Equivariant log-concavity of independence sequences of clawfree graphs

Shiyue Li

Equivariant log-concavity of independence sequence of clawfree graphs

A combinatorial application of the hard Lefschetz theorem
Shiyue Li

A combinatorial application of the hard Lefschetz theorem

A combinatorial application of the hard Lefschetz theorem X is a smooth projective variety of $\operatorname{dim} n$.

A combinatorial application of the hard Lefschetz theorem X is a smooth projective variety of $\operatorname{dim} n$.
a special case of compact Kähler manifolds.

A combinatorial application of the hard Lefschetz theorem X is a smooth projective variety of $\operatorname{dim} n$.
a special case of compact Kähler manifolds.
The Kähler metric induces

A combinatorial application of the hard Lefschetz theorem X is a smooth projective variety of $\operatorname{dim} n$.
a special case of compact Kähler manifolds.
The Kähler metric induces
(1) the Hodge decomposition on $H^{\circ}(X ; \mathbb{C})$

A combinatorial application of the hard Lefschetz theorem X is a smooth projective variety of $\operatorname{dim} n$.
a special case of compact Kähler manifolds.
The Kähler metric induces
(1) the Hodge decomposition on $H^{*}(X ; \mathbb{C})$
(2) the Lefschetz decomposition on $H^{\prime}(x ; \mathbb{Q})$

A combinatorial application of the hard Lefschetz theorem X is a smooth projective variety of $\operatorname{dim} n$.
a special case of compact Kähler manifolds.
The Kähler metric induces
(1) the Hodge decomposition on $H^{(}(X ; \mathbb{C})$

$$
H^{i}(X ; \mathbb{C})=\bigoplus_{p+q=i} \sum H^{p, q}(X ; \mathbb{C})
$$

where $H^{p, q}(x ; \mathbb{C})=$ classes of closed forms of type (p, q).
(2) the Lefschetz decomposition on $H^{*}(x ; \mathbb{Q})$
(2) the Lefschetz decomposition on $H^{+}(x ; \mathbb{Q})$

$$
H^{i}=H^{i}(X ; \mathbb{Q})
$$

(2) the Lefschetz decomposition on $H^{*}(x ; \mathbb{Q})$

$$
H^{i}=H^{i}(X ; \mathbb{Q})
$$

$[\omega]:=$ Poincare dual of the class of a generic hyperplane

$$
\epsilon H^{2}(x)
$$

(2) the Lefschetz decomposition on $H^{*}(x ; \mathbb{Q})$

$$
H^{i}=H^{i}(X ; \mathbb{Q})
$$

$[\omega]:=$ Poincare dual of the class of a generic hyperplane

$$
\epsilon H^{2}(x)
$$

i is an integer from 0 to n.
(2) the Lefschetz decomposition on $H^{\circ}(X ; \mathbb{Q})$

$$
H^{i}=H^{i}(X ; \mathbb{Q})
$$

$[\omega]:=$ Poincare dual of the class of a generic hyperplane

$$
\epsilon H^{2}(X)
$$

i is an integer from 0 to n.
The Hard Lefschetz Theorem
(2) the Lefschetz decomposition on $H^{\circ}(X ; \mathbb{Q})$

$$
H^{i}=H^{i}(X ; \mathbb{Q})
$$

$[\omega]:=$ Poincare dual of the class of a generic hyperplane

$$
\in H^{2}(X)
$$

i is an integer from 0 to n.
The Hard Lefschetz Theorem

$$
w^{n-i} u-: H^{i} \rightarrow H^{2 n-i}
$$

(2) the Lefschetz decomposition on $H^{+}(x ; \mathbb{Q})$

$$
H^{i}=H^{i}(X ; \mathbb{Q})
$$

$[\omega]:=$ Poincare dual of the class of a generic hyperplane

$$
\epsilon H^{2}(x)
$$

i is an integer from 0 to n.
The Hard Lefschetz Theorem

$$
w^{n-i} u-: H^{i} \rightarrow H^{2 n-i}
$$

is an isomorphism.

The Hard Lefschetz Theorem

$$
w^{n-i} u-: H^{i} \longrightarrow H^{2 n-i}
$$

is an isomorphism.

$$
\Rightarrow
$$

The Hard Lefschetz Theorem

$$
w^{n-i} u-: H^{i} \longrightarrow H^{2 n-i}
$$

is an isomorphism.
\Rightarrow The hard Lefschetz operator

$$
w u-: H^{i} \longrightarrow H^{i+\alpha}
$$

The Hard Lefschetz Theorm

$$
w^{n-i} u-: H^{i} \longrightarrow H^{n-i}
$$

is an isomorphism.
\Rightarrow The hard Lefschetz operator

$$
w u-: H^{i} \longrightarrow H^{i+\alpha}
$$

is
infective for i no greater than $n-1$, surjective for i no smaller than n.

Example $\left(\mathbb{P}^{1}\right)^{3}$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.H^{0}\left(\mathbb{P}^{1}\right)^{3}\right) \simeq \frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

Example $\left(\mathbb{P}^{2}\right)^{3}$

$$
H^{0}\left(\left(\mathbb{P}^{1}\right)^{3}\right) \simeq \frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

where $x_{i}=$ the pullback of $[\omega] \in H^{2}(i$-th factor $)$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.H^{0}\left(\mid \mathbb{P}^{1}\right)^{3}\right) \simeq \frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

where $x_{i}=$ the pullback of $[w] \in H^{2}(i$-th factor $)$.

The map

$$
x_{1}+x_{2}+x_{3}: H^{i} \longrightarrow H^{i+2}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
H^{*}\left(\left(\mathbb{P}^{2}\right)^{3}\right) \simeq \frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

where $x_{i}=$ the pullback of $[\omega] \in H^{2}(i$-th factor $)$
The map

$$
x_{1}+x_{2}+x_{3}: H^{i} \longrightarrow H^{i+2}
$$

is injective for i no greater than $n-1$ surjective for i no smaller than n by HLT.

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.H^{0}\left(\mathbb{P}^{2}\right)^{3}\right)=\frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.H^{0}\left(\mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

$$
\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\begin{gathered}
\left.H^{0}\left(\mid \mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle} \\
x_{1} x_{2} x_{3} \\
x_{1} x_{2} \quad x_{2} x_{3} x_{1} x_{3} \\
x_{1} \quad x_{2} x_{3}
\end{gathered}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\begin{array}{rl}
\left.H^{0}\left(\mid \mathbb{P}^{1}\right)^{3}\right)= & \left.\frac{Q\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right.}\right\rangle \\
x_{1} x_{2} x_{3} & 6 \\
x_{1} x_{2} & x_{2} x_{3} \quad x_{1} x_{3}
\end{array}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\begin{array}{rl}
\left.H^{0}\left(\mid \mathbb{P}^{1}\right)^{3}\right) & \left.=\frac{Q\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right.}\right\rangle \\
x_{1} x_{2} x_{3} & 6 \\
x_{1} x_{2} & x_{2} x_{3} \quad x_{1} x_{3}
\end{array}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\begin{aligned}
& H^{0}\left(\mid \mathbb{P}^{2}\right)^{3}=\frac{D\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle} \\
& x_{1} x_{2} x_{3} \\
& 6 \quad x_{1}\left(x_{1}+x_{2}+x_{3}\right) \\
& =x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}
\end{aligned}
$$

$$
\begin{aligned}
& 4=0+x_{1} x_{2}+x_{1} x_{3}
\end{aligned}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\begin{aligned}
& \left.H^{0}\left(\mid \mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle} \\
& x_{1} x_{2} x_{3} \\
& \text { (} \\
& 4 \\
& 2 \\
& 0
\end{aligned}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.H^{0}\left(\mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle}
$$

Application to combinatorics
G is claw-free
if no induced subgraph of G is $K_{3,1}$.

Application to combinatorics
G is claw-free
if no induced subgraph of G is $K_{3,1}$.

G is claw-free if no induced subgraph of G is $K_{3,1}$.

Example cycles

K_{n}

the line graph of a graph

$$
\text { ! }: \rightarrow \stackrel{\bullet}{\circ} \cdot
$$

G is claw-free
if no induced subgraph of G is $K_{3,1}$.

A vertex set $S \subseteq V(G)$ is independent
G is claw-free
if no induced subgraph of G is $K_{3,1}$.
A vertex set $S \subseteq V(G)$ is independent if vertices in S are pairwise nonadjacent.

A generalized Petersen graph.
G is claw-free
if no induced subgraph of G is $K_{3,1}$.
A vertex set $S \subseteq V(G)$ is independent if vertices in S are pairwise nonadjacent.

A generalized Petersen graph

$$
I_{k}=\{\text { Independent sets of size } k \text { on } G\}
$$

$$
I_{k}=\{\text { Independent sets of size } k \text { on } G\}
$$

Example

$I_{k}=\{$ Independent sets of size k on $G\}$
Example
I_{0}
I_{1}

$I_{k}=\{$ Independent sets of size k on $G\}$
Example
I_{0}
I_{1}

I_{2}

$I_{k}=\{$ Independent sets of size k on $G\}$

Example

 I_{1}

 I_{3}

$$
I_{k}=\{\text { Independent sets of size } k \text { on } G\}
$$

Example

I_{3}

$V_{0}=\operatorname{Span}_{\mathbb{C}}\{$ Inde pendent set I on $G\}=\bigoplus_{k=|I|} V_{k}$

$$
I_{k}=\{\text { Independent sets of size } k \text { on } G\}
$$

Example

Io

I_{3}

$V_{0}=\operatorname{Span}_{\mathbb{C}}\{$ Inde pendent set I on $G\}=\bigoplus_{k=|I|} V_{k}$ Aut (G)

$$
I_{k}=\{\text { Independent sets of size } k \text { on } G\}
$$

Example

I_{0}

$V_{0}=\operatorname{Span}_{\mathbb{C}}\{$ Independent set I on $G\}=\bigoplus_{k=|I|} V_{k}^{\operatorname{Aut}(G)}$

$$
V_{0}=\operatorname{Span}_{\mathbb{C}}\{\text { Independent set } I \text { on } G\}=\bigoplus_{k=|I|} V_{k} \supseteq \operatorname{Aut}(G)
$$

Question
For any $1 \leqslant k \leqslant l$, is it true that

$$
V_{k-1} \otimes V_{l+1} \subseteq V_{k} \otimes V_{l}
$$

as an $\operatorname{Aut}(G)$-representation?

Question
For any $1 \leqslant k \leqslant l$, is it true that

$$
V_{k-1} \otimes V_{l+1} \subseteq V_{k} \otimes V_{l}
$$

as an $\operatorname{Aut}(G)$-representation?
If so V_{0}. is "equivariantly log-concave" Gedeon-Young-Proud foot ', 6

Question
For any $1 \leqslant k \leqslant l$, is it true that

$$
V_{k-1} \otimes V_{l+1} \subseteq V_{k} \otimes V_{l}
$$

as an $\operatorname{Aut}(G)$-representation?
If so V_{0}. is "equivariantly log-concave"
Gedeon-Young-Proud foot ', 6
$\operatorname{dim} V_{0}, \operatorname{dim} V_{1}, \cdots$ is log-concave
ie., $\quad\left|I_{k+1}\right|\left|I_{k-1}\right| \leqslant\left|I_{k}\right|^{2}$

Question
For any $1 \leq k \leq l$, is it true that

$$
V_{k-1} \otimes V_{l+1} \subseteq V_{k} \otimes V_{l}
$$

as an $\operatorname{Aut}(G)$-representation?
If so V. is "equivariantly log -concave"
Gedeon - Young - Proud foot ', 6

$$
\operatorname{dim} V_{0}, \operatorname{dim} V_{1}, \ldots \text { is log-concave }
$$

ie., $\left|I_{k+1}\right|\left|I_{k-1}\right| \leqslant\left|I_{k}\right|^{2}$
Hamidoune ' 90
Chudnorsky-Seymour'07. Newton 1707
$\operatorname{THM}(L . ' 22)$ If G is clawfree, then the graded $\operatorname{Aut}(G)$ - representation $V_{0}(G)$ is equivariantly log -concave.

Example $\quad V_{0}=\operatorname{Span}_{\mathbb{C}}\{$ Indie pendent set I on $G\}=\bigoplus_{k=|I|} V_{k}$

$$
V_{0}=\operatorname{Span}_{\mathbb{C}}\left\{\begin{array}{c}
i \\
\vdots i
\end{array}\right\}
$$

Example $V_{0}=S_{p a n}^{\mathbb{C}}\{$ Independent set I on $G\}=\bigoplus_{k=|I|} V_{k}$
$v_{0}=S_{p a t a}\{0\}$
$v_{1}=s_{\text {pace }}\{\langle\langle \rangle\langle\emptyset\rangle\}$

Example $\quad V_{0}=\operatorname{Span} c \mid$ Independent set I on $\left.G\right\}=\bigoplus_{k=I I \mid} V_{k}$
$V_{0}=\operatorname{Span}_{c}\{i\}$
$V_{1}=\operatorname{Span}_{\mathbb{C}}\left\{\sum_{0} \leqslant_{0}\right.$

$V_{3}=\operatorname{Span} c\{i, j\}$

Example $V_{0}=\operatorname{Span}_{c}\{$ Independent set I on $G\}=\bigoplus_{k=|\Sigma|} V_{k}$

$$
\begin{aligned}
& V_{0}=\operatorname{Span} \mathcal{C}\{i, i\}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\alpha}=\operatorname{Span} \mathbb{C}\{1 \\
& V_{3}=\operatorname{Span} \mathbb{C}\left\{\begin{array}{c}
i \\
i
\end{array}\right\}
\end{aligned}
$$

Is it true that

$$
\begin{array}{ll}
V_{0} \otimes V_{2} & \stackrel{\text { Aut (G) }}{\substack{\text { Aut (G) }}} V_{1} \otimes V_{1} \\
V_{0} \otimes V_{3} & V_{1} \otimes V_{2} \\
V_{1} \otimes V_{3} & \xrightarrow{\text { Aut(G) }} \\
V_{2} \otimes V_{2}
\end{array} ?
$$

Strategy For each $1 \leqslant k \leqslant l$,
decompose $V_{k-1} \otimes V_{\ell+1}=\bigoplus_{\Gamma} V_{\Gamma}$

$$
V_{k} \otimes V_{l}=\bigoplus_{\Gamma^{\prime}} V_{\Gamma^{\prime}}
$$

where each Γ is a certain induced subgraph of G.

Strategy For each $1 \leqslant k \leqslant l$,
decompose $V_{k-1} \otimes V_{\ell+1}=\bigoplus_{\Gamma} V_{\Gamma}$

$$
V_{k} \otimes V_{l}=\bigoplus V_{\Gamma^{\prime}}
$$

such that for each Γ,

$$
V_{\Gamma} \quad \sim H^{i}\left(\left(\mathbb{P}^{\prime}\right)^{n}\right)
$$

Strategy For each $1 \leqslant k \leqslant l$,
decompose $V_{k-1} \otimes V_{\ell+1}=\bigoplus_{\Gamma} V_{\Gamma}$
$V_{k} \otimes V_{l}=\bigoplus_{\Gamma^{\prime}} V_{\Gamma^{\prime}}$
such that for each Γ,

$$
V_{\Gamma} \xrightarrow{\sim} H^{i}\left(\left(\mathbb{P}^{\prime}\right)^{n}\right)
$$

for some $i \leqslant n$. Both i and n depend on a certain induced subgraph Γ.

Strategy For each $1 \leqslant k \leqslant l$,
decompose $V_{k-1} \otimes V_{\ell+1}=\bigoplus_{\Gamma} V_{\Gamma}$

$$
V_{k} \otimes V_{l}=\bigoplus_{\Gamma^{\prime}} V_{\Gamma^{\prime}}
$$

such that for each Γ,
(1)

$$
V_{\Gamma} \leadsto H^{i}\left(\left(\mathbb{P}^{\prime}\right)^{n}\right)
$$

(a)

$$
V_{\Gamma^{\prime}} \xrightarrow{\sim} H^{i+2}\left(\left(\mathbb{P}^{\prime}\right)^{n}\right)
$$

for some $i \leqslant n$. Both i and n depend on a certain induced subgraph Γ.

Strategy For each $1 \leqslant k \leqslant l$,
decompose $V_{k-1} \otimes V_{l+1}=\bigoplus_{\Gamma} V_{\Gamma}$

$$
V_{k} \otimes V_{l}=\bigoplus_{\Gamma^{\prime}} V_{\Gamma^{\prime}}
$$

such that for each Γ,
(1)
(3) $\exists \operatorname{Aut}(G)$-equiv $\Phi_{\Gamma} \downarrow$
(a)

$$
V_{\Gamma} \quad \sim H^{i}\left(\left(\mathbb{P}^{\prime}\right)^{n}\right)
$$

map $\Phi_{k, i}$

$$
V_{\Gamma^{\prime}} \xrightarrow{ } H^{i+2}\left(\left(\mathbb{P}^{\prime}\right)^{n}\right)
$$

for some $i \leqslant n$. Both i and n depend on Γ.

Strategy For each $1 \leqslant k \leqslant l$,
decompose $V_{k-1} \otimes V_{l+1}=\bigoplus_{\Gamma} V_{\Gamma}$

$$
V_{k} \otimes V_{l}=\bigoplus_{\Gamma^{\prime}} V_{\Gamma^{\prime}}
$$

such that for each Γ,
(1)
(3) \exists Mut (G)-equiv
(2)

for some $i \leqslant n$. Both i and n depend on Γ.

Strategy For each $1 \leqslant k \leqslant l$,

$$
\text { decompose } V_{k-1} \otimes V_{l+1}=\bigoplus_{\Gamma} V_{\Gamma}
$$

$$
V_{k} \otimes V_{l}=\bigoplus_{\Gamma^{\prime}} V_{\Gamma^{\prime}}
$$

such that for each Γ,
(1)
(3) \exists Aut (G)-equiv
(2)

for some $i \leqslant n$. Both i and n depend on Γ. The hard Lefschetz theorem implies the injectivity of $\Phi \Gamma$.

1. Take the symmetric difference of each pair, and induce a subgraph Γ.

2. Take the symmetric difference of each pair, and induce a subgraph Γ.

Property of Γ Each component is either a path
or a cycle of even size.
2. Consider only paths of odd \# of vertices "even paths"

iv
2. Consider only paths of odd \# of vertices

blue path

Mi pink path
2. Consider only paths of odd \# of vertices

blue path

MiN pink path
$B=$ \# of blue paths
$P=\#$ of pink paths
3. Swap colors in one path pink path blue path
\therefore ! \rightarrow ハi
4. Swap colors in every even path in Γ. Form a new pair of independent sets of size k, l.
4. Swap colors in every even path in Γ. Form a new pair of independent sets of size k, l.

4. Swap colors in every even path in Γ.

Form a new pair of independent sets of size k, l.

\rightarrow

4. Swap colors in every even path in Γ.

Form a new pair of independent sets of size k, l.

4. Swap colors in every even path in Γ.

Form a new pair of independent sets of size k, l.

4. Swap colors in every even path in Γ.

Form a new pair of independent sets of size k, l.

5. Define $\Phi_{k, e}: V_{k-1} \otimes V_{l+1} \longrightarrow V_{k} \otimes V_{e}$

$$
I \otimes J \longmapsto \sum I^{\prime} \otimes J^{\prime}
$$

where $I^{\prime} \otimes J^{\prime}$ are pairs obtained as in $1-4$.

5. Consider the Boolean algebra formed on all even paths in Γ, graded by B.

$H^{0}\left(\left(\mathbb{P}^{1}\right)^{2}\right)$

$\Phi_{k, \ell}: V_{k-1} \otimes V_{l+1} \longrightarrow V_{k} \otimes V_{l}$
$I \otimes J \longmapsto \sum I^{\prime} \otimes J^{\prime}$
where $I^{\prime} \otimes J^{\prime}$ are pairs obtained as in $1-4$ restricted to each induced subgraph Γ.

The hard Lefschetz operator on $\left(\mathbb{P}^{\prime}\right)^{n}$

$$
=w: H^{i} \longrightarrow H^{i+\alpha}
$$

multiplication by

$$
x_{1}+x_{2}+\cdots+x_{n}
$$

where $i=B$ in $\Gamma, n=B+p$ in Γ.

$$
H^{\bullet}\left(\left(\mathbb{P}^{1}\right)^{2}\right)
$$

$$
x_{1} x_{2}
$$

$$
\simeq
$$

$$
\begin{aligned}
\Phi_{k, l}: V_{k-1} \otimes V_{l+1} & \longrightarrow V_{k} \otimes V_{l} \\
I \otimes J & \longmapsto I^{\prime} \otimes J^{\prime}
\end{aligned}
$$

where $I^{\prime} \otimes J^{\prime}$ are pairs obtained as in $1-4$ restricted to each induced subgraph Γ.
$B+P$
$B+1$

B

The hard Lefschetz operator on $\left(\mathbb{P}^{\prime}\right)^{n}$

$$
w: H^{i} \longrightarrow H^{i+2}
$$

multiplication by

$$
x_{1}+x_{2}+\cdots+x_{n} .
$$

where $i=B$ in $\Gamma, n=b+\rho$ in Γ.

$$
H^{\cdot}\left(\left(\mathbb{P}^{1}\right)^{2}\right)
$$

$$
\simeq
$$

$$
x_{1} x_{2}
$$

$B+P$

$H^{\cdot}\left(\left(\mathbb{P}^{1}\right)^{2}\right)$
$B+1$

We win if B is no greater than $\frac{B+P}{2}$

Property

$$
P-B=(l+1)-(k-1)=(l-k)+2 \geqslant 2 .
$$

Property

$$
\begin{aligned}
& P-B=(l+1)-(k-1)=(l-k)+2 \geqslant 2 . \\
& B=\frac{B+B}{2}
\end{aligned}
$$

Property

$$
\begin{aligned}
& P-B=(l+1)-(k-1)=(l-k)+2 \geqslant 2 . \\
& B=\frac{B+(B)}{2} \leqslant \frac{B+(P-2)}{2}
\end{aligned}
$$

Property

$$
\begin{aligned}
& P-B=(l+1)-(k-1)=(l-k)+2 \geqslant 2 . \\
& B=\frac{B+(B)}{2} \leqslant \frac{B+(P-2)}{2}=\frac{B+P}{2}-1
\end{aligned}
$$

The Hard Lefschetz Theorem

$$
\begin{aligned}
\Rightarrow \quad \Phi_{k, \ell}: V_{k-1} \otimes V_{\ell+1} & \hookrightarrow V_{k} \otimes V_{\ell} \\
I, J & \mapsto \sum I^{\prime}, J^{\prime}
\end{aligned}
$$

where I^{\prime}, J^{\prime} are independent sets formed by the above steps

THM (L.'2a) If G is clawfree,
then the graded Rut (G) - representation $V_{0}(G)$ is equivariantly log -concave.

Remarks
1 ELC is stronger than LC
$\exists V$. not ELC but $\operatorname{dim} V$. is LC.
2 A related problem
L. Kannen : Sterling \#'s.

Erdïs' conjecture: the independence sequence of any tree is LC.
Counter-example for the equivariant statement:

Melody Chan, Chris Eur, Dane Miyata, Nick Proudfort. Eric Ramos, Lorenzo Vecchi

3 Other known results
Mathern - Miyata - Proud foot - Ramos '21
$H\left(\operatorname{Conf}\left(n, \mathbb{R}^{3}\right), \mathbb{Q}\right), H(\operatorname{Conf}(n, \mathbb{C}), \mathbb{Q})$, etc. is $S_{n}-E L C$ for degrees $m \leq 14$.
Proudfout $-X_{u}-Y_{\text {rung }}$ 'ib
q-binomial coefficients.
L. '22

Matchings for all graphs.
V^{n}. given by k-subsets of $[n]$ as S_{n} representation.

