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Eulerian story : Permutohedral variety

The Permutohedral variety Xs,, is the toric
variety associated to the normal fan X,

the permutohedron 11,,. Its Poincaré
polynomial

Zdlm HY (Xs, )t = Y (@)

€S,

is the Eulerian polynomial A, (t).

of

R%/((1,1,1))

23.1) 2, =23

H*(Xs,, ) carries a representation of &,, induced from &,, acting on 3,

Stanley (1989) calculated its Frobenius characteristic and showed that the rep. is a

permutation representation.
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Stembridge Codes (1992)

A code is a sequence « over {0,1,...,m} with marks s.t. for each j =1,2,...,m
@ j occurs at least twice in «;

@ a mark is assigned to the ith occurrence of j for a unique 7 > 2.

113202312
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Stembridge Codes (1992)

A code is a sequence « over {0,1,...,m} with marks s.t. for each j =1,2,...,m
@ j occurs at least twice in «;

@ a mark is assigned to the ith occurrence of j for a unique 7 > 2.

113202312
We denote a code as (o, f) where f(j) = number of j's in front of the marked j.

113202312 = (o, f
where a = 113202312 and f(1) =2, f(2) = 1, f(3) = 1.
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Stembridge Codes (1992)

A code is a sequence « over {0,1,...,m} with marks s.t. for each j =1,2,...,m
@ j occurs at least twice in «;

@ a mark is assigned to the ith occurrence of j for a unique 7 > 2.

113202312
We denote a code as (o, f) where f(j) = number of j's in front of the marked j.

113202312 = (o, f)
where o = 113202312 and f(1) =2, f(2) = 1, f(3) = 1
The index of («, f): ind(e, f) =>77", f(5).
ind(113202312) = f(1) + f(2) + f(3) =
All codes of length 3

m 0 1 1 1 11
(a,f) 000 011 101 1i0 1i1 111
ind(e, f) | 0 1 1 1 12
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S,,-action on codes

Let Cy,,; be the set of codes of length n with index j.

The G,-action 0 - (12, ... Qn, f) = (0o(1)Qe(2) - - - Qo(n), f) for o € &, makes
Vi, = CCp,; a permutation representation of &,,.

Stembridge (1992) used Stanley’s formula for ch(H*(Xs,,)) to show that for all
0<j<n-—1, |

v’n.,j ge’n H2] (XEn ’ (C)
He also asked: can we find a permutation basis for H*(Xx,,) that induced the
representation?

In our work, we give an explicit permutation basis in terms of Chow rings. And it is clear
how &,, permutes the basis.
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Cohomology ring as Chow ring

Theorem (Danilov 1978, Stembridge 1994)

Fix a lattice Z™ with standard basis {e;}i=1,....n in a Euclidean n-space E.

Let P be a simple n-lattice polytope with normal fan ¥(P) in E and P* be its dual
simplicial polytope whose set of vertices is V(P*). Denote by K[0P*] the
Stanley-Reisner ring of OP* over a field K of charK = 0. If a finite group G acts on
X (P) simplicially and freely, then

K[9P*]

I{*(‘XvXJ(Pﬁ[()g <01 ) >

as G-modules,
where
0; = Z (v,€)zy fori=1,...,n.

veEV (P*)

@ The RHS is known as the Chow ring A(Xypy) of the toric variety Xy py.

H.-C. Liao (UM) 5/23



Feichtner-Yuzvinsky basis for A( Xy, )

Feichtner, Yuzvinsky (2004) define the Chow ring D(L,G) of an atomic lattice £ with
respect to a certain type of subset G of L called a building set and find a basis.

When £ = B,, Boolean lattice and G = B,, — {0}, the ring D(L,G) is known as the
Chow ring of the Boolean matroid and is the same as the Chow ring of Xx,,

D(Bn, Bn, — {0}) = A(Xs,,).
Then by Danilov-Stembridge theorem,

D(By, Bn — {0}) e, H*(Xs,,Q).
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Feichtner-Yuzvinsky basis for A( Xy, )

Feichtner, Yuzvinsky (2004) define the Chow ring D(L,G) of an atomic lattice £ with
respect to a certain type of subset G of L called a building set and find a basis.

When £ = B,, Boolean lattice and G = B,, — {0}, the ring D(L,G) is known as the
Chow ring of the Boolean matroid and is the same as the Chow ring of Xx,,

D(Bn,Bn — {0}) = A(Xx,,).
Then by Danilov-Stembridge theorem,
D(By, Bn —{0}) =e,, H"(Xx,,,Q).
In this case, the Feichtner-Yuzvinsky basis is
FY (Bn) = {afiefy o RERAERTESIS
e.g. FY(B3) = {1,212, 213, T23, T123, TTa3 }-

The natural &,-action on B,, induces an action on F'Y (B,).

H.-C. Liao (UM) 6/23



The G,,-equivariant bijection

We construct a map ¢ : FY(B,,) — {codes of length n} that respects the &,-action.
Theorem (L.)

The map ¢ : FY (Br) — {codes of length n} is a bijection that respects the &, -actions
and takes the degree of the monomials to the index of its image.

Example

The map ¢ sends 13712357 7234565 € FY (Bs) to a code as follows:
i — 121 2 — 121323 3 — 12132303

The F-Y basis F'Y (Bs) and Stembridge codes of length 3 :

2
1 Ti2  T13  X23  T123  Tios

[ 1 171 1 1

000 1io0 101 o011 111 111
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Binomial Eulerian story: Stellahedral variety

Binomial Eulerian polynomial A =1 +t2 ( )

(0,0,3)
Postnikov, Reiner, Williams (2008) : '
An(t) = dim HY (X5 )t/ ' ‘
§=0
where Xg s the toric variety associated to the

normal fan f]n of the stellohedron fIn. - 050

(3,0,0)
Shareshian, Wachs (2020) :

@ Introduced Qn(x,t) —&—chn k(x)Qr(x,t) where Qr(x,1) is the
graded Frobenius series of H* (Xg )
@ They also showed that Zch(H2j (Xin))tj = Qu(x,1).

=0
= H" (Xin) carries a permutation representation of &,,.
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Extended codes

We define an extended code to be a code (a, f) s.t.
@ «aisover {0,1,...,m} U {oo} with co's working as 0’s in Stembridge codes,
@ indexind(q, f) = >_"", f(j) as before, except that ind(cc...00) := —1.
e.g. ind(10200132231) = f(1) + f(2) + f3) =1+2+1=4.
Let CNn,]- be the set of extended codes of length n with index j

Example

The extended codes of length 3.
Cs,—1 = {oooc0o0}, C3,0 = {00000, 00000, 00000, 0000, 0000, 0000, 000},
C3,1 = {lioco, 1ool, 0011,011, 101,110,111}, Cs2 = {111}.
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Extended codes

We define an extended code to be a code (a, f) s.t.

@ «aisover {0,1,...,m} U {oo} with co's working as 0’s in Stembridge codes,

@ indexind(q, f) = >_"", f(j) as before, except that ind(cc...00) := —1.
e.g. ind(10200132231) = f(1) + f(2) + f3) =1+2+1=4.
Let CNn,]- be the set of extended codes of length n with index j

Example

The extended codes of length 3.
C3 —1 = {o0o000}, Cso = {Ooooo 00000, 00000, 0000, 0000, 0000, 000},
Cs.1 = {1100, 1001, 0011, 011, 101,110,111}, Cs, = {111}.

An Gy-action as before makes \7n,]~ = (an’j a permutation representation of G,.

Theorem (L. 2022)
Forn > 1, we have 377 Och(Vn i~ = Qn(x,1).
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Extended codes

We define an extended code to be a code (a, f) s.t.
@ «aisover {0,1,...,m} U {oo} with co's working as 0’s in Stembridge codes,
@ indexind(q, f) = >_"", f(j) as before, except that ind(cc...00) := —1.
e.g. ind(10200132231) = f(1) + f(2) + f3) =1+2+1=4.
Let 5n] be the set of extended codes of length n with index j

Example

The extended codes of length 3.
C3 —1 = {o0o000}, Cso = {Ooooo 00000, 00000, 0000, 0000, 0000, 000},
Cs.1 = {1100, 1001, 0011, 011, 101,110,111}, Cs, = {111}.

An Gy-action as before makes ‘N/n,j = (an’j a permutation representation of G,.
Theorem (L. 2022)
Forn >1, we have 377, ch(Vij—1)t) = Qn(x,1).

Is there a permutation basis for H*(Xg ) that has similar combinatorial structure as
extended codes?
H.-C. Liao (UM) 9/23



Basis for H*(Xg )

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the augmented Chow ring
A(M) of a matroid M.

When M is the Boolean matroid B,,, the ring A(B,,) is the same as A(Xg ). Hence by
Danilov-Stembridge theorem,
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Basis for H*(Xg )

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the augmented Chow ring
A(M) of a matroid M.

When M is the Boolean matroid B,,, the ring A(B,,) is the same as A(Xg ). Hence by
Danilov-Stembridge theorem,

A(Bn) =, H'(X5)-
We find an analogue of the Feichtner-Yuzvinsky basis for A(M).

@ The basis for A(B,,) is

Fye _ a1 _as ap . 0=FyCF1 CF2C...CFj,Cln]
FY(B") - {:EFIIFQ c TRy, 1<a1<| P, ai <|Fy|—|Fy_q[—1fori>2 [

e.g. FA’?(BS) =

2 2 2 2 3
{1 ‘ Z1,T2,T3,T12,T13,T23,L123 \ 12123, L2X123, L3T123, T12, L13, L23, L123 ‘ 30123}-

The same &,,-action works on /};‘?(Bn)
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The G,,-equivariant bijection

I:ethN\n/ be the set of extended codes of length n. We construct a map
¢ : FY(B,) — C, that respects the &,-action.

Theorem (L. )

The map 5 : ﬁ/(Bn) —Crn isa bijection that respects the &, -actions and takes the
degree of the monomials to the index—1 of its image.

Example

Let u; = 33%4.%’124733%245679 S FY(BQ), then ¢(u1) is

@ This also gives a bijective proof of the Shareshian—Wachs result that @n(x7 t) is
the graded Frobenius series of H™(Xg ).

H.-C. Liao (UM) 11/23



Feichtner, Yuzvinsky's “package” related to stellohedron

In Feichtner and Yuzvnisky's theory of building set and Chow ring, the following comes

like a package:
Package
L ‘ building set G ‘ reduced nested set complex NV (£, G) ‘ D(L,G)
B, | B,—{0} o1l A(Xs,)
L(M) | L(M)— {0} Bergman complex of M A(M
Braden, Huh, Matherne, Proudfoot, Wang, 2020
augmented Bergman complex of M E(M)
aug. Berg. cpx of B,, & oI, E(Bn)
Postnikov, Reiner, Williams, 2008
N(Bny1, B(Ky.,)) = 011,

B graphical building
"1 | set of n-star graph

12/23
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Augmented Chow ring of a matroid

Let M be a matroid on [n] with lattice of flats £(M) and independence complex Z(M).
The augmented Chow ring of M encodes information from both £(M) and Z(M) and is

defined as

o - g iamiest o

where I1 = (zrxq : F,G are incomparable in L(M)), I = (ysxr 11 ¢ F).
@ The numerator of (1) is the Stanley-Reisner ring of the augmented Bergman
complex (fan) of M.
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Augmented Bergman fan of a matroid

Definition: Let I € Z(M) and F = (F1 C ... C F}) be a chain in L(M).

@ We say [ is compatible with F, denoted by I < F, if I C Fy. In particular, I <0
for any I € Z(M).

@ For S C [n], write es == Ziesei'
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Augmented Bergman fan of a matroid

Definition: Let I € Z(M) and F = (F1 C ... C F}) be a chain in L(M).

@ We say [ is compatible with F, denoted by I < F, if I C Fy. In particular, I <0
for any I € Z(M).

@ For S C [n], write es == Ziesei'

The augmented Bergman fan S of Mis a simplicial fan in R™ consisting of cones
or<r indexed by compatible pairs I < F, where F is a chain in L(M) — {[n]} and

or<r =Rxo ({eitier U{—epmpr}rer).

The corresponding simplicial complex is called the augmented Bergman complex.
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Augmented Bergman fan of a matroid

Definition: Let I € Z(M) and F = (F1 C ... C F}) be a chain in L(M).

@ We say [ is compatible with F, denoted by I < F, if I C Fi. In particular, I <0
for any I € Z(M).

@ For S C [n], write es == Ziesei'

The augmented Bergman fan S of Mis a simplicial fan in R™ consisting of cones
or<r indexed by compatible pairs I < F, where F is a chain in L(M) — {[n]} and

or<r =Rxo ({eitier U{—epmpr}rer).
The corresponding simplicial complex is called the augmented Bergman complex.

[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan isn is
the normal fan of I1,,.
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is Oll;.

ap<p
o)
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§.

g
OL U{l}g@
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Stellohedron as a dual augmented Bergman complex
or<r =Rxo ({eitier U{—epmprtrer)
Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§.
9{2}<0

g,
0= {1}<0
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§
9{2}<0

g
90<{{2}} =t

{1}<0
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§.
9{2}<0

g
90<{{2}} =t

{1}<0

90<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§
9{2}<0

g
90<{{2}} =t

{1}<0

4

70<{0} 90<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§

T{2}<0
0{1,2}<0
(o
9p<{{2}} 00 T{1}<0
v
Tp<{0} Tp<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§

T{2}<0
0{1,2}<0
(o
9p<{{2}} 00 T{1}<0
O{1}<{{1}}
v
Tp<{0} Tp<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§
9{2}<0

{2}<{{2}} 7{1,2}<0

lox
90<{{2}} =0 I{1}<0
o{1r<{{1}}
4
70<{0} 90<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§
9{2}<0

{2}<{{2}} 7{1,2}<0

lox
90<{{2}} =0 I{1}<0
o{1r<{{1}}
0<{0,{1}}
70<{0} 90<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§
9{2}<0

{2}<{{2}} 7{1,2}<0

lox
90<{{2}} =0

{1}<0

20<{0.{2}} o{1r<{{1}}

0<{0,{1}}

70<{0} 90<{{1}}
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Stellohedron as a dual augmented Bergman complex

or<r =Rxo ({eitier U{—epmprtrer)

Example

Boolean matroid Bo, Z(B2) = {0,1,2,12}. The augmented Bergman complex is 8ﬁ’§

0{2}<0
o{2}<{{2}} 0{1,2}<0 or<o
2} <
Tp<p {2} < {{2} (1,2} <0
T9<{{2}} = I{1}<0
0 < {{2}} {13<0
o9<{0,{2}} O{1}<{{1}}
0 < {0, {2}} 1} < {{1}}
0<{0,{1}}
0 < 1
Tp<{0} T9<{{1}} =ty

H.-C. Liao (UM)
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Stellohedron II,, as a dual nested set complex
[Postnikov, Reiner, Williams, 2008]:

The n-star graph K1, = (V, E) with V = [n] U {*} and E = {{i,*} : ¢ € [n]}.
Consider the graphical building set

B(K1,,) :={I C V : the induced subgraph on I is connected},

then the reduced nested set complex N (B 1, B(K1,,)) is combinatorially equivalent to
Ol

Example

*

The correspo’rlclimg reduced nested set ﬁ\, &
complex is 81’[2*. A &

16 /23

f\, AN
T
B(K1,2) consists of the followmg elements: / 3\@2
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Connection between iBn and K/(Bn+1,B(K1,n))

Proposition (L. 2022)

There is a poset isomorphism between the face lattice of the augmented Bergman fan
S, and that of the reduced nested set complex N'(Bny1, B(Ki.n)).

Example
- I€Z(Bn),
N (B7L+17 BKl,n) < Or<F : Fisa flag of proper subsets of [n],
- ICmin(F)

€ ./V (B7,BK1,6)

<> {1,3} <{{1,3,6} c {1,3,5,6} C {1,3,4,5,6}}
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Connection for general matroids

Let M be a matroid with lattice of flats £(M) and independence complex Z(M).
We construct a new poset £(M) from £(M) and Z(M):

@ Asaset, L(M) = L(M)wI(M). Write F € L(M) as F. in £L(M).

@ For I € Z(M), define I < clps(I)« where clar(I) is the closure of I in M. The
relations inside £L(M),Z(M) stay the same.

Example

M= Usaﬁﬁc (Us.2) :]<1; I(Us.2) _|><]1

0 | /

Then the new poset is
123,

I\
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Connection for general matroids

Take G = {{1},...,{n}}U {Fi}rec(m) as the building set in L(M), then all faces of
the reduced nested set complex are of the form

Hithics WP per
for some compatible pair I < F where I € Z(M) and F is a chain of £L(M).

Theorem (L. ; Eur, Huh, Larson 2022)
@ There is a poset isomorphism between the face lattices of N'(L(M),G) and Sr:

{{i}}iel U {F*}Fe]-‘ S OI<F

for compatible pair I < F where I € Z(M) and chain F C L(M) — {[n]} of
proper flats.
@ D(L(M),G) = A(M).

This connection was also independently found by Chris Eur and later included in his
recent preprint with Huh and Larson

H.-C. Liao (UM) 19/23



Analogue of the Feichtner-Yuzvinsky basis

We apply Feichtner-Yuzvinsky's basis to the chow ring D(£(M),G) and obtain:
Corollary (L. 2022; Eur, Huh, Larson, 2022)
The augmented Chow ring A(M) of M has the following basis

E Ve ay _az ap . D=FyCF1CF>C...CFy,
FY (M) = {xleFQ “Tp t1<ay <rk(F1), a; <rk(F;)—rk(F;_1)—1 for i>2
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Summary

’ L ‘ building set G ‘ reduced nested set complex N(£,G) ‘ D(L,G) ‘
B, | B,—{0} OIT;, A(Xx,)
L(M) | L(M)—{0} Bergman complex of M A(M)
aug. Berg. cpx of B, & oI, A(By)

B graphical building
"1 set of n-star graph

*

N(Bni1,B(K1,,)) = 011,

augmented Bergman complex of M A(M)
L(M) | G N(L(M),G)

Consequently, E(M) = D(E(M),g) and hence has an FY-basis.
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Thank you!

«O>» «F>r «=r «=>» E AR



Related works

@ Since Xx,, 2 regular semisimple Hess(S, h) with h = (2,3,...,n,n), answering
Stembridge’s question gives a “dream” solution to a special case of the
Stanley-Stembridge conjecture.

@ Erasing Marks Conjecture : Chow (2015), using GKM theory, conjectured that
some classes in Hy(Xs,, ) when descending to H*(Xs,,) give such a basis.

@ Cho, Hong, and Lee (2020) proved the conjecture. It will be interesting to see the
relationship between our basis and theirs.
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