Pizza and 2-structures

Richard Ehrenborg

University of Kentucky

Joint work with

Sophie Morel Princeton University École Normale Supérieure de Lyon

> Margaret Readdy University of Kentucky

Thanks to

Simons Foundation

Agence Nationale de la Recherche (France)

Pizza

Pizza

Pick any point

Cut with four equidistributed lines

Pizza Theorem [Goldberg]

The alternating sum of the areas is equal to 0.

History

[1967, Upton] Problem in Mathematics Magazine.

[1968, Goldberg] Solution for 2k equidistributed lines $k \ge 2$.

[1994, Carter and Wagon] Dissection proof for k = 2.

[1999, Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn and Hirschhorn] p people sharing pizza.

[2009, Mabry and Deiermann] Fails for an odd number of equidistributed lines.

[2012, Frederickson] Dissection proofs for $k \geq 2$.

Classical proof

B_2 or not B_2 : that is the question

William Shakespeare, Hamlet, Act III

V real vector space of dimension n with inner product (\cdot, \cdot)

Index set E finite set of unit vectors such that $E \cap (-E) = \emptyset$

Hyperplane
$$H_e = \{v \in V : (v, e) = 0\}$$

Hyperplane arrangement $\mathcal{H} = \{H_e\}_{e \in E}$

A chamber T is a connected component of $V - \bigcup_{e \in E} H_e$

 ${\mathscr T}$ set of all chambers

Pick T_0 base chamber

Sign $(-1)^T = (-1)^k$ where k is the number of hyperplanes separating T from T_0

Pizza quantity

\mathcal{H} is a *Coxeter arrangement* if

- the group W generated by the orthogonal reflections in the hyperplanes of \mathcal{H} is finite and
- the arrangement is closed under all such reflections

 \mathcal{H}_i arrangement in V_i

 $\mathcal{H}_1 \times \mathcal{H}_2$ arrangement in $V_1 \times V_2$ with hyperplanes

 $\{H \times V_2 : H \in \mathcal{H}_1\} \cup \{V_1 \times H : H \in \mathcal{H}_2\}$

 \mathcal{H}_1 and \mathcal{H}_2 Coxeter $\Longrightarrow \mathcal{H}_1 \times \mathcal{H}_2$ Coxeter

Type A_n

$$V = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1 + x_2 + \dots + x_{n+1} = 0\}$$
$$\mathcal{H} = \{x_i = x_j : 1 \le i < j \le n+1\}$$

Symmetries of the n-dimensional simplex

$$A_1^n = A_1 \times A_1 \times \dots \times A_1$$
$$= \{x_i = 0 : 1 \le i \le n\}$$

$$\underline{\text{Type } B_n} \text{ (and type } C_n) \qquad n \ge 2$$

$$V = \mathbb{R}^n$$

$$\mathcal{H} = \{x_i = 0 : 1 \le i \le n\} \cup \{x_i = \pm x_j : 1 \le i < j \le n\}$$
Symmetries of the *n*-dimensional cube and crosspolytope
$$\underline{\text{Type } D_n} \qquad n \ge 4$$

$$V = \mathbb{R}^n$$

$$\mathcal{H} = \{x_i = \pm x_j : 1 \le i < j \le n\}$$

$$D_2 = A_1^2 \qquad D_3 = A_3$$

 $\underline{\text{Type } F_4} \\
 V = \mathbb{R}^4 \\
 \mathcal{H} = \{ x_i = 0 : 1 \le i \le 4 \} \\
 \cup \{ x_i = \pm x_j : 1 \le i < j \le 4 \} \\
 \cup \{ x_1 \pm x_2 \pm x_3 \pm x_4 = 0 \}$

 $F_4 =$ symmetries of the 24-cell

$$\frac{\text{Type } G_2}{G_2 = I_2(6)}$$

Type H_3 and H_4

 $H_3 =$ symmetries of the dodecahedron and the icosahedron

 $H_4 =$ symmetries of the 120-cell and 600-cell

Do not arise from crystallographic root systems

Type $I_2(k)$ $k \ge 2$ $I_2(k) =$ symmetries of the k-gon $I_2(k)$ consists of k lines

 $I_2(2) = A_1^2$ $I_2(3) = A_2$ $I_2(4) = B_2$

$$\mathbb{B}(a,R) = \{ x \in V : \|x-a\| \le R \}.$$

Theorem [Goldberg] Let \mathcal{H} be the dihedral arrangement $I_2(2k)$ in \mathbb{R}^2 for $k \geq 2$. For every point $a \in \mathbb{R}^2$ such that $0 \in \mathbb{B}(a, R)$, the pizza quantity for the disc $\mathbb{B}(a, R)$ vanishes:

 $P(\mathcal{H}, \mathbb{B}(a, R)) = 0.$

A set $K \subseteq V$ is stable under the group W if

$$w(K) = K$$

for all $w \in W$

Theorem. Let \mathcal{H} be a Coxeter arrangement on V such that the negative of the identity map $-\operatorname{id}_V$ belongs to the Coxeter group W. Assume that \mathcal{H} is not of type A_1^n . Let K be a set stable by W. Let a be a point in V such that K contains the convex hull of $\{w(a) : w \in W\}$. Then the pizza quantity of K + a vanishes, that is,

$$P(\mathcal{H}, K+a) = 0.$$

History continued

[2012, Frederickson] Type $A_1 \times I_2(2k)$ for $k \ge 2$ for balls.

[2022, Brailov] Independently proved the theorem for type B_n for balls.

$$-\operatorname{id}_V \in W$$

\mathcal{H} is a product arrangement where the factors are from the types A_1 , B_n for $n \geq 2$, D_{2m} for $m \geq 2$, E_7 , E_8 , F_4 , H_3 , H_4 and $I_2(2k)$ for $k \geq 2$.

Missing:
$$A_n$$
 for $n \ge 2$,
 D_{2m+1} for $m \ge 2$,
 E_6 ,
 $I_2(2k+1)$ for $k \ge 2$.

What happens with A_1^n ?

Cut also with $x_i = 2a_i$.

$$P(A_1^n, K + (a_1, \dots, a_n)) = 2^n \cdot a_1 \cdots a_n$$

Proof:

$$\frac{d}{dt}P(\mathcal{H}, K+t \cdot v) = ?$$

[Ira Gessel, October 28, 2006]

Is Analysis Necessary?

Photo by Michael Gessel

The best way to show that the two sets

$$\bigcup_{\substack{T\\(-1)^T=1}} ((K+a)\cap T) \quad \text{and} \quad \bigcup_{\substack{T\\(-1)^T=-1}} ((K+a)\cap T)$$

have the same volume, is a dissection proof.

Definition. Let $\mathcal{C}(V)$ be a *nice* family of subsets of V, satisfying:

(i) closed by finite intersections,

(ii) affine isometries,

(iii) if $C \in \mathcal{C}(V)$ and D is a closed affine half-space of V, then $C \cap D \in \mathcal{C}(V)$ and

(iv) closed with respect to Cartesian products, that is, if $C_i \in \mathcal{C}(V_i)$ for i = 1, 2 then $C_1 \times C_2 \in \mathcal{C}(V_1 \times V_2)$.

Definition. We denote by K(V) the quotient of the free abelian group $\bigoplus_{C \in \mathcal{C}(V)} \mathbb{Z}[C]$ on $\mathcal{C}(V)$ by the relations:

 $-[\varnothing] = 0;$

- $-[C \cup C'] + [C \cap C'] = [C] + [C'] \text{ for all } C, C' \in \mathcal{C}(V)$ such that $C \cup C' \in \mathcal{C}(V)$;
- -[g(C)] = [C] for $C \in \mathcal{C}(V)$ and affine isometry g of V.

For $C \in \mathcal{C}(V)$ we still denote the image of C in K(V) by [C].

K pizza
 ${\mathcal H}$ hyperplane arrangement
 Define the *abstract pizza quantity* to be

$$P(\mathcal{H}, K) = \sum_{T \in \mathscr{T}(\mathcal{H})} (-1)^T \cdot [T \cap K].$$

The Abstract Pizza Theorem.

Let \mathcal{H} be a Coxeter hyperplane arrangement with Coxeter group W in an *n*-dimensional space V such that $-\operatorname{id}_V \in W$. Assume that \mathcal{H} does not have type A_1^n . Let $K \in \mathcal{C}(V)$ and $a \in V$. Suppose that K is stable by the group W and contains the convex hull of the set $\{w(a) : w \in W\}$. Then the abstract pizza quantity vanishes:

$$P(\mathcal{H}, K+a) = 0,$$

that is, this identity holds in K(V).

Let s_{β} be the orthogonal reflection in the hyperplane H_{β} .

Definition. A subset Φ of V is a *pseudo-root system* if:

(a) Φ is a finite set of unit vectors; (b) for all $\alpha, \beta \in \Phi$, we have $s_{\beta}(\alpha) \in \Phi$.

Note that condition (b) implies that $\alpha \in \Phi$ implies $-\alpha \in \Phi$ by setting $\alpha = \beta$. Elements of Φ are called *pseudo-roots*.

$$\Phi = \Phi^+ \sqcup \Phi^-$$

 Φ^+ = positive pseudo-roots, Φ^- = negative pseudo-roots. **Definition [Herb]**. Let Φ be a pseudo-root system with Coxeter group W. A 2-structure for Φ is a subset φ of Φ satisfying the following properties:

(a) The subset φ is a disjoint union

$$\varphi = \varphi_1 \sqcup \varphi_2 \sqcup \cdots \sqcup \varphi_r,$$

where the φ_i are pairwise orthogonal subsets of φ and each of them is an irreducible pseudo-root system of type A_1 , B_2 or $I_2(2^k)$ for $k \ge 3$.

(b) Let $\varphi^+ = \varphi \cap \Phi^+$. If w is an element in W such that $w(\varphi^+) = \varphi^+$ then the sign of w is positive, that is, $(-1)^w = 1$.

History continued

[2000, Herb] Introduced 2-structures to study the characters of discrete series representations.

Let $\mathcal{T}(\Phi)$ denote the set of 2-structures for Φ .

The group W acts transitively on $\mathcal{T}(\Phi)$.

Hence all 2-structures of Φ have the same type.

Type of Φ	Type of φ	Type of Φ	Type of φ	
A_{2m}	A_1^m	E_7	A_1^7	
A_{2m+1}	A_1^{m+1}	E_8	A_{1}^{8}	
B_{2m}	B_2^m	F_4	B_2^2	
B_{2m+1}	$B_2^m \times A_1$	H_3	A_{1}^{3}	
D_{2m}	A_1^{2m}	H_4	A_1^4	
D_{2m+1}	A_1^{2m}	$I_2(r)$	A_1	(r odd)
E_6	A_1^4	$I_2(r \cdot 2^k)$	$I_2(2^k)$	$(k \ge 1)$

 Φ pseudo-root system φ 2-structure of Φ

$$\operatorname{rank}(\Phi) = \operatorname{rank}(\varphi) \quad \iff \quad -\operatorname{id} \in W$$

Each 2-structure has a sign, that is, $\epsilon : \mathcal{T}(\Phi) \longrightarrow \{\pm 1\}.$

Properties:

(i)

$$\sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi) = 1$$

(ii) For $w \in W$ such that $w(\varphi \cap \Phi^+) \subseteq \Phi^+$. Then the following identity holds:

$$\epsilon(w(\varphi)) = (-1)^w \cdot \epsilon(\varphi).$$

Theorem. Let $\Phi \subset V$ be a normalized pseudo-root system. Choose a positive system $\Phi^+ \subset \Phi$ and let \mathcal{H} be the hyperplane arrangement $(H_{\alpha})_{\alpha \in \Phi^+}$ on V with base chamber corresponding to Φ^+ . For every 2-structure $\varphi \in \mathcal{T}(\Phi)$, let \mathcal{H}_{φ} be the hyperplane arrangement $(H_{\alpha})_{\alpha \in \varphi^+}$ with the base chamber containing the base chamber of \mathcal{H} . Then we have

$$P(\mathcal{H}, K) = \sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi) \cdot P(\mathcal{H}_{\varphi}, K).$$

Extremely brief sketch of the proof of the Abstract Pizza Theorem:

<u>Case 1:</u> The 2-structure φ contains a factor of B_2 or $I_2(2^k)$. Then we prove

$$P(\mathcal{H}_{\varphi}, K) = 0$$

by reducing it to 2-dimensions and (carefully) moving pieces around.

History continued

[1807, Wallace], [1833, Bolyai], [1835, Gerwien]

Two polygons are scissors-congruent if and only if they have the same area. <u>Case 2:</u> The 2-structure φ has type A_1^n .

$$P(\mathcal{H}_{\varphi}, K+a) = \left[\prod_{i=1}^{n} (0, 2(a, e_i)e_i]\right],$$

where $\varphi^+ = \{e_1, \dots, e_n\}.$

Thus $P(\mathcal{H}, K + a)$ is a signed sum of parallelotopes.

This sum is zero by an extension of the Wallace–Bolyai–Gerwien theorem to parallelotopes. $\hfill \Box$

Let V_i denote the *i*th mixed volume.

Corollary. With the same assumptions as in the abstract pizza theorem:

$$\sum_{T \in \mathscr{T}} (-1)^T V_i((K+a) \cap T) = 0.$$

Other pizza results and open problems.

Returning to classical pizza quantity, that is, volume.

Also returning to balls $\mathbb{B}(a, R) = \{x \in V : ||x - a|| \le R\}.$

Theorem. Let $\mathcal{H} = \{H_e\}_{e \in E}$ be a Coxeter arrangement in an *n*-dimensional space *V*. Assume that $|\mathcal{H}| \equiv n \mod 2$, $|\mathcal{H}| > n \mod 0 \in \mathbb{B}(a, R)$. Then

 $P(\mathcal{H}, \mathbb{B}(a, R)) = 0.$

Returning to classical pizza quantity, that is, volume.

Also returning to balls $\mathbb{B}(a, R) = \{x \in V : ||x - a|| \le R\}.$

Theorem. Let $\mathcal{H} = \{H_e\}_{e \in E}$ be a Coxeter arrangement in an *n*-dimensional space *V*. Assume that $|\mathcal{H}| \equiv n \mod 2$, $|\mathcal{H}| > n \mod 0 \in \mathbb{B}(a, R)$. Then

 $P(\mathcal{H}, \mathbb{B}(a, R)) = 0.$

SURGEON GENERAL'S WARNING:

This result contains

CALCULUS.

Note: The $-\operatorname{id}_V \in W$ condition implies $|\mathcal{H}| \equiv n \mod 2$.

This result also holds for types A_n where $n \equiv 0, 1 \mod 4$ and E_6 .

Open problem: Find a dissection proof.

Open problem:

$$-A_n$$
 where $n \ge 3, n \equiv 2, 3 \mod 4$

$$-D_n$$
 where $n \ge 5$, $n \equiv 1 \mod 2$

[Mabry and Deiermann] For \mathcal{H} of type $I_2(m)$, $m \geq 3$, m odd, $0 \in \mathbb{B}(a, R)$ and $a \in T$

$$(-1)^{(m+1)/2} \cdot (-1)^T \cdot P(\mathcal{H}, \mathbb{B}(a, R)) > 0$$

$[Hirschhorn^5]$

p people sharing a pizza. Dihedral arrangement of type $I_2(2p)$ Number of slices 4pEvery person takes every pth slice Distribution is fair

Open problem:

 $p \geq 3$ people in $d \geq 3$ dimensions

Which arrangements guarantee a fair division of $\mathbb{B}(a, R)$?

One solution for p = d = 4.

$$\mathcal{H}_1 = \{x_i = \pm x_j : 1 \le i < j \le 4\}$$
$$\mathcal{H}_2 = \{x_i = 0 : 1 \le i \le 4\} \cup \{x_1 \pm x_2 \pm x_3 \pm x_4 = 0\}$$
Both \mathcal{H}_1 and \mathcal{H}_2 have type D_4 .
The type of $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$ is F_4 .

T chamber of \mathcal{H} . Let T_i be the unique chamber in \mathcal{H}_i containing T.

$$(-1)^T = (-1)^{T_1} \cdot (-1)^{T_2}$$

For T a chamber of \mathcal{H} give the slice $T \cap K$ to person $((-1)^{T_1}, (-1)^{T_2})$

Let V_{s_1,s_2} be the amount person (s_1, s_2) receives.

 \mathcal{H}_1 satisfies pizza theorem $\implies V_{1,1} + V_{1,-1} = 1/2$ pizza

 \mathcal{H}_2 satisfies pizza theorem $\implies V_{1,1} + V_{-1,1} = 1/2$ pizza

 \mathcal{H} satisfies pizza theorem $\implies V_{1,1} + V_{-1,-1} = 1/2$ pizza

$$\implies V_{1,1} = V_{1,-1} = V_{-1,1} = V_{-1,-1} = 1/4$$
 pizza

Thank you!

Bon appétit!

References:

Richard Ehrenborg, Sophie Morel and Margaret Readdy, A generalization of combinatorial identities for stable discrete series constants, *The Journal of Combinatorial Algebra* **6** (2022), 109–183.

Richard Ehrenborg, Sophie Morel and Margaret Readdy, Sharing pizza in *n* dimensions, *Transactions of the American Mathematical Society* **375** (2022), 5829–5857.

Richard Ehrenborg, Sophie Morel and Margaret Readdy, Pizza and 2-structures, preprint 2021. https://arxiv.org/abs/2105.07288

(Just Google "Pizza Ehrenborg")