Bruhat interval polytopes, 1-skeleton lattices, and smooth torus orbit closures

Christian Gaetz
Cornell University

FPSAC 2023
UC Davis

July 18, 2023
(1) Bruhat interval polytopes
(2) 1-skeleton posets
(3) The top and bottom maps

4 Simple BIPs and smooth torus orbit closures
(5) Directionally simple polytopes

Bruhat order

The Bruhat order \preceq is a partial order on the symmetric group S_{n} with cover relations $w \prec w$ • (ij) whenever

$$
\ell(w(i j))=\ell(w)+1 .
$$

Here $\ell(w)$ is the number of inversions of w, or equivalently the smallest ℓ such that

$$
w=s_{i_{1}} \cdots s_{i_{\ell}}
$$

where $s_{i}=(i i+1)$ is an adjacent transposition.

Bruhat order on S_{3} and S_{4}

Bruhat interval polytopes

Definition (Kodama-Williams)
For $v \in S_{n}$, the Bruhat interval polytope Q_{v} is the polytope in \mathbb{R}^{n} whose vertices are the permutations $u \preceq v$ (viewing permutations in one-line notation as vectors).

Example

If $v=w_{0}$ then $[e, v]=S_{n}$ is the whole symmetric group. In this case Q_{v} is the permutohedron.

The permutohedron

Why Bruhat interval polytopes?

The Bruhat interval polytope Q_{v} is:

- The moment map image of a generic torus orbit closure Y_{v} in Schubert variety X_{v};
- The moment map image of the totally nonnegative part of X_{v};
- A Coxeter matroid polytope;
- Isomorphic to a Bridge polytope when and v is Grassmannian.

Properties of Bruhat interval polytopes

Theorem (Tsukerman and Williams 2015)
Any edge of Q_{v} is a Bruhat cover relation; in particular, Q_{v} is a generalized permutohedron.

- This means that the normal fan of Q_{v} coarsens the braid fan: the fan determined by the hyperplane arrangement $\left\{x_{i}-x_{j}=0 \mid 1 \leq i<j \leq n\right\}$.
- Thus the top-dimensional cones of the normal fan induce an equivalence relation Θ_{v} on S_{n}.
(1) Bruhat interval polytopes
(2) 1-skeleton posets
(3) The top and bottom maps

4 Simple BIPs and smooth torus orbit closures
(5) Directionally simple polytopes

The 1-skeleton poset

We will be interested in the following poset:

Definition

Let P_{v} be the poset on $\left[e, v\right.$] with cover relations $x \prec_{v} y$ if $\overline{x y}$ is an edge of Q_{v} and $\ell(y)=\ell(x)+1$.

Example

If $v=w_{0}$, then P_{v} is weak order on S_{n}.

Example: $v=3412$

P_{v} is a quotient

Proposition
Let Θ_{v} be the equivalence relation on S_{n} induced by the normal fan of Q_{v}, then

$$
P_{v} \cong P_{w_{0}} / \Theta
$$

as posets.

Each equivalence class $[x]_{\Theta}$ contains a unique element from $[e, v]$.
The map $x \mapsto[e, v] \cap[x]_{\Theta}$ is the matroid map.

Example: $v=3412$

(1) Bruhat interval polytopes
(2) 1-skeleton posets
(3) The top and bottom maps

4. Simple BIPs and smooth torus orbit closures

(5) Directionally simple polytopes

The top and bottom maps

```
Theorem
Each equivalence class \([x]_{\Theta}\) contains a unique minimal element \(\operatorname{bot}(x)\) and unique maximal element top \((x)\) under weak order.
```

Note: The existence of $\operatorname{bot}(x)$ is straightforward, this is just the matroid map. The existence of $\operatorname{top}(x)$ is much more surprising.

Example of top and bottom maps

The lattice property

Proposition (Well-known)
The weak order is a lattice.
Theorem
The map top : $S_{n} \rightarrow S_{n}$ preserves weak order (unlike bot!). This determines the join operation on P_{v} :

$$
x \vee_{P_{v}} y=\operatorname{bot}\left(\operatorname{top}(x) \vee_{\text {weak }} \operatorname{top}(y)\right)
$$

Corollary
The poset P_{v} is a lattice.
Note: The meet operation does not come from $\wedge_{\text {weak }}$. So P_{v} is a join-semilattice quotient but not a lattice quotient of weak order.

Special cases

Example

The atoms of P_{v} are just the simple reflections s_{i} which are in the support of v. For any set J of simple reflections, we have

$$
\bigvee_{s \in J} s=m(v, J)
$$

computes the parabolic map of Billey-Fan-Losonczy, the longest element of W_{J} lying in $[e, v]$.

Example

When v is Grassmannian, Q_{v} is isomorphic to a Bridge polytope. It was conjectured by Fraser that P_{v} is a lattice, in this case.

Bridge polytopes and BCFW-bridge decompositions

BCFW bridge decompositions: Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka
Correspondence to paths in Bridge polytope: Williams

Vertex-degree monotonicity

Theorem

If $x \leq_{P_{v}} y$ then $\operatorname{deg}(x) \leq \operatorname{deg}(y)$ as vertices in Q_{v}.

Simple BIPs

Recall that the Schubert variety $X_{v} \subset G / B$ is $\overline{B v B / B}$. Write Y_{v} for a generic T-orbit closure in X_{v}, this is a toric variety with associated polytope Q_{v}.

Corollary (Conjectured by Lee-Masuda)
The polytope Q_{v} is simple if and only if it is simple at the vertex v. Equivalently, the variety Y_{v} is smooth if and only if it is smooth at $v B$.

(1) Bruhat interval polytopes

(2) 1-skeleton posets

(3) The top and bottom maps

4. Simple BIPs and smooth torus orbit closures

(5) Directionally simple polytopes

Directionally simple polytopes

Let $G_{c}(Q)$ denote the directed graph on the 1-skeleton of a polytope Q according to increasing inner product with the vector c.

Definition

We say that a polytope $Q \subset \mathbb{R}^{d}$ is directionally simple with respect to the generic cost vector c if for every vertex v of Q and every set E of edges of $G_{c}(P)$ with source v there exists a face F of Q containing v whose set of edges incident to v is exactly E.

BIPs are directionally simple

Theorem (Different proof by Lee-Masuda-Park)
The polytope Q_{v} is directionally simple for all $v \in S_{n}$ when edges are oriented toward elements of higher length.

f-vectors and h-vectors

For a polytope $Q \subset \mathbb{R}^{d}$, write $\left(f_{0}, f_{1}, \ldots, f_{d}\right)$ for the number of vertices, edges,.... This is the f-vector.

The h-vector $h(Q)=\left(h_{0}, \ldots, h_{d}\right)$ is defined by the equality of polynomials

$$
\sum_{i=0}^{d} f_{i}(x-1)^{i}=\sum_{k=0}^{d} h_{k} x^{k}
$$

Theorem (Dehn-Somerville equations)
If Q is simple, then $h(Q)$ is positive, symmetric, and unimodal.

The h-vector of Q_{v}

The h-vector $h(Q)=\left(h_{0}, \ldots, h_{d}\right)$ is defined by the equality of polynomials

$$
\sum_{i=0}^{d} f_{i}(x-1)^{i}=\sum_{k=0}^{d} h_{k} x^{k}
$$

Theorem
For any $v \in S_{n}$, the h-vector $h\left(Q_{v}\right)$ is given by

$$
h_{i}=\mid\{x \in[e, v] \text { such that } \operatorname{des}(\operatorname{top}(x))=n-i-1\} \mid
$$

In particular, $h_{i} \geq 0$.

Thanks for listening!

