Pizza and 2-structures

Richard Ehrenborg
University of Kentucky

Joint work with

Sophie Morel
 Princeton University
 École Normale Supérieure de Lyon

Margaret Readdy
University of Kentucky

Thanks to

Simons Foundation

Agence Nationale de la Recherche (France)

Pizza

Pizza

Pick any point

Cut with four equidistributed lines

Pizza Theorem [Goldberg]
The alternating sum of the areas is equal to 0 .

History
[1967, Upton] Problem in Mathematics Magazine.
[1968, Goldberg] Solution for $2 k$ equidistributed lines $k \geq 2$.
[1994, Carter and Wagon] Dissection proof for $k=2$.
[1999, Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn and Hirschhorn] p people sharing pizza.
[2009, Mabry and Deiermann] Fails for an odd number of equidistributed lines.
[2012, Frederickson] Dissection proofs for $k \geq 2$.

Classical proof

B_{2} or not B_{2} : that is the question

William Shakespeare, Hamlet, Act III
V real vector space of dimension n with inner product (\cdot, \cdot)

Index set E finite set of unit vectors such that $E \cap(-E)=\emptyset$

Hyperplane $H_{e}=\{v \in V:(v, e)=0\}$

Hyperplane arrangement $\mathcal{H}=\left\{H_{e}\right\}_{e \in E}$

A chamber T is a connected component of $V-\bigcup_{e \in E} H_{e}$
\mathscr{T} set of all chambers

Pick T_{0} base chamber
$\operatorname{Sign}(-1)^{T}=(-1)^{k}$ where k is the number of hyperplanes separating T from T_{0}

Pizza quantity

$$
P(\mathcal{H}, K)=\sum_{T \in \mathscr{T}}(-1)^{T} \operatorname{Vol}(K \cap T)
$$

\mathcal{H} is a Coxeter arrangement if

- the group W generated by the orthogonal reflections in the hyperplanes of \mathcal{H} is finite and
- the arrangement is closed under all such reflections

\mathcal{H}_{i} arrangement in V_{i}

$\mathcal{H}_{1} \times \mathcal{H}_{2}$ arrangement in $V_{1} \times V_{2}$ with hyperplanes

$$
\left\{H \times V_{2}: H \in \mathcal{H}_{1}\right\} \cup\left\{V_{1} \times H: H \in \mathcal{H}_{2}\right\}
$$

\mathcal{H}_{1} and \mathcal{H}_{2} Coxeter $\Longrightarrow \mathcal{H}_{1} \times \mathcal{H}_{2}$ Coxeter

Type A_{n}
$V=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}+x_{2}+\cdots+x_{n+1}=0\right\}$ $\mathcal{H}=\left\{x_{i}=x_{j}: 1 \leq i<j \leq n+1\right\}$

Symmetries of the n-dimensional simplex

$$
\begin{aligned}
& A_{1} \quad \bullet \\
& \begin{aligned}
A_{1}^{n} & =A_{1} \times A_{1} \times \cdots \times A_{1} \\
& =\left\{x_{i}=0: 1 \leq i \leq n\right\}
\end{aligned}
\end{aligned}
$$

$\underline{\text { Type } B_{n}}\left(\right.$ and type $\left.C_{n}\right) \quad n \geq 2$

$$
V=\mathbb{R}^{n}
$$

$$
\mathcal{H}=\left\{x_{i}=0: 1 \leq i \leq n\right\} \cup\left\{x_{i}= \pm x_{j}: 1 \leq i<j \leq n\right\}
$$

Symmetries of the n-dimensional cube and crosspolytope

$$
\text { Type } D_{n} \quad n \geq 4
$$

$$
V=\mathbb{R}^{n}
$$

$$
\mathcal{H}=\left\{x_{i}= \pm x_{j}: 1 \leq i<j \leq n\right\}
$$

$$
D_{2}=A_{1}^{2} \quad D_{3}=A_{3}
$$

Type E_{6}, E_{7} and E_{8}

Type F_{4}

$$
\begin{aligned}
V= & \mathbb{R}^{4} \\
\mathcal{H}= & \left\{x_{i}=0: 1 \leq i \leq 4\right\} \\
& \cup\left\{x_{i}= \pm x_{j}: 1 \leq i<j \leq 4\right\} \\
& \cup\left\{x_{1} \pm x_{2} \pm x_{3} \pm x_{4}=0\right\}
\end{aligned}
$$

$F_{4}=$ symmetries of the 24 -cell
$\frac{\text { Type } G_{2}}{G_{2}=I_{2}(6)}$

Type H_{3} and H_{4}
$H_{3}=$ symmetries of the dodecahedron and the icosahedron
$H_{4}=$ symmetries of the 120 -cell and 600-cell
Do not arise from crystallographic root systems

Type $I_{2}(k) \quad k \geq 2$
$I_{2}(k)=$ symmetries of the k-gon
$I_{2}(k)$ consists of k lines

$$
I_{2}(2)=A_{1}^{2} \quad I_{2}(3)=A_{2} \quad I_{2}(4)=B_{2}
$$

$$
\mathbb{B}(a, R)=\{x \in V:\|x-a\| \leq R\} .
$$

Theorem [Goldberg] Let \mathcal{H} be the dihedral arrangement $I_{2}(2 k)$ in \mathbb{R}^{2} for $k \geq 2$. For every point $a \in \mathbb{R}^{2}$ such that $0 \in \mathbb{B}(a, R)$, the pizza quantity for the $\operatorname{disc} \mathbb{B}(a, R)$ vanishes:

$$
P(\mathcal{H}, \mathbb{B}(a, R))=0
$$

A set $K \subseteq V$ is stable under the group W if

$$
w(K)=K
$$

for all $w \in W$

Theorem. Let \mathcal{H} be a Coxeter arrangement on V such that the negative of the identity map $-\mathrm{id}_{V}$ belongs to the Coxeter group W. Assume that \mathcal{H} is not of type A_{1}^{n}. Let K be a set stable by W. Let a be a point in V such that K contains the convex hull of $\{w(a): w \in W\}$. Then the pizza quantity of $K+a$ vanishes, that is,

$$
P(\mathcal{H}, K+a)=0
$$

History continued
[2012, Frederickson] Type $A_{1} \times I_{2}(2 k)$ for $k \geq 2$ for balls.
[2022, Brailov] Independently proved the theorem for type B_{n} for balls.

$-\operatorname{id}_{V} \in W$

\mathcal{H} is a product arrangement where the factors are from the types A_{1}, B_{n} for $n \geq 2, D_{2 m}$ for $m \geq 2, E_{7}, E_{8}, F_{4}, H_{3}$, H_{4} and $I_{2}(2 k)$ for $k \geq 2$.

Missing: A_{n} for $n \geq 2$,

$$
\begin{aligned}
& D_{2 m+1} \text { for } m \geq 2, \\
& E_{6}, \\
& I_{2}(2 k+1) \text { for } k \geq 2 .
\end{aligned}
$$

What happens with A_{1}^{n} ?

Cut also with $x_{i}=2 a_{i}$.

$$
P\left(A_{1}^{n}, K+\left(a_{1}, \ldots, a_{n}\right)\right)=2^{n} \cdot a_{1} \cdots a_{n}
$$

Proof:

$$
\frac{d}{d t} P(\mathcal{H}, K+t \cdot v)=?
$$

[Ira Gessel, October 28, 2006]

Is Analysis Necessary?

Photo by Michael Gessel

The best way to show that the two sets

$$
\bigcup_{\substack{T \\(-1)^{T}=1}}((K+a) \cap T) \quad \text { and } \quad \bigcup_{\substack{T \\(-1)^{T}=-1}}((K+a) \cap T)
$$

have the same volume, is a dissection proof.

Definition. Let $\mathcal{C}(V)$ be a nice family of subsets of V, satisfying:
(i) closed by finite intersections,
(ii) affine isometries,
(iii) if $C \in \mathcal{C}(V)$ and D is a closed affine half-space of V, then $C \cap D \in \mathcal{C}(V)$ and
(iv) closed with respect to Cartesian products, that is, if $C_{i} \in \mathcal{C}\left(V_{i}\right)$ for $i=1,2$ then $C_{1} \times C_{2} \in \mathcal{C}\left(V_{1} \times V_{2}\right)$.

Definition. We denote by $K(V)$ the quotient of the free abelian group $\bigoplus_{C \in \mathcal{C}(V)} \mathbb{Z}[C]$ on $\mathcal{C}(V)$ by the relations:

$$
\begin{aligned}
- & {[\varnothing]=0 } \\
- & {\left[C \cup C^{\prime}\right]+\left[C \cap C^{\prime}\right]=[C]+\left[C^{\prime}\right] \text { for all } C, C^{\prime} \in \mathcal{C}(V) } \\
& \text { such that } C \cup C^{\prime} \in \mathcal{C}(V) ; \\
- & {[g(C)]=[C] \text { for } C \in \mathcal{C}(V) \text { and affine isometry } g \text { of } V . }
\end{aligned}
$$

For $C \in \mathcal{C}(V)$ we still denote the image of C in $K(V)$ by $[C]$.
K pizza
\mathcal{H} hyperplane arrangement
Define the abstract pizza quantity to be

$$
P(\mathcal{H}, K)=\sum_{T \in \mathscr{T}(\mathcal{H})}(-1)^{T} \cdot[T \cap K] .
$$

The Abstract Pizza Theorem.

Let \mathcal{H} be a Coxeter hyperplane arrangement with Coxeter group W in an n-dimensional space V such that $-\mathrm{id}_{V} \in$ W. Assume that \mathcal{H} does not have type A_{1}^{n}. Let $K \in \mathcal{C}(V)$ and $a \in V$. Suppose that K is stable by the group W and contains the convex hull of the set $\{w(a): w \in W\}$. Then the abstract pizza quantity vanishes:

$$
P(\mathcal{H}, K+a)=0
$$

that is, this identity holds in $K(V)$.

Let s_{β} be the orthogonal reflection in the hyperplane H_{β}.

Definition. A subset Φ of V is a pseudo-root system if:
(a) Φ is a finite set of unit vectors;
(b) for all $\alpha, \beta \in \Phi$, we have $s_{\beta}(\alpha) \in \Phi$.

Note that condition (b) implies that $\alpha \in \Phi$ implies $-\alpha \in \Phi$ by setting $\alpha=\beta$. Elements of Φ are called pseudo-roots.

$$
\Phi=\Phi^{+} \sqcup \Phi^{-}
$$

$\Phi^{+}=$positive pseudo-roots,
$\Phi^{-}=$negative pseudo-roots.

Definition [Herb]. Let Φ be a pseudo-root system with Coxeter group W. A 2-structure for Φ is a subset φ of Φ satisfying the following properties:
(a) The subset φ is a disjoint union

$$
\varphi=\varphi_{1} \sqcup \varphi_{2} \sqcup \cdots \sqcup \varphi_{r},
$$

where the φ_{i} are pairwise orthogonal subsets of φ and each of them is an irreducible pseudo-root system of type A_{1}, B_{2} or $I_{2}\left(2^{k}\right)$ for $k \geq 3$.
(b) Let $\varphi^{+}=\varphi \cap \Phi^{+}$. If w is an element in W such that $w\left(\varphi^{+}\right)=\varphi^{+}$then the sign of w is positive, that is, $(-1)^{w}=1$.

History continued
[2000, Herb] Introduced 2-structures to study the characters of discrete series representations.

Let $\mathcal{T}(\Phi)$ denote the set of 2-structures for Φ.

The group W acts transitively on $\mathcal{T}(\Phi)$.

Hence all 2-structures of Φ have the same type.

Type of Φ	Type of φ	Type of Φ	Type of φ	
$A_{2 m}$	A_{1}^{m}	E_{7}	A_{1}^{7}	
$A_{2 m+1}$	A_{1}^{m+1}	E_{8}	A_{1}^{8}	
$B_{2 m}$	B_{2}^{m}	F_{4}	B_{2}^{2}	
$B_{2 m+1}$	$B_{2}^{m} \times A_{1}$	H_{3}	A_{1}^{3}	
$D_{2 m}$	$A_{1}^{2 m}$	H_{4}	A_{1}^{4}	
$D_{2 m+1}$	$A_{1}^{2 m}$	$I_{2}(r)$	A_{1}	$(r$ odd $)$
E_{6}	A_{1}^{4}	$I_{2}\left(r \cdot 2^{k}\right)$	$I_{2}\left(2^{k}\right)$	$(k \geq 1)$

Φ pseudo-root system
φ 2-structure of Φ

$$
\operatorname{rank}(\Phi)=\operatorname{rank}(\varphi) \quad \Longleftrightarrow \quad-\mathrm{id} \in W
$$

Each 2-structure has a sign, that is,

$$
\epsilon: \mathcal{T}(\Phi) \longrightarrow\{ \pm 1\}
$$

Properties:
(i)

$$
\sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi)=1
$$

(ii) For $w \in W$ such that $w\left(\varphi \cap \Phi^{+}\right) \subseteq \Phi^{+}$. Then the following identity holds:

$$
\epsilon(w(\varphi))=(-1)^{w} \cdot \epsilon(\varphi)
$$

Theorem. Let $\Phi \subset V$ be a normalized pseudo-root system. Choose a positive system $\Phi^{+} \subset \Phi$ and let \mathcal{H} be the hyperplane arrangement $\left(H_{\alpha}\right)_{\alpha \in \Phi^{+}}$on V with base chamber corresponding to Φ^{+}. For every 2-structure $\varphi \in \mathcal{T}(\Phi)$, let \mathcal{H}_{φ} be the hyperplane arrangement $\left(H_{\alpha}\right)_{\alpha \in \varphi^{+}}$with the base chamber containing the base chamber of \mathcal{H}. Then we have

$$
P(\mathcal{H}, K)=\sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi) \cdot P\left(\mathcal{H}_{\varphi}, K\right)
$$

Extremely brief sketch of the proof of the Abstract Pizza Theorem:

Case 1: The 2-structure φ contains a factor of B_{2} or $I_{2}\left(2^{k}\right)$.
Then we prove

$$
P\left(\mathcal{H}_{\varphi}, K\right)=0
$$

by reducing it to 2-dimensions and (carefully) moving pieces around.

History continued
[1807, Wallace], [1833, Bolyai], [1835, Gerwien]
Two polygons are scissors-congruent if and only if they have the same area.

Case 2: The 2-structure φ has type A_{1}^{n}.

$$
P\left(\mathcal{H}_{\varphi}, K+a\right)=\left[\prod_{i=1}^{n}\left(0,2\left(a, e_{i}\right) e_{i}\right]\right],
$$

where $\varphi^{+}=\left\{e_{1}, \ldots, e_{n}\right\}$.

Thus $P(\mathcal{H}, K+a)$ is a signed sum of parallelotopes.

This sum is zero by an extension of the Wallace-BolyaiGerwien theorem to parallelotopes.

Let V_{i} denote the i th mixed volume.

Corollary. With the same assumptions as in the abstract pizza theorem:

$$
\sum_{T \in \mathscr{T}}(-1)^{T} V_{i}((K+a) \cap T)=0
$$

Other pizza results and open problems.

Returning to classical pizza quantity, that is, volume.
Also returning to balls $\mathbb{B}(a, R)=\{x \in V:\|x-a\| \leq R\}$.
Theorem. Let $\mathcal{H}=\left\{H_{e}\right\}_{e \in E}$ be a Coxeter arrangement in an n-dimensional space V. Assume that $|\mathcal{H}| \equiv n \bmod 2$, $|\mathcal{H}|>n$ and $0 \in \mathbb{B}(a, R)$. Then

$$
P(\mathcal{H}, \mathbb{B}(a, R))=0
$$

Returning to classical pizza quantity, that is, volume.
Also returning to balls $\mathbb{B}(a, R)=\{x \in V:\|x-a\| \leq R\}$.

Theorem. Let $\mathcal{H}=\left\{H_{e}\right\}_{e \in E}$ be a Coxeter arrangement in an n-dimensional space V. Assume that $|\mathcal{H}| \equiv n \bmod 2$, $|\mathcal{H}|>n$ and $0 \in \mathbb{B}(a, R)$. Then

$$
P(\mathcal{H}, \mathbb{B}(a, R))=0
$$

SURGEON GENERAL'S WARNING:

This result contains
CALCULUS.

Note: The $-\mathrm{id}_{V} \in W$ condition implies $|\mathcal{H}| \equiv n \bmod 2$.
This result also holds for types A_{n} where $n \equiv 0,1 \bmod 4$ and E_{6}.

Open problem: Find a dissection proof.

Open problem:

- A_{n} where $n \geq 3, n \equiv 2,3 \bmod 4$
$-D_{n}$ where $n \geq 5, n \equiv 1 \bmod 2$
[Mabry and Deiermann]
For \mathcal{H} of type $I_{2}(m), m \geq 3, m$ odd, $0 \in \mathbb{B}(a, R)$ and $a \in T$

$$
(-1)^{(m+1) / 2} \cdot(-1)^{T} \cdot P(\mathcal{H}, \mathbb{B}(a, R))>0
$$

$$
m \equiv 3 \bmod 4
$$

$$
m \equiv 1 \bmod 4
$$

[Hirschhorn ${ }^{5}$]

p people sharing a pizza.
Dihedral arrangement of type $I_{2}(2 p)$
Number of slices $4 p$
Every person takes every p th slice
Distribution is fair

Open problem:

$p \geq 3$ people in $d \geq 3$ dimensions

Which arrangements guarantee a fair division of $\mathbb{B}(a, R)$?

One solution for $p=d=4$.

$$
\begin{aligned}
& \mathcal{H}_{1}=\left\{x_{i}= \pm x_{j}: 1 \leq i<j \leq 4\right\} \\
& \mathcal{H}_{2}=\left\{x_{i}=0: 1 \leq i \leq 4\right\} \cup\left\{x_{1} \pm x_{2} \pm x_{3} \pm x_{4}=0\right\}
\end{aligned}
$$

Both \mathcal{H}_{1} and \mathcal{H}_{2} have type D_{4}.
The type of $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$ is F_{4}.
T chamber of \mathcal{H}.
Let T_{i} be the unique chamber in \mathcal{H}_{i} containing T.

$$
(-1)^{T}=(-1)^{T_{1}} \cdot(-1)^{T_{2}}
$$

For T a chamber of \mathcal{H} give the slice $T \cap K$ to person $\left((-1)^{T_{1}},(-1)^{T_{2}}\right)$
Let $V_{s_{1}, s_{2}}$ be the amount person $\left(s_{1}, s_{2}\right)$ receives.
\mathcal{H}_{1} satisfies pizza theorem $\Longrightarrow V_{1,1}+V_{1,-1}=1 / 2$ pizza
\mathcal{H}_{2} satisfies pizza theorem $\Longrightarrow V_{1,1}+V_{-1,1}=1 / 2$ pizza
\mathcal{H} satisfies pizza theorem $\Longrightarrow V_{1,1}+V_{-1,-1}=1 / 2$ pizza
$\Longrightarrow V_{1,1}=V_{1,-1}=V_{-1,1}=V_{-1,-1}=1 / 4$ pizza

Thank you!

Bon appétit!

References:

Richard Ehrenborg, Sophie Morel and Margaret Readdy, A generalization of combinatorial identities for stable discrete series constants, The Journal of Combinatorial Algebra 6 (2022), 109-183.

Richard Ehrenborg, Sophie Morel and Margaret Readdy, Sharing pizza in n dimensions, Transactions of the American Mathematical Society 375 (2022), 5829-5857.

Richard Ehrenborg, Sophie Morel and Margaret Readdy, Pizza and 2-structures, preprint 2021.
https://arxiv.org/abs/2105.07288
(Just Google "Pizza Ehrenborg")

