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Pizza



Pizza



Pick any point



Cut with four equidistributed lines



Pizza Theorem [Goldberg]
The alternating sum of the areas is equal to 0.
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History

[1967, Upton] Problem in Mathematics Magazine.

[1968, Goldberg] Solution for 2k equidistributed lines k ≥ 2.

[1994, Carter and Wagon] Dissection proof for k = 2.

[1999, Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn and
Hirschhorn] p people sharing pizza.

[2009, Mabry and Deiermann] Fails for an odd number of
equidistributed lines.

[2012, Frederickson] Dissection proofs for k ≥ 2.



Classical proof
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B2 or not B2: that is the question

William Shakespeare, Hamlet, Act III



V real vector space of dimension n with inner product (·, ·)

Index setE finite set of unit vectors such thatE∩(−E) = ∅

Hyperplane He = {v ∈ V : (v, e) = 0}

Hyperplane arrangement H = {He}e∈E



A chamber T is a connected component of V −
⋃
e∈E

He

T set of all chambers

Pick T0 base chamber

Sign (−1)T = (−1)k where k is the number of hyperplanes
separating T from T0

T0++
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Pizza quantity

P (H, K) =
∑
T∈T

(−1)T Vol(K ∩ T )
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H is a Coxeter arrangement if

– the group W generated by the orthogonal reflections in
the hyperplanes of H is finite and

– the arrangement is closed under all such reflections
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Hi arrangement in Vi

H1 ×H2 arrangement in V1 × V2 with hyperplanes

{H × V2 : H ∈ H1} ∪ {V1 ×H : H ∈ H2}

H1 and H2 Coxeter =⇒ H1 ×H2 Coxeter



Type An

V = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x1 + x2 + · · · + xn+1 = 0}

H = {xi = xj : 1 ≤ i < j ≤ n + 1}

Symmetries of the n-dimensional simplex

A1

An1 = A1 × A1 × · · · × A1

= {xi = 0 : 1 ≤ i ≤ n}



Type Bn (and type Cn) n ≥ 2

V = Rn

H = {xi = 0 : 1 ≤ i ≤ n} ∪ {xi = ±xj : 1 ≤ i < j ≤ n}

Symmetries of the n-dimensional cube and crosspolytope

Type Dn n ≥ 4

V = Rn

H = {xi = ±xj : 1 ≤ i < j ≤ n}

D2 = A2
1 D3 = A3



Type E6, E7 and E8

Type F4

V = R4

H = {xi = 0 : 1 ≤ i ≤ 4}
∪ {xi = ±xj : 1 ≤ i < j ≤ 4}
∪ {x1 ± x2 ± x3 ± x4 = 0}

F4 = symmetries of the 24-cell



Type G2

G2 = I2(6)

Type H3 and H4

H3 = symmetries of the dodecahedron and the icosahedron

H4 = symmetries of the 120-cell and 600-cell

Do not arise from crystallographic root systems



Type I2(k) k ≥ 2

I2(k) = symmetries of the k-gon

I2(k) consists of k lines

I2(2) = A2
1 I2(3) = A2 I2(4) = B2



B(a,R) = {x ∈ V : ‖x− a‖ ≤ R}.

Theorem [Goldberg] Let H be the dihedral arrangement
I2(2k) in R2 for k ≥ 2. For every point a ∈ R2 such
that 0 ∈ B(a,R), the pizza quantity for the disc B(a,R)
vanishes:

P (H,B(a,R)) = 0.
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A set K ⊆ V is stable under the group W if

w(K) = K

for all w ∈ W



Theorem. Let H be a Coxeter arrangement on V such
that the negative of the identity map − idV belongs to the
Coxeter group W . Assume that H is not of type An1 . Let
K be a set stable by W . Let a be a point in V such that
K contains the convex hull of {w(a) : w ∈ W}. Then the
pizza quantity of K + a vanishes, that is,

P (H, K + a) = 0.

a



History continued

[2012, Frederickson] Type A1 × I2(2k) for k ≥ 2 for balls.

[2022, Brailov] Independently proved the theorem for typeBn
for balls.



− idV ∈ W

⇐⇒

H is a product arrangement where the factors are from the
types A1, Bn for n ≥ 2, D2m for m ≥ 2, E7, E8, F4, H3,
H4 and I2(2k) for k ≥ 2.

Missing: An for n ≥ 2,
D2m+1 for m ≥ 2,
E6,
I2(2k + 1) for k ≥ 2.



What happens with An1 ?

x
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(a1, a2)
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Cut also with xi = 2ai.

y = 0

x = 0

(a1, a2)

y = 2a2

x = 2a1
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P (An1 , K + (a1, . . . , an)) = 2n · a1 · · · an

y = 0

x = 0

(a1, a2)

y = 2a2

x = 2a1
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Proof:

d

dt
P (H, K + t · v) =?

v



[Ira Gessel, October 28, 2006]

Is Analysis Necessary?



The best way to show that the two sets

⋃
T

(−1)T=1

((K+a)∩T ) and
⋃
T

(−1)T=−1

((K+a)∩T )

have the same volume, is a dissection proof.



Definition. Let C(V ) be a nice family of subsets of V ,
satisfying:

(i) closed by finite intersections,

(ii) affine isometries,

(iii) if C ∈ C(V ) and D is a closed affine half-space of V ,
then C ∩D ∈ C(V ) and

(iv) closed with respect to Cartesian products, that is, if
Ci ∈ C(Vi) for i = 1, 2 then C1 × C2 ∈ C(V1 × V2).



Definition. We denote by K(V ) the quotient of the free
abelian group

⊕
C∈C(V ) Z[C] on C(V ) by the relations:

– [∅] = 0;

– [C ∪ C ′] + [C ∩ C ′] = [C] + [C ′] for all C,C ′ ∈ C(V )
such that C ∪ C ′ ∈ C(V );

– [g(C)] = [C] for C ∈ C(V ) and affine isometry g of V .

For C ∈ C(V ) we still denote the image of C in K(V )
by [C].



K pizza

H hyperplane arrangement

Define the abstract pizza quantity to be

P (H, K) =
∑

T∈T (H)

(−1)T · [T ∩K].



The Abstract Pizza Theorem.
Let H be a Coxeter hyperplane arrangement with Coxeter
group W in an n-dimensional space V such that − idV ∈
W . Assume that H does not have type An1 . Let K ∈ C(V )
and a ∈ V . Suppose that K is stable by the group W and
contains the convex hull of the set {w(a) : w ∈ W}. Then
the abstract pizza quantity vanishes:

P (H, K + a) = 0,

that is, this identity holds in K(V ).



Let sβ be the orthogonal reflection in the hyperplane Hβ.

Definition. A subset Φ of V is a pseudo-root system if:

(a) Φ is a finite set of unit vectors;
(b) for all α, β ∈ Φ, we have sβ(α) ∈ Φ.

Note that condition (b) implies that α ∈ Φ implies−α ∈ Φ
by setting α = β. Elements of Φ are called pseudo-roots.

Φ = Φ+ t Φ−

Φ+ = positive pseudo-roots,
Φ− = negative pseudo-roots.



Definition [Herb]. Let Φ be a pseudo-root system with
Coxeter group W . A 2-structure for Φ is a subset ϕ of Φ
satisfying the following properties:

(a) The subset ϕ is a disjoint union

ϕ = ϕ1 t ϕ2 t · · · t ϕr,
where the ϕi are pairwise orthogonal subsets of ϕ and
each of them is an irreducible pseudo-root system of
type A1, B2 or I2(2k) for k ≥ 3.

(b) Let ϕ+ = ϕ ∩ Φ+. If w is an element in W such that
w(ϕ+) = ϕ+ then the sign of w is positive, that is,
(−1)w = 1.



History continued

[2000, Herb] Introduced 2-structures to study the characters
of discrete series representations.



Let T (Φ) denote the set of 2-structures for Φ.

The group W acts transitively on T (Φ).

Hence all 2-structures of Φ have the same type.



Type of Φ Type of ϕ Type of Φ Type of ϕ

A2m Am1 E7 A7
1

A2m+1 Am+1
1 E8 A8

1

B2m Bm2 F4 B2
2

B2m+1 Bm2 × A1 H3 A3
1

D2m A2m
1 H4 A4

1

D2m+1 A2m
1 I2(r) A1 (r odd)

E6 A4
1 I2(r · 2k) I2(2k) (k ≥ 1)



Φ pseudo-root system

ϕ 2-structure of Φ

rank(Φ) = rank(ϕ) ⇐⇒ − id ∈ W



Each 2-structure has a sign, that is,

ε : T (Φ) −→ {±1}.

Properties:

(i) ∑
ϕ∈T (Φ)

ε(ϕ) = 1

(ii) For w ∈ W such that w(ϕ ∩ Φ+) ⊆ Φ+. Then the
following identity holds:

ε(w(ϕ)) = (−1)w · ε(ϕ).



Theorem. Let Φ ⊂ V be a normalized pseudo-root sys-
tem. Choose a positive system Φ+ ⊂ Φ and let H be the
hyperplane arrangement (Hα)α∈Φ+ on V with base cham-
ber corresponding to Φ+. For every 2-structure ϕ ∈ T (Φ),
let Hϕ be the hyperplane arrangement (Hα)α∈ϕ+ with the
base chamber containing the base chamber of H. Then we
have

P (H, K) =
∑

ϕ∈T (Φ)

ε(ϕ) · P (Hϕ, K).



Extremely brief sketch of the proof
of the Abstract Pizza Theorem:

Case 1: The 2-structure ϕ contains a factor of B2 or I2(2k).

Then we prove

P (Hϕ, K) = 0

by reducing it to 2-dimensions and (carefully) moving pieces
around.





History continued

[1807, Wallace], [1833, Bolyai], [1835, Gerwien]

Two polygons are scissors-congruent if and only if they have
the same area.



Case 2: The 2-structure ϕ has type An1 .

P (Hϕ, K + a) =

 n∏
i=1

(0, 2(a, ei)ei]

 ,
where ϕ+ = {e1, . . . , en}.

Thus P (H, K + a) is a signed sum of parallelotopes.

This sum is zero by an extension of the Wallace–Bolyai–
Gerwien theorem to parallelotopes. �



Let Vi denote the ith mixed volume.

Corollary. With the same assumptions as in the abstract
pizza theorem:∑

T∈T

(−1)TVi((K + a) ∩ T ) = 0.



Other pizza results and open problems.



Returning to classical pizza quantity, that is, volume.

Also returning to balls B(a,R) = {x ∈ V : ‖x− a‖ ≤ R}.

Theorem. Let H = {He}e∈E be a Coxeter arrangement
in an n-dimensional space V . Assume that |H| ≡ n mod 2,
|H| > n and 0 ∈ B(a,R). Then

P (H,B(a,R)) = 0.



Returning to classical pizza quantity, that is, volume.

Also returning to balls B(a,R) = {x ∈ V : ‖x− a‖ ≤ R}.

Theorem. Let H = {He}e∈E be a Coxeter arrangement
in an n-dimensional space V . Assume that |H| ≡ n mod 2,
|H| > n and 0 ∈ B(a,R). Then

P (H,B(a,R)) = 0.

SURGEON GENERAL’S WARNING:

This result contains

CALCULUS.



Note: The − idV ∈ W condition implies |H| ≡ n mod 2.

This result also holds for types An where n ≡ 0, 1 mod 4
and E6.

Open problem: Find a dissection proof.



Open problem:

–An where n ≥ 3, n ≡ 2, 3 mod 4

–Dn where n ≥ 5, n ≡ 1 mod 2

[Mabry and Deiermann]
For H of type I2(m), m ≥ 3, m odd, 0 ∈ B(a,R) and
a ∈ T

(−1)(m+1)/2 · (−1)T · P (H,B(a,R)) > 0



m ≡ 3 mod 4
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[Hirschhorn5]
p people sharing a pizza.
Dihedral arrangement of type I2(2p)
Number of slices 4p
Every person takes every pth slice
Distribution is fair
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Open problem:

p ≥ 3 people in d ≥ 3 dimensions

Which arrangements guarantee a fair division of B(a,R)?

One solution for p = d = 4.



H1 = {xi = ±xj : 1 ≤ i < j ≤ 4}
H2 = {xi = 0 : 1 ≤ i ≤ 4} ∪ {x1 ± x2 ± x3 ± x4 = 0}

Both H1 and H2 have type D4.

The type of H = H1 ∪H2 is F4.

T chamber of H.
Let Ti be the unique chamber in Hi containing T .

(−1)T = (−1)T1 · (−1)T2



For T a chamber of H give the slice T ∩K
to person ((−1)T1, (−1)T2)

Let Vs1,s2 be the amount person (s1, s2) receives.

H1 satisfies pizza theorem =⇒ V1,1 + V1,−1 = 1/2 pizza

H2 satisfies pizza theorem =⇒ V1,1 + V−1,1 = 1/2 pizza

H satisfies pizza theorem =⇒ V1,1 + V−1,−1 = 1/2 pizza

=⇒ V1,1 = V1,−1 = V−1,1 = V−1,−1 = 1/4 pizza



Thank you!



Bon appétit!
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