Symmetric group characters are computationally hard $\chi^{\lambda}(\alpha)^{2}$ or $\left|\chi^{\lambda}(\alpha)\right|$ do NOT have a nice combinatorial interpretation!

Greta Panova
joint work with Christian Ikenmeyer and Igor Pak

University of Southern California

FPSAC 2023

Symmetric group representations

S_{n} - permutations under composition:

$$
\pi:[1,2, \ldots, n] \xrightarrow{\sim}[1,2, \ldots, n], \quad \pi \sigma=\pi(\sigma)
$$

Symmetric group representations

S_{n} - permutations under composition:

$$
\pi:[1,2, \ldots, n] \xrightarrow{\sim}[1,2, \ldots, n], \quad \pi \sigma=\pi(\sigma)
$$

Representations: homomorphism $S_{n} \rightarrow G L_{N}(\mathbb{C})$
Example: if $V=\mathbb{C}^{3}, \pi \in S_{3}$, set $\pi\left(e_{i}\right):=e_{\pi_{i}}$ for $i=1$..3, so e.g. $231 \rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

Symmetric group representations

S_{n} - permutations under composition:

$$
\pi:[1,2, \ldots, n] \xrightarrow{\sim}[1,2, \ldots, n], \quad \pi \sigma=\pi(\sigma)
$$

Representations: homomorphism $S_{n} \rightarrow G L_{N}(\mathbb{C})$
Example: if $V=\mathbb{C}^{3}, \pi \in S_{3}$, set $\pi\left(e_{i}\right):=e_{\pi_{i}}$ for $i=1$..3, so e.g. $231 \rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
The irreducible representations of the symmetric group S_{n} : the Specht modules \mathbb{S}_{λ}

$$
\begin{gathered}
V=\underbrace{\mathbb{C}\left\langle e_{1}+e_{2}+e_{3}\right\rangle}_{V_{1}} \oplus \underbrace{\mathbb{C}\left\langle e_{1}-e_{2}, e_{2}-e_{3}\right\rangle}_{V_{2}} \\
\mathbb{S}_{(3)} \simeq V_{1} \quad \mathbb{S}_{(2,1)} \simeq V_{2}
\end{gathered}
$$

Basis indexed by SYTs of shape λ, so $\operatorname{dim} \mathbb{S}_{\lambda}=f^{\lambda}:=\#\{T$: SYT, shape $\lambda\}$.

1	2		2	1	3		1	3		1	4
3	4	3	5	2	4		2	5		2	5
5		4		5			4			3	

Symmetric group representations

S_{n} - permutations under composition:

$$
\pi:[1,2, \ldots, n] \xrightarrow{\sim}[1,2, \ldots, n], \quad \pi \sigma=\pi(\sigma)
$$

Representations: homomorphism $S_{n} \rightarrow G L_{N}(\mathbb{C})$
Example: if $V=\mathbb{C}^{3}, \pi \in S_{3}$, set $\pi\left(e_{i}\right):=e_{\pi_{i}}$ for $i=1$..3, so e.g. $231 \rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
The irreducible representations of the symmetric group S_{n} : the Specht modules \mathbb{S}_{λ}

$$
\begin{gathered}
V=\underbrace{\mathbb{C}\left\langle e_{1}+e_{2}+e_{3}\right\rangle}_{V_{1}} \oplus \underbrace{\mathbb{C}\left\langle e_{1}-e_{2}, e_{2}-e_{3}\right\rangle}_{V_{2}} \\
\mathbb{S}_{(3)} \simeq V_{1} \quad \mathbb{S}_{(2,1)} \simeq V_{2}
\end{gathered}
$$

Basis indexed by SYTs of shape λ, so $\operatorname{dim} \mathbb{S}_{\lambda}=f^{\lambda}:=\#\{T:$ SYT, shape $\lambda\}$.

1	2			
3	4			
5			1	2
:---	:---			
3	5			
4				

	3		1			
	4		2	5	2	5
			4			

Characters: \quad char $\mathbb{S}_{\lambda}=\chi^{\lambda}: S_{n} \rightarrow \mathbb{C}$

$$
\chi^{(2,1)}(231)=\operatorname{Trace}\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]=-1
$$

Structure constants

Tensor product of irreducible $G L$ representations (Weyl modules V_{α}):

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} V_{\nu}^{\oplus c_{\lambda \mu}^{\nu}}
$$

Littlewood-Richardson coefficients: $c_{\lambda \mu}^{\nu}=\left\langle\chi^{\lambda} \times \chi^{\mu}, \chi^{\nu} \downarrow_{S_{k} \times S_{n-k}}^{S_{n}}\right\rangle$

Structure constants

Tensor product of irreducible $G L$ representations (Weyl modules V_{α}):

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} V_{\nu}^{\oplus c_{\lambda \mu}^{\nu}}
$$

Littlewood-Richardson coefficients: $c_{\lambda \mu}^{\nu}=\left\langle\chi^{\lambda} \times \chi^{\mu}, \chi^{\nu} \downarrow_{S_{k} \times S_{n-k}}^{S_{n}}\right\rangle$
Theorem (Littlewood-Richardson, stated 1934, proven 1970's)
The coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of $L R$ tableaux of shape ν / μ and type λ.

(LR tableaux of shape $(6,4,3) /(3,1)$ and type $\left.(4,3,2) \cdot c_{(3,1)(4,3,2)}^{(6,4,3)}=2\right)$

Structure constants

Tensor product of irreducible $G L$ representations (Weyl modules V_{α}):

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} V_{\nu}^{\oplus c_{\lambda \mu}^{\nu}}
$$

Littlewood-Richardson coefficients: $c_{\lambda \mu}^{\nu}=\left\langle\chi^{\lambda} \times \chi^{\mu}, \chi^{\nu} \downarrow_{S_{k} \times S_{n-k}}^{S_{n}}\right\rangle$
Theorem (Littlewood-Richardson, stated 1934, proven 1970's)
The coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of $L R$ tableaux of shape ν / μ and type λ.

(LR tableaux of shape $(6,4,3) /(3,1)$ and type $\left.(4,3,2) \cdot c_{(3,1)(4,3,2)}^{(6,4,3)}=2\right)$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ - multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

$$
\begin{gathered}
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus g(\lambda, \mu, \nu)} \\
g(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\nu}\right\rangle=\frac{1}{n!} \sum_{w \in S_{n}} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)
\end{gathered}
$$

Structure constants

Tensor product of irreducible $G L$ representations (Weyl modules V_{α}):

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} V_{\nu}^{\oplus c_{\lambda \mu}^{\nu}}
$$

Littlewood-Richardson coefficients: $c_{\lambda \mu}^{\nu}=\left\langle\chi^{\lambda} \times \chi^{\mu}, \chi^{\nu} \downarrow_{S_{k} \times S_{n-k}}^{S_{n}}\right\rangle$
Theorem (Littlewood-Richardson, stated 1934, proven 1970's)
The coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of $L R$ tableaux of shape ν / μ and type λ.

(LR tableaux of shape $(6,4,3) /(3,1)$ and type $\left.(4,3,2) \cdot c_{(3,1)(4,3,2)}^{(6,4,3)}=2\right)$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ - multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

$$
\begin{gathered}
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus g(\lambda, \mu, \nu)} \\
g(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\nu}\right\rangle=\frac{1}{n!} \sum_{w \in S_{n}} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)
\end{gathered}
$$

Plethysm coefficients: $G L_{n} \xrightarrow{\rho^{\nu}} G L_{m} \xrightarrow{\rho^{\mu}} G L_{N}: \rho^{\mu} \circ \rho^{\nu}: G L_{n} \rightarrow G L_{N}$:

$$
\rho^{\mu}\left(\rho^{\nu}\right)=\bigoplus_{\lambda} V_{\lambda}^{\oplus a_{\lambda}(\mu[\nu])}
$$

Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: $c_{\mu \nu}^{\lambda}=g((N-|\lambda|, \lambda),(N-|\mu|, \mu),(N-|\nu|, \nu))$ for $|\lambda|=|\mu|+|\nu|$ and N-large.

Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: $c_{\mu \nu}^{\lambda}=g((N-|\lambda|, \lambda),(N-|\mu|, \mu),(N-|\nu|, \nu))$ for $|\lambda|=|\mu|+|\nu|$ and N-large.
Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: $c_{\mu \nu}^{\lambda}=g((N-|\lambda|, \lambda),(N-|\mu|, \mu),(N-|\nu|, \nu))$ for $|\lambda|=|\mu|+|\nu|$ and N-large.
Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2015] ;
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu=\left(n-k, 1^{k}\right)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo].

Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: $c_{\mu \nu}^{\lambda}=g((N-|\lambda|, \lambda),(N-|\mu|, \mu),(N-|\nu|, \nu))$ for $|\lambda|=|\mu|+|\nu|$ and N-large.
Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2015] ;
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu=\left(n-k, 1^{k}\right)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo].

Problem (Stanley 2000)

Find a positive combinatorial interpretation for $a_{\lambda}(d[n])$.

Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: $c_{\mu \nu}^{\lambda}=g((N-|\lambda|, \lambda),(N-|\mu|, \mu),(N-|\nu|, \nu))$ for $|\lambda|=|\mu|+|\nu|$ and N-large.
Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2015] ;
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu=\left(n-k, 1^{k}\right)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo].

Problem (Stanley 2000)

Find a positive combinatorial interpretation for $a_{\lambda}(d[n])$.
Applications beyond Combinatorics: Geometric Complexity Theory (VP vs VNP...)

Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: $c_{\mu \nu}^{\lambda}=g((N-|\lambda|, \lambda),(N-|\mu|, \mu),(N-|\nu|, \nu))$ for $|\lambda|=|\mu|+|\nu|$ and N-large.
Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2015] ;
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu=\left(n-k, 1^{k}\right)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo].

Problem (Stanley 2000)

Find a positive combinatorial interpretation for $a_{\lambda}(d[n])$.
Applications beyond Combinatorics: Geometric Complexity Theory (VP vs VNP...)
What is really a "combinatorial interpretation"?

Computational Complexity

Computational Complexity

Computational Complexity

$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.

Computational Complexity

 Input size $(I)=n$ bits
$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.
Ex: PRIMES, Linear Programming, Graph connectivity ...

Computational Complexity

Input size (I) $=n$ bits
$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.
Ex: PRIMES, Linear Programming,
$\mathrm{NP}=$ "yes" can be verified in $O\left(n^{k}\right)$ for some fixed k, i.e. there is a "poly-time witness".

Graph connectivity ...

Computational Complexity

Decision problems:

Ex: $L=$ Primes, I - an integer

Input size $(I)=n$ bits
$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.
Ex: PRIMES, Linear Programming, Graph connectivity ...
$\mathrm{NP}=$ "yes" can be verified in $O\left(n^{k}\right)$ for some fixed k, i.e. there is a "poly-time witness".
Ex: Input I = G - graph, $L=$ graphs with Hamiltonian cycles, the witness is the cycle $v_{1}-\ldots-v_{m}-v_{1}$

Computational Complexity

Input size $(I)=n$ bits
$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.
Ex: PRIMES, Linear Programming, Graph connectivity ...
$N P=$ "yes" can be verified in $O\left(n^{k}\right)$ for some fixed k, i.e. there is a "poly-time witness".
Ex: Input I = G - graph, $L=$ graphs with Hamiltonian cycles, the witness is the cycle $v_{1}-\ldots-v_{m}-v_{1}$
P vs NP Millennium problem: Is $P \neq N P$?

Computational Complexity

Input size (I) $=n$ bits
$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.
Ex: PRIMES, Linear Programming, Graph connectivity ...
$N P=$ "yes" can be verified in $O\left(n^{k}\right)$ for some fixed k, i.e. there is a "poly-time witness".
Ex: Input $I=G$ - graph, $L=$ graphs with Hamiltonian cycles, the witness is the cycle $v_{1}-\ldots-v_{m}-v_{1}$

Counting problems:

Computational Complexity

Decision problems:

Ex: $L=$ Primes, I - an integer
Input size $(I)=n$ bits
$\mathrm{P}=$ yes/no answer in time $O\left(n^{k}\right)$ some fixed k.
Ex: PRIMES, Linear Programming, Graph connectivity ...
$N P=$ "yes" can be verified in $O\left(n^{k}\right)$ for some fixed k, i.e. there is a "poly-time witness".
Ex: Input $I=G$ - graph, $L=$ graphs with Hamiltonian cycles, the witness is the cycle $v_{1}-\ldots-v_{m}-v_{1}$

Counting problems:

FP $=$ answer in time $O\left(n^{k}\right)$ some fixed k.

Ex: Determinant, Spanning trees, recursions ...
$\# \mathrm{P}=\#\left\{y: \operatorname{size}(y)<n^{k}, M(I, y)=1\right\}$ for some fixed k and $M \in \mathrm{P}$.
$=\sum_{y \in\{0,1\}^{n^{k}}} M(I, y)$
Ex: Input $I=G$ - graph, output - number of Hamiltonian cycles in G.

Combinatorial Interpretation via Computational Complexity

Counting and characterizing combi- Solve: is $I \in L$, compute $|C(I)|$ natorial objects given input data I

Combinatorial Interpretation via Computational Complexity

Counting and characterizing combinatorial objects given input data I
"Nice formula"
Product formulas, determinants etc

Solve: is $I \in L$, compute $|C(I)|$

The problem is in P, FP
$f^{\lambda / \mu}, s_{\lambda / \mu}(1,1, \ldots, 1)$

Combinatorial Interpretation via Computational Complexity

Counting and characterizing combinatorial objects given input data /
"Nice formula"
Product formulas, determinants etc

Solve: is $I \in L$, compute $|C(I)|$

The problem is in P, FP
$f^{\lambda / \mu}, s_{\lambda / \mu}(1,1, \ldots, 1)$

Positive combinatorial interpretation
Ex: Littlewood-Richardson rule

The problem is in \#P

$$
c_{\mu \nu}^{\lambda}=\sum_{T \in S S Y T(\lambda / \mu)} \mathbb{1}_{\text {word }(T) \text {-ballot sequence? }}
$$

Combinatorial Interpretation via Computational Complexity

Counting and characterizing combinatorial objects given input data I
"Nice formula"
Product formulas, determinants etc

Solve: is $I \in L$, compute $|C(I)|$

The problem is in P, FP
$f^{\lambda / \mu}, s_{\lambda / \mu}(1,1, \ldots, 1)$

Positive combinatorial interpretation
Ex: Littlewood-Richardson rule
The problem is in \#P

$$
c_{\mu \nu}^{\lambda}=\sum_{T \in S S Y T(\lambda / \mu)} \mathbb{1}_{\text {word }(T) \text {-ballot sequence? }}
$$

No "combinatorial interpretation"
Kroneckers, plethysms?
$\left(\chi^{\lambda}(\alpha)\right)^{2}$ or $\left|\chi^{\lambda}(\alpha)\right|$

The problem is not in \#P ComputeCharSq \notin \# ...

Characters of S_{n}

characters: char $\mathbb{S}_{\lambda}=\chi^{\lambda}: S_{n} \rightarrow \mathbb{C}$

$$
\chi^{\lambda}[\alpha] \text { - value at permutation of cycle type } \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)
$$

Murnaghan-Nakayama rule:

$$
\chi^{\lambda}[\alpha]=\sum_{T: \text { MN tableaux, shape } \lambda, \text { content } \alpha}(-1)^{h t(T)}
$$

- a M-N tableau T of shape $\lambda=(7,6,5)$, content $\alpha=(4,4,5,5)$,
$h t(T)=(2-1)+(2-1)+(3-1)+(3-1)=6$.

Characters of S_{n}

	id	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

Characters of S_{n}

	id	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$
\sum_{\lambda \vdash n} \chi^{\lambda}(i d)^{2}=n!
$$

Characters of S_{n}

	id	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$
\begin{gathered}
\sum_{\lambda \vdash n} \chi^{\lambda}(i d)^{2}=n! \\
\left(\begin{array}{|c|c|c|}
\hline 1 & 2 / 4 \\
3 & \frac{1}{4} & 2 \mid 3 \\
4
\end{array}\right) \stackrel{R S K}{\longleftrightarrow} 4123
\end{gathered}
$$

Characters of S_{n}

	id	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$
\begin{gathered}
\sum_{\lambda \vdash n} \chi^{\lambda}(i d)^{2}=n! \\
\left(\begin{array}{|l}
1 \frac{124}{3}, \\
\hline
\end{array} \frac{1233}{4}\right) \stackrel{R S K}{\longleftrightarrow} 4123 \\
\sum_{\lambda \vdash n} \chi^{\lambda}(w)^{2}=\prod_{i} i^{c_{i}} c_{i}!
\end{gathered}
$$

where $c_{i}=$ number of cycles of length i in $w \in S_{n}$.

Characters of S_{n}

	id	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$
\begin{gathered}
\sum_{\lambda \vdash n} \chi^{\lambda}(i d)^{2}=n! \\
\left(\begin{array}{|l|l|l|}
\hline 1 & 2 / 4 \\
3 & \frac{1}{4} & 2 \mid 3 \\
4
\end{array}\right) \stackrel{R S K}{\longleftrightarrow} 4123
\end{gathered}
$$

$$
\sum_{\lambda \vdash n} \chi^{\lambda}(w)^{2}=\prod_{i} i^{c_{i}} c_{i}!
$$

where $c_{i}=$ number of cycles of length i in $w \in S_{n}$.
Computecharsq:
Input: $\lambda, \alpha \vdash n$, unary.
Output: the integer $\chi^{\lambda}(\alpha)^{2}$.

Characters of S_{n}

	id	$(1,2)$	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4)$
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$
\begin{gathered}
\sum_{\lambda \vdash n} \chi^{\lambda}(i d)^{2}=n! \\
\left(\begin{array}{|l}
1 \frac{124}{3}, \\
\hline
\end{array} \frac{1233}{4}\right) \stackrel{R S K}{\longleftrightarrow} 4123 \\
\sum_{\lambda \vdash n} \chi^{\lambda}(w)^{2}=\prod_{i} i^{c_{i}} c_{i}!
\end{gathered}
$$

$$
\text { where } c_{i}=\text { number of cycles of length } i \text { in } w \in S_{n} \text {. }
$$

ComputeCharSQ:
Input: $\lambda, \alpha \vdash n$, unary.
Output: the integer $\chi^{\lambda}(\alpha)^{2}$.

Theorem (Ikenmeyer-Pak-P'22)
ComputeCharSq $\notin \# P$ unless $P H=\Sigma_{2}^{P}$.
No nice combinatorial interpretation for $\chi^{\lambda}(\alpha)^{2}$

Set partitions

Ordered set partitions of items $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ into bins of sizes $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$:

$$
\begin{gathered}
P(\mathbf{a}, \mathbf{b}):=\#\left\{\left(B_{1}, B_{2}, \ldots, B_{k}\right): B_{1} \sqcup B_{2} \sqcup \ldots \sqcup B_{k}=[m], \sum_{i \in B_{j}} a_{i}=b_{j} \text { for all } j=1, \ldots, k\right\} \\
P((2,4,5,7),(9,9))=\#\{(\{1,4\},\{2,3\}),(\{2,3\},\{1,4\})\}=2
\end{gathered}
$$

Set partitions

Ordered set partitions of items $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ into bins of sizes $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$:

$$
\begin{gathered}
P(\mathbf{a}, \mathbf{b}):=\#\left\{\left(B_{1}, B_{2}, \ldots, B_{k}\right): B_{1} \sqcup B_{2} \sqcup \ldots \sqcup B_{k}=[m], \sum_{i \in B_{j}} a_{i}=b_{j} \text { for all } j=1, \ldots, k\right\} \\
P((2,4,5,7),(9,9))=\#\{(\{1,4\},\{2,3\}),(\{2,3\},\{1,4\})\}=2
\end{gathered}
$$

Jacobi-Trudi/Frobenius character formula:

$$
\chi^{\lambda}[\alpha]=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) P(\alpha, \lambda+\sigma-\mathrm{id})
$$

Set partitions

Ordered set partitions of items $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ into bins of sizes $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$:

$$
\begin{gathered}
P(\mathbf{a}, \mathbf{b}):=\#\left\{\left(B_{1}, B_{2}, \ldots, B_{k}\right): B_{1} \sqcup B_{2} \sqcup \ldots \sqcup B_{k}=[m], \sum_{i \in B_{j}} a_{i}=b_{j} \text { for all } j=1, \ldots, k\right\} \\
P((2,4,5,7),(9,9))=\#\{(\{1,4\},\{2,3\}),(\{2,3\},\{1,4\})\}=2
\end{gathered}
$$

Jacobi-Trudi/Frobenius character formula:

$$
\chi^{\lambda}[\alpha]=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) P(\alpha, \lambda+\sigma-\mathrm{id})
$$

Proposition (IPP)

Let \mathbf{c} and \mathbf{d} be two sequences of nonnegative integers, such that $|\mathbf{c}|=|\mathbf{d}|+6$. Then there ara partitions λ and α of size $O(\ell|\mathbf{c}|)$, which are affine functions of \mathbf{c}, \mathbf{d}, such that

$$
\chi^{\lambda}(\alpha)=P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right),
$$

where $\overline{\mathbf{d}}:=\left(2,4, d_{1}, d_{2}, \ldots\right)$ and $\overline{\mathbf{d}^{\prime}}:=\left(1,5, d_{1}, d_{2}, \ldots\right)$.

3- and 4d Matchings

Proposition (IPP)

For \forall two independent $3 d$ matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

3- and 4d Matchings

Proposition (IPP)

For \forall two independent $3 d$ matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

3- and 4d Matchings

Proposition (IPP)

For \forall two independent 3d matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

Vertices [4] $\times[4]$ and hyperedges $J=$

$$
(1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4,4,4,4)
$$

$$
(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4,4,4)
$$

3- and 4d Matchings

Proposition (IPP)

For \forall two independent $3 d$ matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

Vertices [4] $\times[4]$ and hyperedges $J=$

$$
(1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4,4,4,4)
$$

$$
(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4,4,4)
$$

\rightarrow encoded via vectors $\left[v_{1}, \ldots, v_{10}\right.$]
\rightarrow items of size $v_{1}+v_{2} r+\cdots+v_{10} r^{9}$

3- and 4d Matchings

Proposition (IPP)

For \forall two independent $3 d$ matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

Vertices [4] $\times[4]$ and hyperedges $J=$

$$
(1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4,4,4,4)
$$

$$
(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4,4,4)
$$

\rightarrow encoded via vectors $\left[v_{1}, \ldots, v_{10}\right.$]
\rightarrow items of size $v_{1}+v_{2} r+\cdots+v_{10} r^{9}$
Vertix encodings:

$$
\begin{aligned}
& \left\{\left[0^{j-1}, 1,0^{4}, i, 0^{4-j}, 3\right] \mid i \in[4], j \in[4]\right\} \\
& \left\{\left[0^{j-1}, 1,0^{4}, i, 0^{4-j}, 3\right]^{\text {mult }}(4, j) \mid i \in[4], j \in[4]\right\}
\end{aligned}
$$

3- and 4d Matchings

Proposition (IPP)

For \forall two independent 3d matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

Vertices [4] $\times[4]$ and hyperedges $J=$

$$
(1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4,4,4,4)
$$

$$
(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4,4,4)
$$

\rightarrow encoded via vectors [v_{1}, \ldots, v_{10}]
\rightarrow items of size $v_{1}+v_{2} r+\cdots+v_{10} r^{9}$
Vertix encodings:
$\left.\left.\begin{array}{l}\left\{\left[0^{j-1}, 1,0^{4}, i, 0^{4-j}, 3\right] \mid i \in[4], j \in[4]\right\} \\ \left\{\left.\left[0^{j-1}, 1,0^{4}, i, 0^{4-j}, 3\right]^{\text {mult }}\left(\frac{i, j}{}\right) \right\rvert\,\right.\end{array} \right\rvert\, i \in[4], j \in[4]\right\}$
Hyperedge (1, 1, 2, 2)
$\rightarrow\left[0^{4}, 1,4-1,4-1,4-2,4-2,0\right]$
Bins size $b_{1}=\left[1^{5}, 4^{4}, 12\right]$, bins: $\mathbf{b}=\left(b_{1}^{10}\right)$:

3- and 4d Matchings

Proposition (IPP)

For \forall two independent 3d matching problem instances E and $E^{\prime}, \exists \mathbf{c}$ and \mathbf{d}, such that

$$
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta}\left(P(\mathbf{c}, \overline{\mathbf{d}})-P\left(\mathbf{c}, \overline{\mathbf{d}^{\prime}}\right)\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha)
$$

where δ is a fixed multiplicity factor, number of orderings.

Vertices [4] $\times[4]$ and hyperedges $J=$

$$
(1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4,4,4,4)
$$

$$
(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4,4,4)
$$

\rightarrow encoded via vectors [v_{1}, \ldots, v_{10}]
\rightarrow items of size $v_{1}+v_{2} r+\cdots+v_{10} r^{9}$
Vertix encodings:

$$
\begin{aligned}
& \left\{\left[0^{j-1}, 1,0^{4}, i, 0^{4-j}, 3\right] \mid i \in[4], j \in[4]\right\} \\
& \left\{\left.\left[0^{j-1}, 1,0^{4}, i, 0^{4-j}, 3\right]^{\text {mult }}\left(\frac{i, j}{},\right) \right\rvert\, i \in[4], j \in[4]\right\}
\end{aligned}
$$

Hyperedge (1, 1, 2, 2)
$\rightarrow\left[0^{4}, 1,4-1,4-1,4-2,4-2,0\right]$
Bins size $b_{1}=\left[1^{5}, 4^{4}, 12\right]$, bins: $\mathbf{b}=\left(b_{1}^{10}\right)$:

$$
\begin{aligned}
& {[0,0,0,0,1,3,3,2,2,0]+[1,0,0,0,0,1,0,0,0,3]+[0,1,0,0,0,0,1,0,0,3] } \\
+ & {[0,0,1,0,0,0,0,2,0,3]+[0,0,0,1,0,0,0,0,2,3]=[1,1,1,1,1,4,4,4,4,12] }
\end{aligned}
$$

Characters are as hard as the polynomial hierarchy

Theorem (Ikenmeyer-Pak-P'22)
Let $\chi^{2}:(\lambda, \pi) \mapsto\left(\chi^{\lambda}(\pi)\right)^{2}$, where $\lambda \vdash n$ and $\pi \in S_{n}$. If $\chi^{2} \in \# \mathrm{P}$, then the polynomial hierarchy collapses to the second level: $\mathrm{PH}=\Sigma_{2}^{\mathrm{p}}=\mathrm{NP}{ }^{1}$.
Polynomial hierarchy: $\Sigma_{0}^{\mathrm{p}}=\mathrm{P}, \Sigma_{i+1}^{\mathrm{p}}=\mathrm{NP} \sum_{i}^{\mathrm{p}}, \mathrm{PH}=\bigcup_{i=0}^{\infty} \Sigma_{i}^{\mathrm{p}}$.

[^0]
Characters are as hard as the polynomial hierarchy

Theorem (Ikenmeyer-Pak-P'22)
Let $\chi^{2}:(\lambda, \pi) \mapsto\left(\chi^{\lambda}(\pi)\right)^{2}$, where $\lambda \vdash n$ and $\pi \in S_{n}$. If $\chi^{2} \in \# P$, then the polynomial hierarchy collapses to the second level: $\mathrm{PH}=\Sigma_{2}^{\mathrm{p}}=\mathrm{NP}{ }^{1}$.
Polynomial hierarchy: $\Sigma_{0}^{\mathrm{p}}=\mathrm{P}, \Sigma_{i+1}^{\mathrm{p}}=\mathrm{NP}{ }^{\Sigma_{i}^{\mathrm{p}}}, \mathrm{PH}=\bigcup_{i=0}^{\infty} \Sigma_{i}^{\mathrm{p}}$.

$$
\begin{gathered}
\# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha) \\
\Longrightarrow[\chi=0] \text { is } \mathrm{C}=\mathrm{P}:=\underset{\# \mathrm{P}-\# \mathrm{P}}{[G \mathrm{GapP}}=0]- \text { complete. }
\end{gathered}
$$

[^1]
Characters are as hard as the polynomial hierarchy

Theorem (Ikenmeyer-Pak-P'22)
Let $\chi^{2}:(\lambda, \pi) \mapsto\left(\chi^{\lambda}(\pi)\right)^{2}$, where $\lambda \vdash n$ and $\pi \in S_{n}$. If $\chi^{2} \in \# P$, then the polynomial hierarchy collapses to the second level: $\mathrm{PH}=\Sigma_{2}^{\mathrm{p}}=\mathrm{NP}{ }^{1}$.
Polynomial hierarchy: $\Sigma_{0}^{\mathrm{p}}=\mathrm{P}, \Sigma_{i+1}^{\mathrm{p}}=\mathrm{NP}{ }^{\Sigma_{i}^{\mathrm{p}}}, \mathrm{PH}=\bigcup_{i=0}^{\infty} \Sigma_{i}^{\mathrm{p}}$.

$$
\begin{aligned}
& \quad \# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha) \\
& \Longrightarrow[\chi=0] \text { is } \mathrm{C}=\mathrm{P}:=[\underbrace{\mathrm{GapP}}_{\# \mathrm{P}-\# \mathrm{P}}=0] \text {-complete. } \\
& \text { If } \chi^{2} \in \# \mathrm{P} \Longrightarrow\left[\chi^{2}>0\right] \in \mathrm{NP} \text {, so }[\chi \neq 0] \in \mathrm{NP} \\
& \text { and hence }[\chi=0] \in \operatorname{coNP} .
\end{aligned}
$$

[^2]
Characters are as hard as the polynomial hierarchy

Theorem (Ikenmeyer-Pak-P'22)
Let $\chi^{2}:(\lambda, \pi) \mapsto\left(\chi^{\lambda}(\pi)\right)^{2}$, where $\lambda \vdash n$ and $\pi \in S_{n}$. If $\chi^{2} \in \# P$, then the polynomial hierarchy collapses to the second level: $\mathrm{PH}=\Sigma_{2}^{\mathrm{p}}=\mathrm{NP}{ }^{1}$.
Polynomial hierarchy: $\Sigma_{0}^{\mathrm{p}}=\mathrm{P}, \Sigma_{i+1}^{\mathrm{p}}=\mathrm{NP}{ }^{\Sigma_{i}^{\mathrm{p}}}, \mathrm{PH}=\bigcup_{i=0}^{\infty} \Sigma_{i}^{\mathrm{p}}$.

$$
\Delta_{0}^{\mathrm{P}}=\Sigma_{0}^{\mathrm{p}}=\mathrm{P}=\Pi_{0}^{\mathrm{p}}=\Delta_{1}^{\mathrm{P}}
$$

$$
\begin{aligned}
& \quad \# 3 D M(E)-\# 3 D M\left(E^{\prime}\right)=\frac{1}{\delta} \chi^{\lambda}(\alpha) \\
& \Longrightarrow[\chi=0] \text { is } \mathrm{C}=\mathrm{P}:=[\underbrace{\mathrm{GapP}}_{\# \mathrm{P}-\# \mathrm{P}}=0] \text {-complete. } \\
& \text { If } \chi^{2} \in \# \mathrm{P} \Longrightarrow\left[\chi^{2}>0\right] \in \mathrm{NP} \text {, so }[\chi \neq 0] \in \mathrm{NP} \\
& \text { and hence }[\chi=0] \in \operatorname{coNP} .
\end{aligned}
$$

$$
\Longrightarrow \mathrm{C}_{=} \mathrm{P} \subset \operatorname{coNP}
$$

$$
\begin{array}{ll}
\Longrightarrow \text { since }^{P H} \subset \mathrm{NP}^{\mathrm{C}=} \mathrm{P} & \text { (Tarui'91) then } \mathrm{PH} \quad \subset \\
\mathrm{NP} \mathrm{P}^{\mathrm{coNP}} \text {, so } \mathrm{PH}=\Sigma_{2}^{\mathrm{p}} & \square
\end{array}
$$

[^3]
The End

Computing Kronecker, plethysm coefficients and especially S_{n} characters...

Thank you for your attention!

[^0]: ${ }^{1} \mathrm{~A}$ hypothesis widely believed to be false, similar to $\mathrm{P} \neq \mathrm{NP}$

[^1]: ${ }^{1} \mathrm{~A}$ hypothesis widely believed to be false, similar to $\mathrm{P} \neq \mathrm{NP}$

[^2]: ${ }^{1}$ A hypothesis widely believed to be false, similar to $P \neq N P$

[^3]: ${ }^{1}$ A hypothesis widely believed to be false, similar to $P \neq N P$

