom{n-4}{k} = |BCFW_{n,k}|$















| α <sub>1</sub>                | β <sub>1</sub>                |                |                |            |                | <b>Y</b> 1     | δ <sub>1</sub> |            |                | ε <sub>1</sub> |
|-------------------------------|-------------------------------|----------------|----------------|------------|----------------|----------------|----------------|------------|----------------|----------------|
|                               | <b>a</b> <sub>2</sub>         | β <sub>2</sub> | Y <sub>2</sub> | δ2         |                |                |                |            |                |                |
| ε <sub>3</sub> α <sub>1</sub> | ε <sub>3</sub> β <sub>1</sub> |                |                | <b>a</b> 3 | β <sub>3</sub> | Y <sub>3</sub> | δ3             |            |                |                |
|                               |                               |                |                |            |                | α <sub>4</sub> | β <sub>4</sub> | <b>Y</b> 4 | δ <sub>4</sub> | ε <sub>4</sub> |



| <b>a</b> <sub>1</sub>         | β <sub>1</sub>               |                |                |                |                | <b>Y</b> 1     | δ <sub>1</sub> |            |                | ε <sub>1</sub> |
|-------------------------------|------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|----------------|----------------|
| $\epsilon_2 \alpha_1$         | $\epsilon_2\beta_1+\alpha_2$ | β <sub>2</sub> | Y <sub>2</sub> | δ2             |                |                |                |            |                |                |
| ε <sub>3</sub> α <sub>1</sub> | $\epsilon_3\beta_1$          |                |                | α <sub>3</sub> | β <sub>3</sub> | Y <sub>3</sub> | δ3             |            |                |                |
|                               |                              |                |                |                |                | α <sub>4</sub> | β <sub>4</sub> | <b>Y</b> 4 | δ <sub>4</sub> | ٤ <sub>4</sub> |



|   | -                           | • •                           |                |                |                |                |   | • •            | -              |   |            |                | -  |
|---|-----------------------------|-------------------------------|----------------|----------------|----------------|----------------|---|----------------|----------------|---|------------|----------------|----|
| 3 | 2 <b>α</b> 1                | $\epsilon_2\beta_1+\alpha_2$  | β <sub>2</sub> | Y <sub>2</sub> | δ2             | 0              | 0 | 0              | 0              | 0 | 0          | 0              | 0  |
| 3 | <sub>3</sub> α <sub>1</sub> | ε <sub>3</sub> β <sub>1</sub> | 0              | 0              | α <sub>3</sub> | β <sub>3</sub> | 0 | Y <sub>3</sub> | δ3             | 0 | 0          | 0              | 0  |
|   | 0                           | 0                             | 0              | 0              | 0              | 0              | 0 | α <sub>4</sub> | β <sub>4</sub> | 0 | <b>Y</b> 4 | δ <sub>4</sub> | ٤4 |

#### Domino matrices of $CD_{n,k}$ give $BCFW_{n,k}$ [ELT]



Sign rules:  $a_i \beta_i$  are +.  $\gamma_i \delta_i \epsilon_i$  are ± depending on chord count.  $\delta_3/\gamma_3 < \delta_1/\gamma_1 < \beta_4/a_4$ 

#### The Domino Theorem [ELT]

The domino matrix of a chord diagram restricted by the sign rules uniquely parametrizes a 4k-dim positroid cell, up to rescaling rows. These are exactly the BCFW cells as previously defined.



Tiling of A(n=7,k=2,m=4)













| α <sub>1</sub>                                                                                     | β <sub>1</sub>                                                                                                                       | <b>Y</b> 1                                                   | δ <sub>1</sub>                | 0                                                  | 0                                                                                      | ε <sub>1</sub>                                               |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 0                                                                                                  | 0                                                                                                                                    | <b>a</b> <sub>2</sub>                                        | β <sub>2</sub>                | Y <sub>2</sub>                                     | δ2                                                                                     | <b>ɛ</b> 2                                                   |
| <b>a</b> <sub>1</sub>                                                                              | β <sub>1</sub>                                                                                                                       | 0                                                            | 0                             | <b>Y</b> 1                                         | δ <sub>1</sub>                                                                         | ε <sub>1</sub>                                               |
| ε <sub>2</sub> α <sub>1</sub>                                                                      | ε <sub>2</sub> β <sub>1</sub> +α <sub>2</sub>                                                                                        | β <sub>2</sub>                                               | Y <sub>2</sub>                | δ2                                                 | 0                                                                                      | 0                                                            |
| <b>a</b> <sub>1</sub>                                                                              | β <sub>1</sub>                                                                                                                       | 0                                                            | <b>Y</b> 1                    | δ <sub>1</sub>                                     | 0                                                                                      | ε <sub>1</sub>                                               |
| ε <sub>2</sub> α <sub>1</sub>                                                                      | $\epsilon_2\beta_1 + \alpha_2$                                                                                                       | β <sub>2</sub>                                               | Y <sub>2</sub>                | δ2                                                 | 0                                                                                      | 0                                                            |
|                                                                                                    |                                                                                                                                      |                                                              |                               |                                                    |                                                                                        |                                                              |
| α <sub>1</sub>                                                                                     | β <sub>1</sub>                                                                                                                       | 0                                                            | 0                             | <b>Y</b> 1                                         | δ <sub>1</sub>                                                                         | ε <sub>1</sub>                                               |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub>                                                    | β <sub>1</sub><br>ε <sub>2</sub> β <sub>1</sub> +α <sub>2</sub>                                                                      | Ο<br>β <sub>2</sub>                                          | 0<br>0                        | Y <sub>1</sub><br>Y <sub>2</sub>                   | δ <sub>1</sub><br>δ <sub>2</sub>                                                       | ε <sub>1</sub><br>Ο                                          |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub><br>α <sub>1</sub>                                  | β <sub>1</sub><br>ε <sub>2</sub> β <sub>1</sub> +α <sub>2</sub><br>β <sub>1</sub>                                                    | Ο<br>β <sub>2</sub><br>Ο                                     | 0<br>0<br>0                   | Y <sub>1</sub><br>Y <sub>2</sub><br>Y <sub>1</sub> | δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub>                                     | ε <sub>1</sub><br>Ο<br>ε <sub>1</sub>                        |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub><br>α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub> | $\beta_1$ $\epsilon_2\beta_1 + \alpha_2$ $\beta_1$ $\epsilon_2\beta_1$                                                               | Ο<br>β <sub>2</sub><br>Ο<br>α <sub>2</sub>                   | Ο<br>Ο<br>Ο<br>β <sub>2</sub> | Y1<br>Y2<br>Y1<br>Y2                               | δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub><br>δ <sub>2</sub>                   | ε <sub>1</sub><br>Ο<br>ε <sub>1</sub><br>Ο                   |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub><br>α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub> | β <sub>1</sub><br>ε <sub>2</sub> β <sub>1</sub> +α <sub>2</sub><br>β <sub>1</sub><br>ε <sub>2</sub> β <sub>1</sub><br>α <sub>1</sub> | Ο<br>β <sub>2</sub><br>Ο<br>α <sub>2</sub><br>β <sub>1</sub> | Ο<br>Ο<br>Ο<br>β <sub>2</sub> | Y1<br>Y2<br>Y1<br>Y2<br>Y1                         | δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub> | ε <sub>1</sub><br>Ο<br>ε <sub>1</sub><br>Ο<br>ε <sub>1</sub> |

# BCFW Tiling

#### **Twistor Coordinates**

- $C \in Gr_{2}(k,n)$
- Z  $\epsilon$  Mat<sup>></sup><sub>n x (k+4)</sub>
- $Y = CZ \in A(n,k,4,Z) \subset Gr(k,k+4)$

## Twistor:

< a b c d > =

Arkani-Hamed Thomas Trnka

$$\begin{array}{c} \mathbf{Y} \\ \mathbf{Z}_{a} \\ \mathbf{Z}_{b} \\ \mathbf{Z}_{c} \\ \mathbf{Z}_{d} \end{array}$$

## 1. Z : S -> A(n,k,4,Z) injective for each S $\in$ BCFW<sub>n,k</sub> <u>Proof Idea:</u> construct a preimage

## 1. Z : S -> A(n,k,4,Z) injective for each S $\in BCFW_{n,k}$

#### <u>Proof Idea:</u> construct a preimage

#### Solve each row of 5 by twistors:

3

2

| α <sub>1</sub> | β <sub>1</sub> | <b>Y</b> 1            | δ <sub>1</sub> | 0              | 0  | ε <sub>1</sub>        |
|----------------|----------------|-----------------------|----------------|----------------|----|-----------------------|
| 0              | 0              | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub> | δ2 | <b>ε</b> <sub>2</sub> |

4 5

6

7

#### 1. Z : S -> A(n,k,4,Z) injective for each S $\in BCFW_{n,k}$

Proof Idea: construct a preimage

#### Solve each row of 5 by twistors:

| α <sub>1</sub> | β <sub>1</sub> | Υ1                    | δ <sub>1</sub> | 0                   | 0       | ε <sub>1</sub> |
|----------------|----------------|-----------------------|----------------|---------------------|---------|----------------|
| 0              | 0              | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub>      | δ2      | <b>ε</b> 2     |
|                |                |                       |                |                     |         |                |
| <2347>         | -<1347>        | <1247>                | -<1237>        | 0                   | 0       | -<1234>        |
| 0              | 0              | < <b>4567</b> >       | -<3567>        | <b>&lt;3467&gt;</b> | -<3457> | <3456>         |
| _              |                | •                     | -              | _                   |         | _              |
| 1              | 2              | 3                     | 4              | 5                   | 6       | 7              |

#### Solve each row of 6 after its parent:

| <b>a</b> 1                    | β <sub>1</sub>                | 0                     | 0              | Υ1             | δ <sub>1</sub> | ε <sub>1</sub> |
|-------------------------------|-------------------------------|-----------------------|----------------|----------------|----------------|----------------|
| ε <sub>2</sub> α <sub>1</sub> | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub> | δ2             | 0              |



#### Solve each row of 6 after its parent:

Solve row 1

|   | α <sub>1</sub>                | β <sub>1</sub>                       | 0                     | 0              | <b>Y</b> 1     | δ <sub>1</sub> | ε <sub>1</sub> |
|---|-------------------------------|--------------------------------------|-----------------------|----------------|----------------|----------------|----------------|
|   | ε <sub>2</sub> α <sub>1</sub> | <b>ε</b> <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | <b>Y</b> 2     | δ2             | 0              |
| Γ | - < 2567 >                    | <1567>                               | 0                     | 0              | -<1267>        | <1257>         | - <1256>       |
|   | ε2α1                          | ε <sub>2</sub> β <sub>1</sub>        | α <sub>2</sub>        | β <sub>2</sub> | Y <sub>2</sub> | δ <sub>2</sub> | 0              |



#### Solve each row of 6 after its parent:

|                              | α <sub>1</sub><br>δοΩι | β <sub>1</sub><br>εοθι        | 0                    | 0<br>Be        | Y1<br>X2        | δ <sub>1</sub><br>δ <sub>2</sub> | ε <sub>1</sub><br>Ο |
|------------------------------|------------------------|-------------------------------|----------------------|----------------|-----------------|----------------------------------|---------------------|
| Solve row 1                  | UZU1                   | •2P1                          | <u>~</u> 2           | P2             | 12              | •2                               |                     |
|                              | -<2567>                | <1567>                        | 0                    | 0              | -<1267>         | <1257>                           | -<1256>             |
|                              | <b>ε</b> 2 <b>α</b> 1  | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> 2           | β <sub>2</sub> | Y <sub>2</sub>  | δ2                               | 0                   |
| $X = \alpha_1 1 + \beta_1 2$ |                        |                               |                      |                |                 |                                  |                     |
|                              | -<2567>                | <1567>                        | 0                    | 0              | -<1267>         | <1257>                           | -<1256>             |
|                              | a1<3456>               | β <sub>1</sub> <3456>         | - <b>&lt; X456</b> > | <x356></x356>  | - <x346></x346> | <x345></x345>                    | 0                   |

#### Solve each row of 6 after its parent:

|                              | α <sub>1</sub>                | β <sub>1</sub>                | 0                     | 0              | Y <sub>1</sub>  | δ <sub>1</sub> | ε <sub>1</sub> |
|------------------------------|-------------------------------|-------------------------------|-----------------------|----------------|-----------------|----------------|----------------|
| Solve row 1                  | ε <sub>2</sub> α <sub>1</sub> | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub>  | δ2             | 0              |
|                              |                               |                               |                       |                |                 |                |                |
|                              | -<2567>                       | <1567>                        | 0                     | 0              | -<1267>         | <1257>         | -<1256>        |
|                              | <b>ε</b> 2 <b>α</b> 1         | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub>  | δ2             | 0              |
| $X = \alpha_1 1 + \beta_1 2$ |                               |                               |                       |                |                 |                |                |
| • • •                        | -<2567>                       | <1567>                        | 0                     | 0              | -<1267>         | <1257>         | -<1256>        |
|                              | a1<3456>                      | β <sub>1</sub> <3456>         | - <x456></x456>       | <x356></x356>  | - <x346></x346> | <x345></x345>  | 0              |
|                              |                               |                               |                       |                |                 |                |                |
|                              |                               |                               |                       |                | 11              |                |                |

<2567> <1346> - <1567> <2346>

#### Solve each row of 6 after its parent:

functionary

|                              | α <sub>1</sub>                | β <sub>1</sub>                | 0                     | 0              | <b>Y</b> 1      | δ <sub>1</sub> | ε <sub>1</sub> |
|------------------------------|-------------------------------|-------------------------------|-----------------------|----------------|-----------------|----------------|----------------|
| Solve now 1                  | ε <sub>2</sub> α <sub>1</sub> | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub>  | δ2             | 0              |
| Solve I OW I                 |                               |                               |                       |                |                 |                |                |
|                              | -<2567>                       | <1567>                        | 0                     | 0              | -<1267>         | <1257>         | -<1256>        |
|                              | ε2α1                          | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub>  | δ2             | 0              |
| $X = \alpha_1 1 + \beta_1 2$ |                               |                               |                       |                |                 |                |                |
| • • •                        | -<2567>                       | <1567>                        | 0                     | 0              | -<1267>         | <1257>         | -<1256>        |
|                              | α <sub>1</sub> <3456>         | β <sub>1</sub> <3456>         | - <b>&lt; X456</b> >  | <x356></x356>  | - <x346></x346> | <x345></x345>  | 0              |
|                              |                               |                               |                       |                |                 |                |                |

<2567> <1346> - <1567> <2346>

#### Solve each row of 6 after its parent:

|                              | α <sub>1</sub>                | β <sub>1</sub>                | 0                     | 0              | Y <sub>1</sub>  | δ <sub>1</sub> | ε <sub>1</sub> |
|------------------------------|-------------------------------|-------------------------------|-----------------------|----------------|-----------------|----------------|----------------|
| Solve row 1                  | ε <sub>2</sub> α <sub>1</sub> | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> <sub>2</sub> | β <sub>2</sub> | Y <sub>2</sub>  | δ2             | 0              |
| Solve I OW I                 |                               |                               |                       |                |                 |                |                |
|                              | -<2567>                       | <1567>                        | 0                     | 0              | -<1267>         | <1257>         | -<1256>        |
|                              | <b>ε</b> 2 <b>α</b> 1         | ε <sub>2</sub> β <sub>1</sub> | <b>a</b> 2            | β <sub>2</sub> | Y <sub>2</sub>  | δ2             | 0              |
| $X = \alpha_1 1 + \beta_1 2$ |                               |                               |                       |                |                 |                |                |
| • • •                        | -<2567>                       | <1567>                        | 0                     | 0              | -<1267>         | <1257>         | -<1256>        |
|                              | a1<3456>                      | β <sub>1</sub> <3456>         | - <x456></x456>       | <x356></x356>  | - <x346></x346> | <x345></x345>  | 0              |
|                              |                               |                               |                       |                | 11              |                |                |
|                              |                               |                               |                       |                | • •             |                |                |

<567-12-346> = <2567> <1346> - <1567> <2346>

2. Z-images of S,S'  $\in$  BCFW<sub>n,k</sub> are disjoint for S≠S' <u>Proof Idea:</u> construct twistor or functionary positive on S and negative on S' by induction on chord diagram structure

#### Case I: Last chords with different ends



<2357> < 0



<2357> > 0

#### Case II: Same last ends, different starts



<712-34-567> < 0



<712-34-567> > 0

#### Case III: Same last chord, diff subdiagram



<345-12-567> > **0** 



<345-12-567> < 0

- I cd>c'd': Take <abcn>
- II cd=c'd', ab>a'b': Take <na'b'-ab-cdn>
- III abcd=a'b'c'd': Promote subdiagram's separators
- R≠R': d to <abcn>d-<abdn>c, n to <abcd>n-<abcn>d+<abdn>c
- L≠L': b to <acdn>b-<bcdn>a



## Surjectivity

- 3. Union of Z-images is open dense in A(n,k,4,Z) <u>Proof Idea:</u> You cannot escape BCFW<sub>n,k</sub>
- Identify codim-1 boundaries of cells
- Each one belongs to 2 cells or  $\partial A(n,k,4)$
- Connectivity via transversal path in interior

## Tiling of A(7,2,4)



| α <sub>1</sub>                                                                                     | β <sub>1</sub>                                                                                  | Y <sub>1</sub>                                                 | δ1                            | 0                                                  | 0                                                                                      | ε <sub>1</sub>                                               |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 0                                                                                                  | 0                                                                                               | <b>a</b> <sub>2</sub>                                          | β <sub>2</sub>                | Y <sub>2</sub>                                     | <b>δ</b> 2                                                                             | <b>ɛ</b> 2                                                   |
| α <sub>1</sub>                                                                                     | β <sub>1</sub>                                                                                  | 0                                                              | 0                             | <b>Y</b> 1                                         | δ <sub>1</sub>                                                                         | ε <sub>1</sub>                                               |
| ε <sub>2</sub> α <sub>1</sub>                                                                      | $\epsilon_2\beta_1 + \alpha_2$                                                                  | β <sub>2</sub>                                                 | Y <sub>2</sub>                | δ2                                                 | 0                                                                                      | 0                                                            |
| α <sub>1</sub>                                                                                     | β <sub>1</sub>                                                                                  | 0                                                              | <b>Y</b> 1                    | δ <sub>1</sub>                                     | 0                                                                                      | ε <sub>1</sub>                                               |
| ε <sub>2</sub> α <sub>1</sub>                                                                      | $\epsilon_2\beta_1 + \alpha_2$                                                                  | β <sub>2</sub>                                                 | Y <sub>2</sub>                | δ2                                                 | 0                                                                                      | 0                                                            |
|                                                                                                    |                                                                                                 |                                                                |                               |                                                    |                                                                                        |                                                              |
| α <sub>1</sub>                                                                                     | β <sub>1</sub>                                                                                  | 0                                                              | 0                             | <b>Y</b> 1                                         | δ <sub>1</sub>                                                                         | ε <sub>1</sub>                                               |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub>                                                    | β <sub>1</sub><br>ε <sub>2</sub> β <sub>1</sub> +α <sub>2</sub>                                 | Ο<br>β <sub>2</sub>                                            | 0<br>0                        | Y <sub>1</sub><br>Y <sub>2</sub>                   | δ <sub>1</sub><br>δ <sub>2</sub>                                                       | ε <sub>1</sub><br>Ο                                          |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub><br>α <sub>1</sub>                                  | β <sub>1</sub><br>ε <sub>2</sub> β <sub>1</sub> +α <sub>2</sub><br>β <sub>1</sub>               | Ο<br>2 β <sub>2</sub><br>Ο                                     | 0<br>0<br>0                   | Y <sub>1</sub><br>Y <sub>2</sub><br>Y <sub>1</sub> | δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub>                                     | ε <sub>1</sub><br>Ο<br>ε <sub>1</sub>                        |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub><br>α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub> | $\beta_1$ $\epsilon_2\beta_1 + \alpha_2$ $\beta_1$ $\epsilon_2\beta_1$                          | Ο<br>2 β <sub>2</sub><br>Ο<br>α <sub>2</sub>                   | Ο<br>Ο<br>Ο<br>β <sub>2</sub> | Y1<br>Y2<br>Y1<br>Y2                               | δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub><br>δ <sub>2</sub>                   | ε <sub>1</sub><br>Ο<br>ε <sub>1</sub><br>Ο                   |
| α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub><br>α <sub>1</sub><br>ε <sub>2</sub> α <sub>1</sub> | $\beta_{1}$ $\epsilon_{2}\beta_{1}+\alpha_{2}$ $\beta_{1}$ $\epsilon_{2}\beta_{1}$ $\alpha_{1}$ | Ο<br>2 β <sub>2</sub><br>Ο<br>α <sub>2</sub><br>β <sub>1</sub> | Ο<br>Ο<br>Ο<br>β <sub>2</sub> | Y1<br>Y2<br>Y1<br>Y2<br>Y1<br>Y2                   | δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub><br>δ <sub>2</sub><br>δ <sub>1</sub> | ε <sub>1</sub><br>0<br>ε <sub>1</sub><br>0<br>ε <sub>1</sub> |







## THANK

