
Stembridge codes and Chow rings

Hsin-Chieh Liao

University of Miami

FPSAC’23 at UC Davis

July 19 2023

H.-C. Liao (UM) 1 / 23



Eulerian story : Permutohedral variety

The Permutohedral variety XΣn is the toric
variety associated to the normal fan Σn of
the permutohedron Πn. Its Poincaré
polynomial

n∑
j=0

dimH2j(XΣn)t
j =

∑
σ∈Sn

texc(σ)

is the Eulerian polynomial An(t).

H∗(XΣn) carries a representation of Sn induced from Sn acting on Σn .

Stanley (1989) calculated its Frobenius characteristic and showed that the rep. is a
permutation representation.
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Stembridge Codes (1992)

A code is a sequence α over {0, 1, . . . ,m} with marks s.t. for each j = 1, 2, . . . ,m

j occurs at least twice in α;

a mark is assigned to the ith occurrence of j for a unique i ≥ 2.

Example:
113202̂3̂1̂2

We denote a code as (α, f) where f(j) = number of j’s in front of the marked j.
Example:

113202̂3̂1̂2 = (α, f)

where α = 113202312 and f(1) = 2, f(2) = 1, f(3) = 1.

The index of (α, f): ind(α, f) :=
∑m

j=1 f(j).
Example:

ind(113202̂3̂1̂2) = f(1) + f(2) + f(3) = 4.

All codes of length 3

m 0 1 1 1 1 1

(α, f) 000 011̂ 101̂ 11̂0 11̂1 111̂

ind(α, f) 0 1 1 1 1 2
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Sn-action on codes

Let Cn,j be the set of codes of length n with index j.

The Sn-action σ · (α1α2, . . . αn, f) := (ασ(1)ασ(2) . . . ασ(n), f) for σ ∈ Sn makes
Vn,j = CCn,j a permutation representation of Sn.

Stembridge (1992) used Stanley’s formula for ch(H∗(XΣn)) to show that for all
0 ≤ j ≤ n− 1,

Vn,j
∼=Sn H2j(XΣn ,C).

He also asked: can we find a permutation basis for H∗(XΣn) that induced the
representation?

In our work, we give an explicit permutation basis in terms of Chow rings. And it is clear
how Sn permutes the basis.
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Cohomology ring as Chow ring

Theorem (Danilov 1978, Stembridge 1994)

Fix a lattice Zn with standard basis {ei}i=1,...,n in a Euclidean n-space E.
Let P be a simple n-lattice polytope with normal fan Σ(P ) in E and P ∗ be its dual
simplicial polytope whose set of vertices is V (P ∗). Denote by K[∂P ∗] the
Stanley-Reisner ring of ∂P ∗ over a field K of charK = 0. If a finite group G acts on
Σ(P ) simplicially and freely, then

H∗(XΣ(P ),K) ∼=
K[∂P ∗]

⟨θ1, . . . , θn⟩
as G-modules,

where
θi =

∑
v∈V (P∗)

⟨v, ei⟩xv for i = 1, . . . , n.

The RHS is known as the Chow ring A(XΣ(P )) of the toric variety XΣ(P ).
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Feichtner-Yuzvinsky basis for A(XΣn
)

Feichtner, Yuzvinsky (2004) define the Chow ring D(L,G) of an atomic lattice L with
respect to a certain type of subset G of L called a building set and find a basis.

When L = Bn Boolean lattice and G = Bn − {∅}, the ring D(L,G) is known as the
Chow ring of the Boolean matroid and is the same as the Chow ring of XΣn ,

D(Bn, Bn − {∅}) = A(XΣn).

Then by Danilov-Stembridge theorem,

D(Bn, Bn − {∅}) ∼=Sn H∗(XΣn ,Q).

In this case, the Feichtner-Yuzvinsky basis is

FY (Bn) :=
{
xa1
F1

xa2
F2

. . . x
ak
Fk

: ∅=F0⊊F1⊊F2⊊...⊊Fk⊆[n],
1≤ai≤|Fi|−|Fi−1|−1

}
.

e.g. FY (B3) = {1, x12, x13, x23, x123, x
2
123}.

The natural Sn-action on Bn induces an action on FY (Bn).
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The Sn-equivariant bijection

We construct a map ϕ : FY (Bn)→ {codes of length n} that respects the Sn-action.

Theorem (L.)

The map ϕ : FY (Bn)→ {codes of length n} is a bijection that respects the Sn-actions
and takes the degree of the monomials to the index of its image.

Example

The map ϕ sends x13x1235x
2
1234568 ∈ FY (B8) to a code as follows:

1 1̂ −→ 121̂ 2̂ → 121̂32̂3 3̂→ 121̂32̂303̂.

The F-Y basis FY (B3) and Stembridge codes of length 3 :

1 x12 x13 x23 x123 x2
123

000 11̂0 101̂ 011̂ 11̂1 111̂

H.-C. Liao (UM) 7 / 23



Binomial Eulerian story: Stellahedral variety

Binomial Eulerian polynomial Ãn(t) := 1 + t

n∑
k=1

(
n

k

)
Ak(t)

Postnikov, Reiner, Williams (2008) :

Ãn(t) =

n∑
j=0

dimH2j(XΣ̃n
)tj

where XΣ̃n
is the toric variety associated to the

normal fan Σ̃n of the stellohedron Π̃n.

Shareshian, Wachs (2020) :

Introduced Q̃n(x, t) := hn(x) + t
n∑

k=1

hn−k(x)Qk(x, t) where Qk(x, t) is the

graded Frobenius series of H∗(XΣn).

They also showed that
n∑

j=0

ch(H2j(XΣ̃n
))tj = Q̃n(x, t).

⇒ H∗(XΣ̃n
) carries a permutation representation of Sn.
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Extended codes

We define an extended code to be a code (α, f) s.t.

α is over {0, 1, . . . ,m} ∪ {∞} with ∞’s working as 0’s in Stembridge codes,

index ind(α, f) :=
∑m

j=1 f(j) as before, except that ind(∞ . . .∞) := −1.

e.g. ind(102∞1̂322̂3̂1) = f(1) + f(2) + f(3) = 1 + 2 + 1 = 4.

Let C̃n,j be the set of extended codes of length n with index j

Example

The extended codes of length 3.
C̃3,−1 = {∞∞∞}, C̃3,0 = {0∞∞,∞0∞,∞∞0,∞00, 0∞0, 00∞, 000},
C̃3,1 = {11̂∞, 1∞1̂,∞11̂, 011̂, 101̂, 11̂0, 11̂1}, C̃3,2 = {111̂}.

An Sn-action as before makes Ṽn,j = CC̃n,j a permutation representation of Sn.

Theorem (L. 2022)

For n ≥ 1, we have
∑n

j=0 ch(Ṽn,j−1)t
j = Q̃n(x, t).

Is there a permutation basis for H∗(XΣ̃n
) that has similar combinatorial structure as

extended codes?
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Extended codes

We define an extended code to be a code (α, f) s.t.

α is over {0, 1, . . . ,m} ∪ {∞} with ∞’s working as 0’s in Stembridge codes,

index ind(α, f) :=
∑m

j=1 f(j) as before, except that ind(∞ . . .∞) := −1.

e.g. ind(102∞1̂322̂3̂1) = f(1) + f(2) + f(3) = 1 + 2 + 1 = 4.

Let C̃n,j be the set of extended codes of length n with index j

Example

The extended codes of length 3.
C̃3,−1 = {∞∞∞}, C̃3,0 = {0∞∞,∞0∞,∞∞0,∞00, 0∞0, 00∞, 000},
C̃3,1 = {11̂∞, 1∞1̂,∞11̂, 011̂, 101̂, 11̂0, 11̂1}, C̃3,2 = {111̂}.
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Basis for H∗(XΣ̃n
)

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the augmented Chow ring

Ã(M) of a matroid M .

When M is the Boolean matroid Bn, the ring Ã(Bn) is the same as A(XΣ̃n
). Hence by

Danilov-Stembridge theorem,

Ã(Bn) ∼=Sn H∗(XΣ̃n
).

We find an analogue of the Feichtner-Yuzvinsky basis for Ã(M).

The basis for Ã(Bn) is

F̃ Y (Bn) =
{
xa1
F1

xa2
F2

. . . x
ak
Fk

: ∅=F0⊊F1⊊F2⊊...⊊Fk⊆[n]
1≤a1≤|F1|, ai≤|Fi|−|Fi−1|−1 for i≥2

}
.

e.g. F̃ Y (B3) =
{1 x1, x2, x3, x12, x13, x23, x123 x1x123, x2x123, x3x123, x

2
12, x

2
13, x

2
23, x

2
123 x3

123}.

The same Sn-action works on F̃ Y (Bn).
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Ã(Bn) ∼=Sn H∗(XΣ̃n
).

We find an analogue of the Feichtner-Yuzvinsky basis for Ã(M).
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The Sn-equivariant bijection

Let C̃n be the set of extended codes of length n. We construct a map
ϕ̃ : F̃ Y (Bn)→ C̃n that respects the Sn-action.

Theorem (L. )

The map ϕ̃ : F̃ Y (Bn)→ C̃n is a bijection that respects the Sn-actions and takes the
degree of the monomials to the index−1 of its image.

Example

Let u1 = x1
14x1247x

2
1245679 ∈ F̃ Y (B9), then ϕ̃(u1) is

0 0 → 01 0 1̂ → 01 0221̂ 2̂→ 01∞0221̂∞2̂.

Let u2 = x2
14x1247x

2
1245679 ∈ F̃ Y (B9), then ϕ̃(u2) is

1 1̂ → 12 1 2̂ → 12 1332̂ 3̂→ 12∞1332̂∞3̂

This also gives a bijective proof of the Shareshian–Wachs result that Q̃n(x, t) is
the graded Frobenius series of H∗(XΣ̃n

).
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Feichtner, Yuzvinsky’s “package” related to stellohedron

In Feichtner and Yuzvnisky’s theory of building set and Chow ring, the following comes
like a package:

Package

L building set G reduced nested set complex Ñ (L,G) D(L,G)

Bn Bn − {∅} ∂Π∗
n A(XΣn)

L(M) L(M)− {∅} Bergman complex of M A(M)

Braden, Huh, Matherne, Proudfoot, Wang, 2020

augmented Bergman complex of M Ã(M)

aug. Berg. cpx of Bn
∼= ∂Π̃n

∗
Ã(Bn)

Postnikov, Reiner, Williams, 2008

Bn+1
graphical building
set of n-star graph

Ñ (Bn+1,B(K1,n)) ∼= ∂Π̃n

∗
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Augmented Chow ring of a matroid

Let M be a matroid on [n] with lattice of flats L(M) and independence complex I(M).

The augmented Chow ring of M encodes information from both L(M) and I(M) and is
defined as

Ã(M) :=
Q
[
{xF }F∈L(M)\[n] ∪ {y1, y2, . . . , yn}

]
/(I1 + I2)

⟨yi −
∑

F :i/∈F xF ⟩i=1,2,...,n
(1)

where I1 = ⟨xFxG : F,G are incomparable in L(M)⟩, I2 = ⟨yixF : i /∈ F ⟩.
The numerator of (1) is the Stanley-Reisner ring of the augmented Bergman
complex (fan) of M .
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Augmented Bergman fan of a matroid

Definition: Let I ∈ I(M) and F = (F1 ⊊ . . . ⊊ Fk) be a chain in L(M).

We say I is compatible with F , denoted by I ≤ F , if I ⊆ F1. In particular, I ≤ ∅
for any I ∈ I(M).

For S ⊆ [n], write eS :=
∑

i∈S ei.

The augmented Bergman fan Σ̃M of M is a simplicial fan in Rn consisting of cones
σI≤F indexed by compatible pairs I ≤ F , where F is a chain in L(M)− {[n]} and

σI≤F = R≥0

(
{ei}i∈I ∪ {−e[n]\F }F∈F

)
.

The corresponding simplicial complex is called the augmented Bergman complex.

[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan Σ̃Bn is

the normal fan of Π̃n.
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Stellohedron as a dual augmented Bergman complex

σI≤F := R≥0

(
{ei}i∈I ∪ {−e[n]\F }F∈F

)
Example

Boolean matroid B2, I(B2) = {∅, 1, 2, 12}. The augmented Bergman complex is ∂Π̃∗
2.

σ∅≤∅ σ{1}≤∅

σ{2}≤∅

σ∅≤{{2}}

σ∅≤{{1}}σ∅≤{∅}

σ{1,2}≤∅

σ{1}≤{{1}}

σ{2}≤{{2}}

σ∅≤{∅,{1}}

σ∅≤{∅,{2}}
{1} ≤ ∅

{2} ≤ ∅

∅ ≤ {{2}}

∅ ≤ {{1}}
∅ ≤ {∅}

{1, 2} ≤ ∅

{1} ≤ {{1}}

{2} ≤ {{2}}

∅ ≤ {∅, {2}}

∅ ≤ {∅, {1}}

.
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Stellohedron Π̃n as a dual nested set complex

[Postnikov, Reiner, Williams, 2008]:
The n-star graph K1,n := (V,E) with V = [n] ∪ {∗} and E = {{i, ∗} : i ∈ [n]}.
Consider the graphical building set

B(K1,n) := {I ⊂ V : the induced subgraph on I is connected},

then the reduced nested set complex Ñ (Bn+1,B(K1,n)) is combinatorially equivalent to

∂Π̃∗
n.

Example

B(K1,2) consists of the following elements:

1

∗

2 1

∗

21

∗

2 1

∗

2 1

∗

21

∗

2 .
The corresponding reduced nested set

complex is ∂Π̃2

∗
.

1

∗

2

1

∗

2 1

∗

2

1

∗

2

1

∗

2

1

∗
2

1

∗
2

1

∗
2

1

∗
2

1

∗
2
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Connection between Σ̃Bn
and Ñ (Bn+1,B(K1,n))

Proposition (L. 2022)

There is a poset isomorphism between the face lattice of the augmented Bergman fan
Σ̃Bn and that of the reduced nested set complex Ñ (Bn+1,B(K1,n)).

Example

3 5

1

4

62

∗ {1, 3} ≤ {{1, 3, 6} ⊂ {1, 3, 5, 6} ⊂ {1, 3, 4, 5, 6}}

∈ Ñ
(
B7,BK1,6

)
Ñ
(
Bn+1, BK1,n

) {
σI≤F :

I∈I(Bn),
F is a flag of proper subsets of [n],

I⊂min(F)

}
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Connection for general matroids

Let M be a matroid with lattice of flats L(M) and independence complex I(M).

We construct a new poset L̃(M) from L(M) and I(M):

As a set, L̃(M) = L(M) ⊎ I(M). Write F ∈ L(M) as F∗ in L̃(M).

For I ∈ I(M), define I ⋖ clM (I)∗ where clM (I) is the closure of I in M . The
relations inside L(M), I(M) stay the same.

Example

v1
v2v3

M = U3,2 L(U3,2) = , I(U3,2) =

∅

321

231312

∅

321

123

Then the new poset is
123∗

1∗ 2∗ 3∗

∗

12 13 23

1 2 3

∅

L̃(U3,2) =

H.-C. Liao (UM) 18 / 23



Connection for general matroids

Take G̃ = {{1}, . . . , {n}} ∪ {F∗}F∈L(M) as the building set in L̃(M), then all faces of
the reduced nested set complex are of the form

{{i}}i∈I ∪ {F∗}F∈F

for some compatible pair I ≤ F where I ∈ I(M) and F is a chain of L(M).

Theorem (L. ; Eur, Huh, Larson 2022)

1 There is a poset isomorphism between the face lattices of Ñ (L̃(M), G̃) and Σ̃M :

{{i}}i∈I ∪ {F∗}F∈F ←→ σI≤F

for compatible pair I ≤ F where I ∈ I(M) and chain F ⊂ L(M)− {[n]} of
proper flats.

2 D(L̃(M), G̃) = Ã(M).

This connection was also independently found by Chris Eur and later included in his
recent preprint with Huh and Larson
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Analogue of the Feichtner-Yuzvinsky basis

We apply Feichtner-Yuzvinsky’s basis to the chow ring D(L̃(M), G̃) and obtain:

Corollary (L. 2022; Eur, Huh, Larson, 2022)

The augmented Chow ring Ã(M) of M has the following basis

F̃ Y (M) :=
{
xa1
F1

xa2
F2

. . . x
ak
Fk

: ∅=F0⊊F1⊊F2⊊...⊊Fk
1≤a1≤rk(F1), ai≤rk(Fi)−rk(Fi−1)−1 for i≥2

}
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Summary

L building set G reduced nested set complex Ñ (L,G) D(L,G)

Bn Bn − {∅} ∂Π∗
n A(XΣn)

L(M) L(M)− {∅} Bergman complex of M A(M)

aug. Berg. cpx of Bn
∼= ∂Π̃n

∗
Ã(Bn)

Bn+1
graphical building
set of n-star graph

Ñ (Bn+1,B(K1,n)) ∼= ∂Π̃n

∗

augmented Bergman complex of M Ã(M)

L̃(M) G̃ Ñ (L̃(M), G̃)

Consequently, Ã(M) = D(L̃(M), G̃) and hence has an FY-basis.
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The End

Thank you!
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Related works

Since XΣn
∼= regular semisimple Hess(S, h) with h = (2, 3, . . . , n, n), answering

Stembridge’s question gives a “dream” solution to a special case of the
Stanley-Stembridge conjecture.

Erasing Marks Conjecture : Chow (2015), using GKM theory, conjectured that
some classes in H∗

T (XΣn) when descending to H∗(XΣn) give such a basis.

Cho, Hong, and Lee (2020) proved the conjecture. It will be interesting to see the
relationship between our basis and theirs.
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