# The tropical critical points of an affine matroid FPSAC 2023, UC Davis 

Raul Penaguiao

MPI MiS Leipzig
July 18th, 2023

Slides can be found at raulpenaguiao.github.io/ Joint work with Federico Ardila and Christopher Eur

## Optimization of a monomial

Fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Optimize $f_{\mathbf{w}}: \mathbf{x} \mapsto x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ on a variety $X \subset\left(\mathbb{C}^{*}\right)^{n}$.

## Optimization of a monomial

Fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Optimize $f_{\mathbf{w}}: \mathbf{x} \mapsto x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ on a variety $X \subset\left(\mathbb{C}^{*}\right)^{n}$.


Figure: A variety where we can optimize $f_{\mathbf{w}}$

## Optimization of a monomial

Fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.
Optimize $f_{\mathbf{w}}: \mathbf{x} \mapsto x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ on a variety $X \subset\left(\mathbb{C}^{*}\right)^{n}$.


Figure: A variety where we can optimize $f_{\mathbf{w}}$

What is the number of critical points of $f$ ? Does it depend on the choice of w ?

## Optimization of a monomial

Fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.
Optimize $f_{\mathbf{w}}: \mathbf{x} \mapsto x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ on a variety $X \subset\left(\mathbb{C}^{*}\right)^{n}$.


Figure: A variety where we can optimize $f_{\mathbf{w}}$

What is the number of critical points of $f$ ? Does it depend on the choice of w ? For generic w , no!

## Optimization of a monomial

Fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.
Optimize $f_{\mathbf{w}}: \mathbf{x} \mapsto x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ on a variety $X \subset\left(\mathbb{C}^{*}\right)^{n}$.


Figure: A variety where we can optimize $f_{\mathbf{w}}$

What is the number of critical points of $f$ ? Does it depend on the choice of w ? For generic w , no! This number is called the maximum likelihood degree of a model $X$.

## Optimization of a monomial

Fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.
Optimize $f_{\mathbf{w}}: \mathbf{x} \mapsto x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ on a variety $X \subset\left(\mathbb{C}^{*}\right)^{n}$.


Figure: A variety where we can optimize $f_{\mathbf{w}}$

What is the number of critical points of $f$ ? Does it depend on the choice of w ? For generic w , no! This number is called the maximum likelihood degree of a model $X$. If $X$ is a vector space, $\operatorname{MLDeg}(X)=\beta(M(V))$.

## Edge weight problem

Given $G=(V, E)$, fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

## Edge weight problem

Given $G=(V, E)$, fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

- The sum of the weights is $\mathbf{w}$.


## Edge weight problem

Given $G=(V, E)$, fix some vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

- The sum of the weights is $\mathbf{w}$.
- (Compatible) Every cycle has at least two minimal edges.
$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{y}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{y}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{y}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{y}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ | 0 |  | 0 | 0 |  |  | 0 | 0 |  |
| $\mathbf{y}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ | 0 | 1 | 0 | 0 | 2 | 3 | 0 | 0 | 2 |
| $\mathbf{y}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

$\mathrm{Fix} \mathbf{w}=(0,1,1,2,2,5,3,4,7)$.


Figure: Find $\mathbf{x}$ and $\mathbf{y}$ edge weights that are compatible with $G$ and $(G \backslash z)^{*}$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{x}$ | 0 | 1 | 0 | 0 | 2 | 3 | 0 | 0 | 2 |
| $\mathbf{y}$ | 0 | 0 | 1 | 2 | 0 | 2 | 3 | 4 | 5 |
| $\mathbf{w}$ | 0 | 1 | 1 | 2 | 2 | 5 | 3 | 4 | 7 |

(1) Introduction
(2) Matroids
(3) The Bergman Fan
4. Degree of Bergman Fan

## Graphical matroid

Given a graph $G=(V, E)$, the collection of edges $E$ forms a matroid.


## Graphical matroid

Given a graph $G=(V, E)$, the collection of edges $E$ forms a matroid.


Independent sets $\mapsto$ forests

## Graphical matroid

Given a graph $G=(V, E)$, the collection of edges $E$ forms a matroid.


Independent sets $\mapsto$ forests
Basis $\mapsto$ Spanning forests

## Graphical matroid

Given a graph $G=(V, E)$, the collection of edges $E$ forms a matroid.


Independent sets $\mapsto$ forests
Basis $\mapsto$ Spanning forests Circuits $\mapsto$ Simple cycles

## Graphical matroid

Given a graph $G=(V, E)$, the collection of edges $E$ forms a matroid.


Independent sets $\mapsto$ forests
Basis $\mapsto$ Spanning forests
Circuits $\mapsto$ Simple cycles
Rank of set $A \subseteq E \mapsto$ size of largest spanning forest

## Flats

Maximal sets with a fixed rank.
That is, $F$ is a flat if for any $i \notin F, r_{M}(F \cup i)>r_{M}(F)$.


## Flats

Maximal sets with a fixed rank.
That is, $F$ is a flat if for any $i \notin F, r_{M}(F \cup i)>r_{M}(F)$.

$\emptyset$, matchings, complete subgraphs, $\ldots$

## Flats

Maximal sets with a fixed rank.
That is, $F$ is a flat if for any $i \notin F, r_{M}(F \cup i)>r_{M}(F)$.

$\emptyset$, matchings, complete subgraphs, $\ldots$

$$
\{\emptyset \subsetneq a \subsetneq z a \subsetneq z a f g \subsetneq z a b c d e f g h i\}
$$

## The uniform matroid

Basis of the uniform matroid $U_{n, k}=$ all sets of size $k$ in $[n]$. Any set of size $\leq k$ is independent.


Figure: Matroid $U_{7,5}$ along with a basis $B$ and independent set $I$.

## The uniform matroid

Basis of the uniform matroid $U_{n, k}=$ all sets of size $k$ in $[n]$. Any set of size $\leq k$ is independent.


Figure: Matroid $U_{7,5}$ along with a basis $B$ and independent set $I$.
Any set of size $\leq k-1$ is a flat.

## The uniform matroid

Basis of the uniform matroid $U_{n, k}=$ all sets of size $k$ in $[n]$. Any set of size $\leq k$ is independent.


Figure: Matroid $U_{7,5}$ along with a basis $B$ and independent set $I$.
Any set of size $\leq k-1$ is a flat.
Any complete flag of flats is of the form

$$
\left\{\emptyset \subsetneq\left\{v_{1}\right\} \subsetneq\left\{v_{1}, v_{2}\right\} \subsetneq \cdots \subsetneq\left\{v_{1}, \ldots, v_{k-1}\right\} \subsetneq[n]\right\}
$$

## The Bergman Fan

$\Sigma_{M}:=\left\{\vec{x} \in \mathbb{R}^{n} \mid \forall\right.$ circuits $C$ we have $\min _{c \in C} x_{c}$ is attained twice $\} \subseteq \mathbb{R}^{n} / \mathbb{1} \mathbb{R}$.

## The Bergman Fan

$\Sigma_{M}:=\left\{\vec{x} \in \mathbb{R}^{n} \mid \forall\right.$ circuits $C$ we have $\min _{c \in C} x_{c}$ is attained twice $\} \subseteq \mathbb{R}^{n} / \mathbb{1} \mathbb{R}$.


Figure: $\Sigma_{U_{3,2}}=\left\{x_{1}=x_{2} \leq x_{3}\right\} \cup\left\{x_{1}=x_{3} \leq x_{2}\right\} \cup\left\{x_{2}=x_{3} \leq x_{1}\right\}$

## The Bergman Fan

$\Sigma_{M}:=\left\{\vec{x} \in \mathbb{R}^{n} \mid \forall\right.$ circuits $C$ we have $\min _{c \in C} x_{c}$ is attained twice $\} \subseteq \mathbb{R}^{n} / \mathbb{1} \mathbb{R}$.


Figure: $\Sigma_{U_{3,2}}=\left\{x_{1}=x_{2} \leq x_{3}\right\} \cup\left\{x_{1}=x_{3} \leq x_{2}\right\} \cup\left\{x_{2}=x_{3} \leq x_{1}\right\}$

$$
\Sigma_{U_{n, k}}=\bigcup_{|I|=n-k+1}\left\{\vec{x} \in \mathbb{R}^{n} / \mathbb{R} \mathbb{\mathbb { 1 }} \mid \arg \min \vec{x} \subseteq I\right\}
$$



Figure: Two elements in the Bergman fan of the graphical matriod


Figure: Two elements in the Bergman fan of the graphical matriod

Theorem (Sturmfels and Feichner, 2004)
The Bergman Fan of a matroid decomposes into the following cones

$$
\Sigma_{M}=\bigcup_{\mathcal{F} \text { flag of flats }} \mathcal{C}_{\mathcal{F}}=\bigcup_{\substack{\mathcal{F}_{1} \subset \ldots \subset F_{k} \\ \text { flag of flats }}}\left\{x_{i} \geq x_{j} \text { whenever } i \in F_{k}, j \notin F_{k}\right\}
$$

## Problem

Can we compute the degree of the tropical variety $\Sigma_{M}$ ?

## Problem

Can we compute the degree of the tropical variety $\Sigma_{M}$ ?


Figure: A variety $X$ : Degree $=\#$ of intersections with a line in $\mathbb{C}^{n}$.

## Problem

Can we compute the degree of the tropical variety $\Sigma_{M}$ ?


Figure: A variety $X$ : Degree $=\#$ of intersections with a line in $\mathbb{C}^{n}$.

Just intersect it with a hyperplane with dimension $=n-\operatorname{dim} X$

## Problem

Can we compute the degree of the tropical variety $\Sigma_{M}$ ?


Figure: A variety $X$ : Degree $=\#$ of intersections with a line in $\mathbb{C}^{n}$.

Just intersect it with a hyperplane with dimension $=n-\operatorname{dim} X$ Note: Hyperplanes in the tropical world are Bergman fans of $U_{n, k}$.

## Example of degree computation

Consider $M$ the graphical matroid of $K_{5}$, of rank 4 (so $\operatorname{dim} \Sigma_{M}=3$ ).

## Example of degree computation

Consider $M$ the graphical matroid of $K_{5}$, of rank 4 (so $\operatorname{dim} \Sigma_{M}=3$ ). One has $\Sigma_{M} \subseteq \mathbb{R}^{10} / \mathbb{R} \mathbb{1}$, we intersect it with a hyperplane of $\operatorname{dim}=6$.

## Example of degree computation

Consider $M$ the graphical matroid of $K_{5}$, of rank 4 (so $\operatorname{dim} \Sigma_{M}=3$ ). One has $\Sigma_{M} \subseteq \mathbb{R}^{10} / \mathbb{R} \mathbb{1}$, we intersect it with a hyperplane of $\operatorname{dim}=6$.

$$
|\Sigma_{U_{10,7}}+\underbrace{\left(1,10,100,1000, \ldots, 10^{9}\right)}_{\vec{\omega}} \cap \Sigma_{M}|=?
$$



Figure: There is only one $\mathbf{x} \in \Sigma_{M}$ and $\mathbf{y} \in \Sigma_{U}$ such that $\mathbf{y}+\mathbf{w}=\mathbf{x}$. Such vector x belongs to the cone corresponding to the greedy flag of $M$.

## Activities

Fix total order in $V$, ground set of a matroid $M$, basis $B$.

- $e \in B$ is internal activity if $e=\min C^{\perp}$, where $C^{\perp} \subseteq B^{c} \cup e$ is a cocircuit (a cut of the graph).
- $e \notin B$ is external activity if $e=\min C$, where $C \subseteq B \cup i$ is a circuit.


Figure: Fix order $z<a<b<c<d<e<f<g<h<i$.

## Activities

Fix total order in $V$, ground set of a matroid $M$, basis $B$.

- $e \in B$ is internal activity if $e=\min C^{\perp}$, where $C^{\perp} \subseteq B^{c} \cup e$ is a cocircuit (a cut of the graph).
- $e \notin B$ is external activity if $e=\min C$, where $C \subseteq B \cup i$ is a circuit.


Figure: Fix order $z<a<b<c<d<e<f<g<h<i$.
$i(b e f g)=0, e(b e f g)=2, i(z a d f)=2, e(z a d f)=1$
$i(B)=0 \quad$ nbc basis. $\quad i(B)=0$ and $e(B)=1 \beta$-nbc basis

## Degree computations

Theorem (Greedy basis algorithm)

$$
\operatorname{deg}\left(\Sigma_{M}\right)=\Sigma_{M} \cap\left(\mathbf{w}+\Sigma_{U_{n, n-k-1}}\right)=1
$$

## Degree computations

Theorem (Greedy basis algorithm)

$$
\operatorname{deg}\left(\Sigma_{M}\right)=\Sigma_{M} \cap\left(\mathbf{w}+\Sigma_{U_{n, n-k-1}}\right)=1
$$

Theorem (Adiprasito, Huh, Katz, 2018)

$$
\operatorname{deg}\left(-\Sigma_{M}\right)=\left(-\Sigma_{M}\right) \cap\left(\mathbf{w}+\Sigma_{U_{n, n-k-1}}\right)=\#\{n b c \text { bases }\}
$$

## Degree computations

Theorem (Greedy basis algorithm)

$$
\operatorname{deg}\left(\Sigma_{M}\right)=\Sigma_{M} \cap\left(\mathbf{w}+\Sigma_{U_{n, n-k-1}}\right)=1
$$

Theorem (Adiprasito, Huh, Katz, 2018)

$$
\operatorname{deg}\left(-\Sigma_{M}\right)=\left(-\Sigma_{M}\right) \cap\left(\mathbf{w}+\Sigma_{U_{n, n-k-1}}\right)=\#\{n b c \text { bases }\}
$$

Theorem (Agostini, Brysiewicz, Fevola, Kühne, Sturmfels, Telen 2021 and Ardila, Eur, P 2022)

$$
\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=\left(-\Sigma_{M}\right) \cap\left(\mathbf{w}+\Sigma_{(M / 0)^{\perp}}\right)=\#\{\beta-\text { nbc bases }\}
$$

## Finding Nemo points form nbc bases

$$
\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=?
$$

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{y}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 |  | 0 |  |  | 0 |  | 0 | 0 |
| $\mathbf{y}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=?$
Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 |  | 0 |  |  | 0 |  | 0 | 0 |
| $\mathbf{y}$ | 1 |  | 100 |  |  | $10^{5}$ |  | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 |  | 0 |  |  | 0 |  | 0 | 0 |
| $\mathbf{y}$ | 1 | 1 | 100 |  | 1 | $10^{5}$ |  | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=?$
Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 |  | 0 |  | $10^{4}-1$ | 0 |  | 0 | 0 |
| $\mathbf{y}$ | 1 | 1 | 100 |  | 1 | $10^{5}$ |  | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 |  | 0 | 9 | $10^{4}-1$ | 0 |  | 0 | 0 |
| $\mathbf{y}$ | 1 | 1 | 100 |  | 1 | $10^{5}$ |  | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 | 9 | 0 | 9 | $10^{4}-1$ | 0 |  | 0 | 0 |
| $\mathbf{y}$ | 1 | 1 | 100 | $10^{3}-9$ | 1 | $10^{5}$ |  | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 | 9 | 0 | 9 | $10^{4}-1$ | 0 |  | 0 | 0 |
| $\mathbf{y}$ | 1 | 1 | 100 | $10^{3}-9$ | 1 | $10^{5}$ | $10^{3}-9$ | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Finding Nemo points form nbc bases

$\operatorname{deg}\left(\Sigma_{(M / 0)^{\perp}} \cdot-\Sigma_{M}\right)=$ ? Fix generic $\mathbf{w}=\left(10^{i-1}\right)_{i}$.
Find $\mathbf{x} \in \Sigma_{M}, \mathbf{y} \in \Sigma_{(M / 0)^{\perp}}$ such that $\mathbf{x}+\mathbf{y}=\mathbf{w}$.


Find a $\beta$-nbc basis $B=z b e g \rightarrow g|e| b d \mid z a c f h i$, corresponding $\beta$-nbc cobasis $B^{\perp}=a c d f h i \rightarrow i|h| f|g d| c \mid e b a$.

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | 0 | 9 | 0 | 9 | $10^{4}-1$ | 0 | $10^{6}-10^{3}+9$ | 0 | 0 |
| $\mathbf{y}$ | 1 | 1 | 100 | $10^{3}-9$ | 1 | $10^{5}$ | $10^{3}-9$ | $10^{7}$ | $10^{8}$ |
| $\mathbf{w}$ | 1 | 10 | 100 | $100^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ |

## Biblio

- Agostini D., Brysiewicz T., Fevola C., Kühne L., Sturmfels B., Telen S. (2021). Likelihood Degenerations. Motivation behind ML degree computations
- Adiprasito K., Huh J., Katz E. (2018). Hodge Theory for combinatorial geometries Degree computations in matroids
- Ardila F., Eur C., RP (2022) The maximum likelihood of a matroid.


## Thank you



