Triangular-Grid Billiards and Plabic Graphs

Colin Defant
Harvard
Based on joint work with Pakawut (Pro) Jiradilok.
FPSAC
July 20, 2023

Triangular-Grid Billiards

Triangular-Grid Billiards

Triangular-Grid Billiards

Triangular-Grid Billiards

Triangular-Grid Billiards

Triangular-Grid Billiards

Triangular-Grid Billiards

The billiards permutation π_{P} of this polygon P is
(133226630233251214921192928431)(52413102027)
(722 231517)(8111816).

Main Theorem

Main Theorem

Throughout this talk, P is a polygon in the triangular grid.

Theorem (D.-Jiradilok, 2023)

We have $\operatorname{area}(P) \geq 6 \operatorname{cyc}(P)-6$ and $\operatorname{perim}(P) \geq \frac{7}{2} \operatorname{cyc}(P)-\frac{3}{2}$. Also, area $(P)=6 \operatorname{cyc}(P)-6$ if and only if P is a "tree of unit hexagons."

Main Theorem

Throughout this talk, P is a polygon in the triangular grid.

Theorem (D.-Jiradilok, 2023)

We have area $(P) \geq 6 \operatorname{cyc}(P)-6$ and $\operatorname{perim}(P) \geq \frac{7}{2} \operatorname{cyc}(P)-\frac{3}{2}$. Also, area $(P)=6 \operatorname{cyc}(P)-6$ if and only if P is a "tree of unit hexagons."

Conjecture (D.-Jiradilok, 2023)
We have $\operatorname{perim}(P) \geq 4 \operatorname{cyc}(P)-2$.

Breaking News

Breaking News

Theorem (Honglin Zhu, last Friday++)

We have $\operatorname{perim}(P) \geq 4 \operatorname{cyc}(P)-2$.

Plabic Graphs

Plabic Graphs

A plabic graph is a planar graph embedded in a disc such that each vertex is colored either black or white.

Plabic Graphs

A plabic graph is a planar graph embedded in a disc such that each vertex is colored either black or white.

Plabic Graphs

A plabic graph is a planar graph embedded in a disc such that each vertex is colored either black or white.

Plabic Graphs

A plabic graph is a planar graph embedded in a disc such that each vertex is colored either black or white.

The trip permutation of this plabic graph is the cycle (13524).

Plabic Graphs from Grid Polygons

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
$\varphi:\{$ membranes $\} \rightarrow$ \{reduced plabic graphs $\}.$

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
$\varphi:\{$ membranes $\} \rightarrow$ \{reduced plabic graphs $\}.$
The essential dimension of a reduced plabic graph G is the smallest d such that there exists a membrane $M \subseteq \mathbb{R}^{d}$ with $\varphi(M)=G$.

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
$\varphi:\{$ membranes $\} \rightarrow$ \{reduced plabic graphs $\}$.
The essential dimension of a reduced plabic graph G is the smallest d such that there exists a membrane $M \subseteq \mathbb{R}^{d}$ with $\varphi(M)=G$.

Lam and Postnikov showed that if G has n marked boundary points, then its essential dimension is at most $n-1$.

Essential Dimension

Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
$\varphi:\{$ membranes $\} \rightarrow$ \{reduced plabic graphs $\}.$
The essential dimension of a reduced plabic graph G is the smallest d such that there exists a membrane $M \subseteq \mathbb{R}^{d}$ with $\varphi(M)=G$.

Lam and Postnikov showed that if G has n marked boundary points, then its essential dimension is at most $n-1$.

Connected reduced plabic graphs with essential dimension 2 are exactly those coming from triangular-grid polygons.

Reformulation of Main Theorem

Reformulation of Main Theorem

Let G be a connected reduced plabic graph with essential dimension 2. Suppose G has n marked boundary points and v vertices, and let c be the number of cycles in the trip permutation π_{G}.

Corollary (D.--Jiradilok, 2023)

We have

$$
v \geq 6 c-6 \quad \text { and } \quad n \geq \frac{7}{2} c-\frac{3}{2}
$$

Corollary (Honglin Zhu, last Friday++)
We have

$$
n \geq 4 c-2
$$

Future Directions: Other Families of Plabic Graphs

Future Directions: Other Families of Plabic Graphs

Let G be a connected reduced plabic graph with n marked boundary points, v vertices, and c cycles in its trip permutation.

Problem (D.-Jiradilok, 2023)
Find inequalities relating n and v to c when G is taken from some "interesting" family of plabic graphs.

Future Directions: Regions With Holes

Problem (D.-Jiradilok, 2023)

Obtain analogues of our results for billiards systems in triangular-grid polygons with holes cut out.

Future Directions: Random Polygons

Future Directions: Random Polygons

Question (D.-Jiradilok, 2023)
What can one say about $\operatorname{cyc}(P)$ when P is a large random triangular-grid polygon?

Future Directions: Unitrajectorial Polygons

Future Directions: Unitrajectorial Polygons

Question (D.-Jiradilok, 2023)
What can one say about the triangular-grid polygons P such that $\operatorname{cyc}(P)=1$?

Other Future Directions: Higher Dimensions

Fix a finite set P of alcoves of the affine Coxeter arrangement of type \widetilde{A}_{d}.

Other Future Directions: Higher Dimensions

Fix a finite set P of alcoves of the affine Coxeter arrangement of type \widetilde{A}_{d}.

Let s_{0}, \ldots, s_{d} be the set of simple reflections.

Other Future Directions: Higher Dimensions

Fix a finite set P of alcoves of the affine Coxeter arrangement of type \widetilde{A}_{d}.

Let s_{0}, \ldots, s_{d} be the set of simple reflections.
For $w \in P$ and $j \in \mathbb{Z} /(d+1) \mathbb{Z}$, let

$$
\tau_{j}(w)= \begin{cases}s_{j} w & \text { if } s_{j} w \in P \\ w & \text { if } s_{j} w \notin P\end{cases}
$$

Other Future Directions: Higher Dimensions

Fix a finite set P of alcoves of the affine Coxeter arrangement of type \widetilde{A}_{d}.

Let s_{0}, \ldots, s_{d} be the set of simple reflections.
For $w \in P$ and $j \in \mathbb{Z} /(d+1) \mathbb{Z}$, let

$$
\tau_{j}(w)= \begin{cases}s_{j} w & \text { if } s_{j} w \in P \\ w & \text { if } s_{j} w \notin P\end{cases}
$$

Start at an alcove in P and apply the sequence

$$
\tau_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{d}, \tau_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{d}, \tau_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{d}, \ldots
$$

Other Future Directions: Higher Dimensions

Other Future Directions: Higher Dimensions

Problem (D.-Jiradilok, 2023)
Compare the number of trajectories in P with $|P|$.

