Triangular-Grid Billiards and Plabic Graphs

Colin Defant

Harvard

Based on joint work with Pakawut (Pro) Jiradilok.

FPSAC July 20, 2023

Colin Defant Triangular-Grid Billiards

▲ 翻 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

圖 > 《 문 > 《 문 > … 문

御下 くぼと くぼとう

臣

留下 くぼと くほとう

臣

留下 くぼと くほとう

臣

The *billiards permutation* π_P of this polygon P is (1 3 32 26 6 30 2 33 25 12 14 9 21 19 29 28 4 31)(5 24 13 10 20 27)

 $(7\,22\,23\,15\,17)(8\,11\,18\,16).$

A B M A B M

Main Theorem

Colin Defant Triangular-Grid Billiards

크

ъ

Main Theorem

Throughout this talk, P is a polygon in the triangular grid.

Theorem (D.–Jiradilok, 2023)

We have $\operatorname{area}(P) \ge 6\operatorname{cyc}(P) - 6$ and $\operatorname{perim}(P) \ge \frac{7}{2}\operatorname{cyc}(P) - \frac{3}{2}$. Also, $\operatorname{area}(P) = 6\operatorname{cyc}(P) - 6$ if and only if P is a "tree of unit hexagons."

Main Theorem

Throughout this talk, P is a polygon in the triangular grid.

Theorem (D.–Jiradilok, 2023)

We have $\operatorname{area}(P) \ge 6\operatorname{cyc}(P) - 6$ and $\operatorname{perim}(P) \ge \frac{7}{2}\operatorname{cyc}(P) - \frac{3}{2}$. Also, $\operatorname{area}(P) = 6\operatorname{cyc}(P) - 6$ if and only if P is a "tree of unit hexagons."

Conjecture (D.–Jiradilok, 2023)

We have $\operatorname{perim}(P) \ge 4\operatorname{cyc}(P) - 2$.

Breaking News

Colin Defant Triangular-Grid Billiards

Breaking News

Theorem (Honglin Zhu, last Friday++)

We have $\operatorname{perim}(P) \ge 4\operatorname{cyc}(P) - 2$.

留 と く ヨ と く ヨ と

э

Colin Defant Triangular-Grid Billiards

A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.

A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.

A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.

A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.

The *trip permutation* of this plabic graph is the cycle (13524).

Plabic Graphs from Grid Polygons

Colin Defant Triangular-Grid Billiards

크

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map

 $\varphi: \{\text{membranes}\} \rightarrow \{\text{reduced plabic graphs}\}.$

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map

 $\varphi: \{\text{membranes}\} \rightarrow \{\text{reduced plabic graphs}\}.$

The essential dimension of a reduced plabic graph G is the smallest d such that there exists a membrane $M \subseteq \mathbb{R}^d$ with $\varphi(M) = G$.

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map

 $\varphi: \{\text{membranes}\} \rightarrow \{\text{reduced plabic graphs}\}.$

The essential dimension of a reduced plabic graph G is the smallest d such that there exists a membrane $M \subseteq \mathbb{R}^d$ with $\varphi(M) = G$.

Lam and Postnikov showed that if G has n marked boundary points, then its essential dimension is at most n-1. *Membranes* are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map

 $\varphi: \{\text{membranes}\} \rightarrow \{\text{reduced plabic graphs}\}.$

The essential dimension of a reduced plabic graph G is the smallest d such that there exists a membrane $M \subseteq \mathbb{R}^d$ with $\varphi(M) = G$.

Lam and Postnikov showed that if G has n marked boundary points, then its essential dimension is at most n-1.

Connected reduced plabic graphs with essential dimension 2 are exactly those coming from triangular-grid polygons.

Reformulation of Main Theorem

Colin Defant Triangular-Grid Billiards

Reformulation of Main Theorem

Let G be a connected reduced plabic graph with essential dimension 2. Suppose G has n marked boundary points and v vertices, and let c be the number of cycles in the trip permutation π_G .

We have $v \ge 6c - 6$ and $n \ge \frac{7}{2}c - \frac{3}{2}c$	
$v \ge 6c-6$ and $n \ge \frac{1}{c} - \frac{3}{c}$	
Corollary (Honglin Zhu, last Friday++)	

We have

$$n \ge 4c - 2.$$

Future Directions: Other Families of Plabic Graphs

Colin Defant Triangular-Grid Billiards

Future Directions: Other Families of Plabic Graphs

Let G be a connected reduced plabic graph with n marked boundary points, v vertices, and c cycles in its trip permutation.

Problem (D.–Jiradilok, 2023)

Find inequalities relating n and v to c when G is taken from some "interesting" family of plabic graphs.

Future Directions: Regions With Holes

Problem (D.–Jiradilok, 2023)

Obtain analogues of our results for billiards systems in triangular-grid polygons with holes cut out.

Future Directions: Random Polygons

Colin Defant Triangular-Grid Billiards

Future Directions: Random Polygons

Question (D.–Jiradilok, 2023)

What can one say about cyc(P) when P is a large random triangular-grid polygon?

Future Directions: Unitrajectorial Polygons

Colin Defant Triangular-Grid Billiards

Future Directions: Unitrajectorial Polygons

Question (D.–Jiradilok, 2023)

What can one say about the triangular-grid polygons P such that cyc(P) = 1?

Fix a finite set P of alcoves of the affine Coxeter arrangement of type $\widetilde{A}_d.$

Fix a finite set P of alcoves of the affine Coxeter arrangement of type $\widetilde{A}_d.$

Let s_0, \ldots, s_d be the set of simple reflections.

Fix a finite set P of alcoves of the affine Coxeter arrangement of type $\widetilde{A}_d.$

Let s_0, \ldots, s_d be the set of simple reflections.

For $w \in P$ and $j \in \mathbb{Z}/(d+1)\mathbb{Z}$, let

$$\tau_j(w) = \begin{cases} s_j w & \text{if } s_j w \in P \\ w & \text{if } s_j w \notin P. \end{cases}$$

Fix a finite set P of alcoves of the affine Coxeter arrangement of type $\widetilde{A}_d.$

Let s_0, \ldots, s_d be the set of simple reflections.

For $w \in P$ and $j \in \mathbb{Z}/(d+1)\mathbb{Z}$, let

$$\tau_j(w) = \begin{cases} s_j w & \text{if } s_j w \in P \\ w & \text{if } s_j w \notin P. \end{cases}$$

Start at an alcove in P and apply the sequence

$$au_0, au_1, au_2, \ldots, au_d, au_0, au_1, au_2, \ldots, au_d, au_0, au_1, au_2, \ldots, au_d, \ldots$$

• • = • • = •

э

Problem (D.–Jiradilok, 2023)

Compare the number of trajectories in P with |P|.

3 × 4 3 ×

Colin Defant Triangular-Grid Billiards