Stembridge codes and Chow rings

Hsin-Chieh Liao

University of Miami

FPSAC'23 at UC Davis

July 19 2023

3

イロト イヨト イヨト イヨト

The *Permutohedral variety* X_{Σ_n} is the toric variety associated to the normal fan Σ_n of the *permutohedron* Π_n . Its Poincaré polynomial

$$\sum_{j=0}^{n} \dim H^{2j}(X_{\Sigma_n})t^j = \sum_{\sigma \in \mathfrak{S}_n} t^{\mathsf{exc}(\sigma)}$$

is the Eulerian polynomial $A_n(t)$.

 $\mathbb{R}^{3}/\langle (1,1,1)\rangle \qquad x_{1} = x_{2}$ $(2,1,3) \qquad (1,2,3)$ $(3,1,2) \qquad (1,3,2)$ $(3,2,1) \qquad (2,3,1) \quad x_{1} = x_{3}$

イロト 不得下 イヨト イヨト

 $\mathsf{H}^*(X_{\Sigma_n})$ carries a representation of \mathfrak{S}_n induced from \mathfrak{S}_n acting on Σ_n .

Stanley (1989) calculated its Frobenius characteristic and showed that the rep. is a *permutation representation*.

Stembridge Codes (1992)

A code is a sequence α over $\{0, 1, \dots, m\}$ with marks s.t. for each $j = 1, 2, \dots, m$

- j occurs at least twice in α ;
- a mark is assigned to the *i*th occurrence of *j* for a unique $i \ge 2$.

Example:

$11320 \hat{2} \hat{3} \hat{1} 2$

We denote a code as (α, f) where f(j) = number of j's in front of the marked j. Example:

$$11320\hat{2}\hat{3}\hat{1}2 = (\alpha, f)$$

where $\alpha = 113202312$ and f(1) = 2, f(2) = 1, f(3) = 1.

The *index* of (α, f) : $ind(\alpha, f) \coloneqq \sum_{j=1}^{m} f(j)$. Example:

$$\operatorname{ind}(11320\hat{2}\hat{3}\hat{1}2) = f(1) + f(2) + f(3) = 4.$$

All codes of length 3

Stembridge Codes (1992)

A code is a sequence α over $\{0, 1, \dots, m\}$ with marks s.t. for each $j = 1, 2, \dots, m$

- j occurs at least twice in α ;
- a mark is assigned to the *i*th occurrence of *j* for a unique $i \ge 2$.

Example:

$11320\hat{2}\hat{3}\hat{1}2$

We denote a code as (α, f) where f(j) = number of j's in front of the marked j. Example:

$$11320\hat{2}\hat{3}\hat{1}2 = (\alpha, f)$$

where $\alpha = 113202312$ and f(1) = 2, f(2) = 1, f(3) = 1.

The *index* of (α, f) : $ind(\alpha, f) := \sum_{j=1}^{m} f(j)$. Example:

$$\operatorname{ind}(11320\hat{2}\hat{3}\hat{1}2) = f(1) + f(2) + f(3) = 4.$$

All codes of length 3

Stembridge Codes (1992)

A code is a sequence α over $\{0, 1, \dots, m\}$ with marks s.t. for each $j = 1, 2, \dots, m$

- j occurs at least twice in α ;
- a mark is assigned to the *i*th occurrence of j for a unique $i \ge 2$.

Example:

$11320\hat{2}\hat{3}\hat{1}2$

We denote a code as (α, f) where f(j) = number of j's in front of the marked j. Example:

$$11320\hat{2}\hat{3}\hat{1}2 = (\alpha, f)$$

where $\alpha = 113202312$ and f(1) = 2, f(2) = 1, f(3) = 1.

The *index* of (α, f) : ind $(\alpha, f) \coloneqq \sum_{j=1}^{m} f(j)$. Example:

$$\operatorname{ind}(11320\hat{2}\hat{3}\hat{1}2) = f(1) + f(2) + f(3) = 4.$$

All codes of length 3

Let $C_{n,j}$ be the set of codes of length n with index j.

The \mathfrak{S}_n -action $\sigma \cdot (\alpha_1 \alpha_2, \dots \alpha_n, f) := (\alpha_{\sigma(1)} \alpha_{\sigma(2)} \dots \alpha_{\sigma(n)}, f)$ for $\sigma \in \mathfrak{S}_n$ makes $V_{n,j} = \mathbb{C}\mathcal{C}_{n,j}$ a permutation representation of \mathfrak{S}_n .

Stembridge (1992) used Stanley's formula for $ch(H^*(X_{\Sigma_n}))$ to show that for all $0 \le j \le n-1$,

$$V_{n,j} \cong_{\mathfrak{S}_n} H^{2j}(X_{\Sigma_n}, \mathbb{C}).$$

He also asked: can we find a permutation basis for $H^*(X_{\Sigma_n})$ that induced the representation?

In our work, we give an explicit permutation basis in terms of Chow rings. And it is clear how \mathfrak{S}_n permutes the basis.

Theorem (Danilov 1978, Stembridge 1994)

Fix a lattice \mathbb{Z}^n with standard basis $\{e_i\}_{i=1,...,n}$ in a Euclidean *n*-space *E*. Let *P* be a simple *n*-lattice polytope with normal fan $\Sigma(P)$ in *E* and *P*^{*} be its dual simplicial polytope whose set of vertices is $V(P^*)$. Denote by $K[\partial P^*]$ the Stanley-Reisner ring of ∂P^* over a field *K* of charK = 0. If a finite group *G* acts on $\Sigma(P)$ simplicially and freely, then

$$H^*(X_{\Sigma(P)}, K) \cong \frac{K[\partial P^*]}{\langle \theta_1, \dots, \theta_n \rangle}$$
 as *G*-modules,

where

$$heta_i = \sum_{v \in V(P^*)} \langle v, e_i \rangle x_v ext{ for } i = 1, \dots, n.$$

• The RHS is known as the Chow ring $A(X_{\Sigma(P)})$ of the toric variety $X_{\Sigma(P)}$.

Feichtner-Yuzvinsky basis for $A(X_{\Sigma_n})$

Feichtner, Yuzvinsky (2004) define the Chow ring $D(\mathcal{L}, \mathcal{G})$ of an atomic lattice \mathcal{L} with respect to a certain type of subset \mathcal{G} of \mathcal{L} called a *building set* and find a basis.

When $\mathcal{L} = B_n$ Boolean lattice and $\mathcal{G} = B_n - \{\emptyset\}$, the ring $D(\mathcal{L}, \mathcal{G})$ is known as the Chow ring of the Boolean matroid and is the same as the Chow ring of X_{Σ_n} ,

$$D(B_n, B_n - \{\emptyset\}) = A(X_{\Sigma_n}).$$

Then by Danilov-Stembridge theorem,

$$D(B_n, B_n - \{\emptyset\}) \cong_{\mathfrak{S}_n} H^*(X_{\Sigma_n}, \mathbb{Q}).$$

In this case, the Feichtner-Yuzvinsky basis is

$$FY(\mathsf{B}_n) \coloneqq \left\{ x_{F_1}^{a_1} x_{F_2}^{a_2} \dots x_{F_k}^{a_k} : \begin{array}{c} 0 = F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \dots \subsetneq F_k \subseteq [n], \\ 1 \le a_i \le |F_i| - |F_{i-1}| - 1 \end{array} \right\}.$$

e.g. $FY(B_3) = \{1, x_{12}, x_{13}, x_{23}, x_{123}, x_{123}^2\}.$

The natural \mathfrak{S}_n -action on B_n induces an action on $FY(\mathsf{B}_n)$.

Feichtner, Yuzvinsky (2004) define the Chow ring $D(\mathcal{L}, \mathcal{G})$ of an atomic lattice \mathcal{L} with respect to a certain type of subset \mathcal{G} of \mathcal{L} called a *building set* and find a basis.

When $\mathcal{L} = B_n$ Boolean lattice and $\mathcal{G} = B_n - \{\emptyset\}$, the ring $D(\mathcal{L}, \mathcal{G})$ is known as the Chow ring of the Boolean matroid and is the same as the Chow ring of X_{Σ_n} ,

$$D(B_n, B_n - \{\emptyset\}) = A(X_{\Sigma_n}).$$

Then by Danilov-Stembridge theorem,

$$D(B_n, B_n - \{\emptyset\}) \cong_{\mathfrak{S}_n} H^*(X_{\Sigma_n}, \mathbb{Q}).$$

In this case, the Feichtner-Yuzvinsky basis is

$$FY(\mathsf{B}_n) \coloneqq \left\{ x_{F_1}^{a_1} x_{F_2}^{a_2} \dots x_{F_k}^{a_k} : \begin{array}{c} \emptyset = F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \dots \subsetneq F_k \subseteq [n], \\ 1 \le a_i \le |F_i| - |F_{i-1}| - 1 \end{array} \right\}.$$

e.g. $FY(\mathsf{B}_3) = \{1, x_{12}, x_{13}, x_{23}, x_{123}, x_{123}^2\}.$

The natural \mathfrak{S}_n -action on B_n induces an action on $FY(\mathsf{B}_n)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

The \mathfrak{S}_n -equivariant bijection

We construct a map $\phi : FY(B_n) \to \{ \text{codes of length } n \} \text{ that respects the } \mathfrak{S}_n \text{-action.}$

Theorem (L.)

The map $\phi: FY(B_n) \to \{\text{codes of length } n\}$ is a bijection that respects the \mathfrak{S}_n -actions and takes the degree of the monomials to the index of its image.

Example

The map ϕ sends $x_{13}x_{1235}x_{1234568}^2 \in FY(B_8)$ to a code as follows:

$$1_\hat{1}_____ \longrightarrow 12\hat{1}_\hat{2}__ \longrightarrow 12\hat{1}3\hat{2}3_\hat{3} \rightarrow 12\hat{1}3\hat{2}30\hat{3}.$$

The F-Y basis $FY(B_3)$ and Stembridge codes of length 3 :

イロト イポト イヨト イヨト

Binomial Eulerian story: Stellahedral variety

Binomial Eulerian polynomial
$$\widetilde{A}_n(t) := 1 + t \sum_{k=1}^n \binom{n}{k} A_k(t)$$

Postnikov, Reiner, Williams (2008) :

$$\begin{split} \widetilde{A}_n(t) &= \sum_{j=0}^n \dim H^{2j}(X_{\widetilde{\Sigma}_n}) t^j \\ \text{where } X_{\widetilde{\Sigma}_n} \text{ is the toric variety associated to the} \\ \text{normal fan } \widetilde{\Sigma}_n \text{ of the stellohedron } \widetilde{\Pi}_n. \end{split}$$

Shareshian, Wachs (2020) :

• Introduced $\widetilde{Q}_n(\mathbf{x},t) \coloneqq h_n(\mathbf{x}) + t \sum_{k=1}^n h_{n-k}(\mathbf{x}) Q_k(\mathbf{x},t)$ where $Q_k(\mathbf{x},t)$ is the graded Frobenius series of $H^*(X_{\Sigma_n})$.

• They also showed that
$$\sum_{j=0}^{n} \operatorname{ch}(H^{2j}(X_{\widetilde{\Sigma}_{n}}))t^{j} = \widetilde{Q}_{n}(\mathbf{x}, t).$$
$$\Rightarrow H^{*}(X_{\widetilde{\Sigma}_{n}}) \text{ carries a permutation representation of } \mathfrak{S}_{n}$$

Extended codes

We define an extended code to be a code (α,f) s.t.

- α is over $\{0, 1, \dots, m\} \cup \{\infty\}$ with ∞ 's working as 0's in Stembridge codes,
- index $\operatorname{ind}(\alpha, f) \coloneqq \sum_{j=1}^m f(j)$ as before, except that $\operatorname{ind}(\infty \dots \infty) := -1$.

e.g. $\operatorname{ind}(102\infty\hat{1}32\hat{2}\hat{3}1) = f(1) + f(2) + f(3) = 1 + 2 + 1 = 4.$

Let $\widetilde{\mathcal{C}}_{n,j}$ be the set of extended codes of length n with index j

Example

The extended codes of length 3. $\widetilde{C}_{3,-1} = \{\infty\infty\infty\}, \quad \widetilde{C}_{3,0} = \{0\infty\infty, \infty0\infty, \infty\infty0, \infty00, 0\infty0, 00\infty, 000\}, \quad \widetilde{C}_{3,1} = \{1\hat{1}\infty, 1\infty\hat{1}, \infty1\hat{1}, 01\hat{1}, 1\hat{1}0, 1\hat{1}1\}, \quad \widetilde{C}_{3,2} = \{11\hat{1}\}.$

An \mathfrak{S}_n -action as before makes $\widetilde{V}_{n,j} = \mathbb{C}\widetilde{\mathcal{C}}_{n,j}$ a permutation representation of \mathfrak{S}_n .

Theorem (L. 2022)

For
$$n \ge 1$$
, we have $\sum_{j=0}^{n} \operatorname{ch}(\widetilde{V}_{n,j-1})t^{j} = \widetilde{Q}_{n}(\mathbf{x},t)$.

Is there a permutation basis for $H^*(X_{\widetilde{\Sigma}_n})$ that has similar combinatorial structure as extended codes?

Extended codes

We define an extended code to be a code (α,f) s.t.

- α is over $\{0,1,\ldots,m\}\cup\{\infty\}$ with $\infty\text{'s working as }0\text{'s in Stembridge codes,}$
- index $\operatorname{ind}(\alpha, f) \coloneqq \sum_{j=1}^m f(j)$ as before, except that $\operatorname{ind}(\infty \dots \infty) := -1$.

e.g. $\operatorname{ind}(102\infty\hat{1}32\hat{2}\hat{3}1) = f(1) + f(2) + f(3) = 1 + 2 + 1 = 4.$

Let $\widetilde{\mathcal{C}}_{n,j}$ be the set of extended codes of length n with index j

Example

The extended codes of length 3. $\widetilde{C}_{3,-1} = \{\infty\infty\infty\}, \quad \widetilde{C}_{3,0} = \{0\infty\infty, \infty0\infty, \infty\infty0, \infty00, 0\infty0, 00\infty, 000\}, \quad \widetilde{C}_{3,1} = \{1\hat{1}\infty, 1\infty\hat{1}, \infty\hat{1}\hat{1}, 01\hat{1}, 1\hat{1}\hat{0}, 1\hat{1}\hat{1}\}, \quad \widetilde{C}_{3,2} = \{11\hat{1}\}.$

An \mathfrak{S}_n -action as before makes $\widetilde{V}_{n,j} = \mathbb{C}\widetilde{\mathcal{C}}_{n,j}$ a permutation representation of \mathfrak{S}_n .

Theorem (L. 2022)

For
$$n \ge 1$$
, we have $\sum_{j=0}^{n} \operatorname{ch}(\widetilde{V}_{n,j-1})t^{j} = \widetilde{Q}_{n}(\mathbf{x},t)$.

Is there a permutation basis for $H^*(X_{\widetilde{\Sigma}_n})$ that has similar combinatorial structure as extended codes?

Extended codes

We define an extended code to be a code (α,f) s.t.

- α is over $\{0,1,\ldots,m\}\cup\{\infty\}$ with $\infty\text{'s working as }0\text{'s in Stembridge codes,}$
- index $\operatorname{ind}(\alpha, f) \coloneqq \sum_{j=1}^m f(j)$ as before, except that $\operatorname{ind}(\infty \dots \infty) := -1$.

e.g. $\operatorname{ind}(102\infty\hat{1}32\hat{2}\hat{3}1) = f(1) + f(2) + f(3) = 1 + 2 + 1 = 4.$

Let $\widetilde{\mathcal{C}}_{n,j}$ be the set of extended codes of length n with index j

Example

The extended codes of length 3. $\widetilde{C}_{3,-1} = \{\infty\infty\infty\}, \quad \widetilde{C}_{3,0} = \{0\infty\infty, \infty0\infty, \infty\infty0, \infty00, 0\infty0, 00\infty, 000\}, \quad \widetilde{C}_{3,1} = \{1\hat{1}\infty, 1\infty\hat{1}, \infty\hat{1}\hat{1}, 01\hat{1}, 1\hat{1}\hat{0}, 1\hat{1}\hat{1}\}, \quad \widetilde{C}_{3,2} = \{11\hat{1}\}.$

An \mathfrak{S}_n -action as before makes $\widetilde{V}_{n,j} = \mathbb{C}\widetilde{\mathcal{C}}_{n,j}$ a permutation representation of \mathfrak{S}_n .

Theorem (L. 2022)

For
$$n \ge 1$$
, we have $\sum_{j=0}^{n} \operatorname{ch}(\widetilde{V}_{n,j-1})t^{j} = \widetilde{Q}_{n}(\mathbf{x},t)$.

Is there a permutation basis for $H^*(X_{\widetilde{\Sigma}_n})$ that has similar combinatorial structure as extended codes?

Basis for $H^*(X_{\widetilde{\Sigma}_n})$

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the *augmented Chow ring* $\widetilde{A}(M)$ of a matroid M.

When M is the Boolean matroid B_n , the ring $\widetilde{A}(B_n)$ is the same as $A(X_{\widetilde{\Sigma}_n})$. Hence by Danilov-Stembridge theorem,

$$\widetilde{A}(\mathsf{B}_n) \cong_{\mathfrak{S}_n} H^*(X_{\widetilde{\Sigma}_n}).$$

We find an analogue of the Feichtner-Yuzvinsky basis for $\widetilde{A}(M)$.

• The basis for $A(B_n)$ is

 $\widetilde{FY}(\mathsf{B}_n) = \left\{ x_{F_1}^{a_1} x_{F_2}^{a_2} \dots x_{F_k}^{a_k} : \underset{1 \le a_1 \le |F_1|, a_i \le |F_i| - |F_{i-1}| - 1 \text{ for } i \ge 2}{\emptyset - F_i \le F_i} \right\}.$

e.g. $\widetilde{FY}(B_3) = \{1 \mid x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123} \mid x_1 x_{123}, x_2 x_{123}, x_3 x_{123}, x_{12}^2, x_{13}^2, x_{23}^2, x_{123}^2 \mid x_{123}^3\}.$ The same \mathfrak{S}_n -action works on $\widetilde{FY}(B_n)$.

▲ロト ▲園 ト ▲ ヨト ▲ ヨト 一 ヨー つんで

Basis for $H^*(X_{\widetilde{\Sigma}_n})$

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the *augmented Chow ring* $\widetilde{A}(M)$ of a matroid M.

When M is the Boolean matroid B_n , the ring $\widetilde{A}(B_n)$ is the same as $A(X_{\widetilde{\Sigma}_n})$. Hence by Danilov-Stembridge theorem,

$$\widetilde{A}(\mathsf{B}_n) \cong_{\mathfrak{S}_n} H^*(X_{\widetilde{\Sigma}_n}).$$

We find an analogue of the Feichtner-Yuzvinsky basis for $\widetilde{A}(M)$.

• The basis for
$$\widetilde{A}(\mathsf{B}_n)$$
 is

$$\widetilde{FY}(\mathsf{B}_n) = \left\{ x_{F_1}^{a_1} x_{F_2}^{a_2} \dots x_{F_k}^{a_k} : \begin{array}{c} \emptyset = F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \dots \subsetneq F_k \subseteq [n] \\ 1 \le a_1 \le |F_1|, \ a_i \le |F_i| - |F_{i-1}| - 1 \text{ for } i \ge 2 \end{array} \right\}.$$

e.g. $\widetilde{FY}(\mathsf{B}_3) = \{1 \mid x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123} \mid x_1 x_{123}, x_2 x_{123}, x_3 x_{123}, x_{12}^2, x_{13}^2, x_{23}^2, x_{123}^2 \mid x_{123}^3\}.$ The same \mathfrak{S}_n -action works on $\widetilde{FY}(\mathsf{B}_n)$.

▲ロト ▲園 ト ▲ ヨト ▲ ヨト 一 ヨー つんで

The \mathfrak{S}_n -equivariant bijection

Let $\widetilde{\mathcal{C}}_n$ be the set of extended codes of length n. We construct a map $\widetilde{\phi}: \widetilde{FY}(\mathsf{B}_n) \to \widetilde{\mathcal{C}}_n$ that respects the \mathfrak{S}_n -action.

Theorem (L.)

The map $\widetilde{\phi}: \widetilde{FY}(B_n) \to \widetilde{C}_n$ is a bijection that respects the \mathfrak{S}_n -actions and takes the degree of the monomials to the index-1 of its image.

Example

Let
$$u_1 = x_{14}^1 x_{1247} x_{1245679}^2 \in \widetilde{FY}(\mathsf{B}_9)$$
, then $\widetilde{\phi}(u_1)$ is
 $0_ 0_ _ _] \to 01_ 0_ 1_] \to 01_ 0221_ 2 \to 01\infty 0221 \infty 2$.
Let $u_2 = x_{14}^2 x_{1247} x_{1245679}^2 \in \widetilde{FY}(\mathsf{B}_9)$, then $\widetilde{\phi}(u_2)$ is
 $1_ 1_ _ _] \to 12_ 1_ 2_] \to 12_ 1332_ 3 \to 12\infty 1332 \infty 3$

 This also gives a bijective proof of the Shareshian–Wachs result that Q
n(x, t) is the graded Frobenius series of H^{*}(X{Σn}).

イロン 不通 とうほう うほう 二日

Feichtner, Yuzvinsky's "package" related to stellohedron

In Feichtner and Yuzvnisky's theory of building set and Chow ring, the following comes like a package:

Package				
L	building set ${\cal G}$	reduced nested set complex $\widetilde{\mathcal{N}}(\mathcal{L},\mathcal{G})$	$D(\mathcal{L},\mathcal{G})$	
B_n	$B_n - \{\emptyset\}$	$\partial \Pi_n^*$	$A(X_{\Sigma_n})$	
$\mathcal{L}(M)$	$\mathcal{L}(M) - \{\emptyset\}$	Bergman complex of M	A(M)	
Braden, Huh, Matherne, Proudfoot, Wang, 2020				
		augmented Bergman complex of M	$\widetilde{A}(M)$	
		aug. Berg. cpx of $B_n\cong\partial\widetilde{\Pi_n}^*$	$\widetilde{A}(B_n)$	
Postnikov, Reiner, Williams, 2008				
B_{n+1}	graphical building set of <i>n</i> -star graph	$\widetilde{\mathcal{N}}(B_{n+1},\mathcal{B}(K_{1,n}))\cong\partial\widetilde{\Pi_n}^*$		

Let M be a matroid on [n] with lattice of flats $\mathcal{L}(M)$ and independence complex $\mathcal{I}(M)$. The *augmented Chow ring of* M encodes information from both $\mathcal{L}(M)$ and $\mathcal{I}(M)$ and is defined as

$$\widetilde{A}(M) := \frac{\mathbb{Q}\left[\left\{x_F\right\}_{F \in \mathcal{L}(M) \setminus [n]} \cup \left\{y_1, y_2, \dots, y_n\right\}\right] / (I_1 + I_2)}{\langle y_i - \sum_{F: i \notin F} x_F \rangle_{i=1,2,\dots,n}}$$
(1)

where $I_1 = \langle x_F x_G : F, G \text{ are incomparable in } \mathcal{L}(M) \rangle$, $I_2 = \langle y_i x_F : i \notin F \rangle$.

• The numerator of (1) is the Stanley-Reisner ring of the augmented Bergman complex (fan) of *M*.

Augmented Bergman fan of a matroid

<u>Definition</u>: Let $I \in \mathcal{I}(M)$ and $\mathcal{F} = (F_1 \subsetneq \ldots \subsetneq F_k)$ be a chain in $\mathcal{L}(M)$.

We say I is compatible with F, denoted by I ≤ F, if I ⊆ F₁. In particular, I ≤ Ø for any I ∈ I(M).

• For
$$S \subseteq [n]$$
, write $e_S \coloneqq \sum_{i \in S} e_i$.

The augmented Bergman fan Σ_M of M is a simplicial fan in \mathbb{R}^n consisting of cones $\sigma_{I \leq \mathcal{F}}$ indexed by compatible pairs $I \leq \mathcal{F}$, where \mathcal{F} is a chain in $\mathcal{L}(M) - \{[n]\}$ and

$$\sigma_{I\leq\mathcal{F}} = \mathbb{R}_{\geq 0} \left(\{e_i\}_{i\in I} \cup \{-e_{[n]\setminus F}\}_{F\in\mathcal{F}} \right).$$

The corresponding simplicial complex is called the *augmented Bergman complex*.

[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan $ilde{\Sigma}_{\mathsf{B}_n}$ is the normal fan of $\widetilde{\Pi}_n$.

Augmented Bergman fan of a matroid

<u>Definition</u>: Let $I \in \mathcal{I}(M)$ and $\mathcal{F} = (F_1 \subsetneq \ldots \subsetneq F_k)$ be a chain in $\mathcal{L}(M)$.

We say I is compatible with *F*, denoted by I ≤ *F*, if I ⊆ F₁. In particular, I ≤ Ø for any I ∈ *I*(M).

• For
$$S \subseteq [n]$$
, write $e_S \coloneqq \sum_{i \in S} e_i$.

The augmented Bergman fan $\widetilde{\Sigma}_M$ of M is a simplicial fan in \mathbb{R}^n consisting of cones $\sigma_{I \leq \mathcal{F}}$ indexed by compatible pairs $I \leq \mathcal{F}$, where \mathcal{F} is a chain in $\mathcal{L}(M) - \{[n]\}$ and

$$\sigma_{I\leq\mathcal{F}}=\mathbb{R}_{\geq 0}\left(\{e_i\}_{i\in I}\cup\{-e_{[n]\setminus F}\}_{F\in\mathcal{F}}\right).$$

The corresponding simplicial complex is called the *augmented Bergman complex*.

[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan Σ_{B_n} is the normal fan of $\widetilde{\Pi}_n.$

▲ロト ▲ 課 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q @

Augmented Bergman fan of a matroid

<u>Definition</u>: Let $I \in \mathcal{I}(M)$ and $\mathcal{F} = (F_1 \subsetneq \ldots \subsetneq F_k)$ be a chain in $\mathcal{L}(M)$.

We say I is compatible with *F*, denoted by I ≤ *F*, if I ⊆ F₁. In particular, I ≤ Ø for any I ∈ *I*(M).

• For
$$S \subseteq [n]$$
, write $e_S \coloneqq \sum_{i \in S} e_i$.

The augmented Bergman fan $\widetilde{\Sigma}_M$ of M is a simplicial fan in \mathbb{R}^n consisting of cones $\sigma_{I \leq \mathcal{F}}$ indexed by compatible pairs $I \leq \mathcal{F}$, where \mathcal{F} is a chain in $\mathcal{L}(M) - \{[n]\}$ and

$$\sigma_{I\leq\mathcal{F}}=\mathbb{R}_{\geq 0}\left(\{e_i\}_{i\in I}\cup\{-e_{[n]\setminus F}\}_{F\in\mathcal{F}}\right).$$

The corresponding simplicial complex is called the *augmented Bergman complex*.

[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan $\tilde{\Sigma}_{B_n}$ is the normal fan of $\tilde{\Pi}_n$.

▲ロト ▲ 課 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q @

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{e_i\}_{i \in I} \cup \{-e_{[n] \setminus F}\}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$.

3

・ロト ・回ト ・ヨト ・ ヨト

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{e_i\}_{i \in I} \cup \{-e_{[n] \setminus F}\}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$.

3

イロト 人間ト イヨト イヨト

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{e_i\}_{i \in I} \cup \{-e_{[n] \setminus F}\}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

3

イロト 人間ト イヨト イヨト

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{e_i\}_{i \in I} \cup \{-e_{[n] \setminus F}\}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

3

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

3

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{e_i\}_{i \in I} \cup \{-e_{[n] \setminus F}\}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

э

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

э

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

э

イロト イヨト イヨト -

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

3

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

3

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

3

イロト イヨト イヨト ・

 $\sigma_{I \leq \mathcal{F}} \coloneqq \mathbb{R}_{\geq 0} \left(\{ e_i \}_{i \in I} \cup \{ -e_{[n] \setminus F} \}_{F \in \mathcal{F}} \right)$

Example

Boolean matroid B₂, $\mathcal{I}(B_2) = \{\emptyset, 1, 2, 12\}$. The augmented Bergman complex is $\partial \Pi_2^*$. $\sigma_{\{2\} \leq \emptyset}$

э

イロト イボト イヨト イヨト

Stellohedron $\widetilde{\Pi}_n$ as a dual nested set complex

[Postnikov, Reiner, Williams, 2008]: The *n*-star graph $K_{1,n} := (V, E)$ with $V = [n] \cup \{*\}$ and $E = \{\{i, *\} : i \in [n]\}$. Consider the graphical building set

 $\mathcal{B}(K_{1,n}) \coloneqq \{ I \subset V : \text{the induced subgraph on } I \text{ is connected} \},\$

then the reduced nested set complex $\widetilde{\mathcal{N}}(B_{n+1}, \mathcal{B}(K_{1,n}))$ is combinatorially equivalent to $\partial \widetilde{\Pi}_n^*$.

Connection between $\widetilde{\Sigma}_{\mathsf{B}_n}$ and $\widetilde{\mathcal{N}}(B_{n+1}, \mathcal{B}(K_{1,n}))$

Proposition (L. 2022)

There is a poset isomorphism between the face lattice of the augmented Bergman fan $\widetilde{\Sigma}_{B_n}$ and that of the reduced nested set complex $\widetilde{\mathcal{N}}(B_{n+1}, \mathcal{B}(K_{1,n}))$.

Example

$$\widetilde{\mathcal{N}}\left(\mathsf{B}_{n+1}, B_{K_{1,n}}\right) \longleftrightarrow \left\{ \sigma_{I \leq \mathcal{F}} : \mathcal{F} \text{ is a flag of proper subsets of } [n], \right\}$$

$$\stackrel{I \in \mathcal{I}(\mathsf{B}_n),}{I \subset \min(\mathcal{F})}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Connection for general matroids

Let M be a matroid with lattice of flats $\mathcal{L}(M)$ and independence complex $\mathcal{I}(M)$.

We construct a new poset $\widetilde{\mathcal{L}}(M)$ from $\mathcal{L}(M)$ and $\mathcal{I}(M)$:

- As a set, $\widetilde{\mathcal{L}}(M) = \mathcal{L}(M) \uplus \mathcal{I}(M)$. Write $F \in \mathcal{L}(M)$ as F_* in $\widetilde{\mathcal{L}}(M)$.
- For $I \in \mathcal{I}(M)$, define $I < cl_M(I)_*$ where $cl_M(I)$ is the closure of I in M. The relations inside $\mathcal{L}(M), \mathcal{I}(M)$ stay the same.

Connection for general matroids

Take $\widetilde{\mathcal{G}} = \{\{1\}, \ldots, \{n\}\} \cup \{F_*\}_{F \in \mathcal{L}(M)}$ as the building set in $\widetilde{\mathcal{L}}(M)$, then all faces of the reduced nested set complex are of the form

$$\{\{i\}\}_{i\in I} \cup \{F_*\}_{F\in\mathcal{F}}$$

for some compatible pair $I \leq \mathcal{F}$ where $I \in \mathcal{I}(M)$ and \mathcal{F} is a chain of $\mathcal{L}(M)$.

Theorem (L.; Eur, Huh, Larson 2022)

1 There is a poset isomorphism between the face lattices of $\widetilde{\mathcal{N}}(\widetilde{\mathcal{L}}(M), \widetilde{\mathcal{G}})$ and $\widetilde{\Sigma}_M$:

$$\{\{i\}\}_{i\in I}\cup\{F_*\}_{F\in\mathcal{F}}\longleftrightarrow\sigma_{I\leq\mathcal{F}}$$

for compatible pair $I \leq \mathcal{F}$ where $I \in \mathcal{I}(M)$ and chain $\mathcal{F} \subset \mathcal{L}(M) - \{[n]\}$ of proper flats. 2 $D(\widetilde{L}(M), \widetilde{\mathcal{G}}) = \widetilde{A}(M)$.

This connection was also independently found by Chris Eur and later included in his recent preprint with Huh and Larson

We apply Feichtner-Yuzvinsky's basis to the chow ring $D(\widetilde{\mathcal{L}}(M), \widetilde{\mathcal{G}})$ and obtain:

Corollary (L. 2022; Eur, Huh, Larson, 2022)

The augmented Chow ring $\widetilde{A}(M)$ of M has the following basis

 $\widetilde{FY}(M) \coloneqq \left\{ x_{F_1}^{a_1} x_{F_2}^{a_2} \dots x_{F_k}^{a_k} : \underset{1 \le a_1 \le \operatorname{rk}(F_1), \ a_i \le \operatorname{rk}(F_i) - \operatorname{rk}(F_{i-1}) - 1 \text{ for } i \ge 2}{\emptyset} \right\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

L	building set ${\cal G}$	reduced nested set complex $\widetilde{\mathcal{N}}(\mathcal{L},\mathcal{G})$	$D(\mathcal{L},\mathcal{G})$
B_n	$B_n - \{\emptyset\}$	$\partial \Pi_n^*$	$A(X_{\Sigma_n})$
$\mathcal{L}(M)$	$\mathcal{L}(M) - \{\emptyset\}$	Bergman complex of M	A(M)
		aug. Berg. cpx of $B_n\cong\partial\widetilde{\Pi_n}^*$	$\widetilde{A}(B_n)$
B_{n+1}	graphical building set of <i>n</i> -star graph	$\widetilde{\mathcal{N}}(B_{n+1},\mathcal{B}(K_{1,n}))\cong\partial\widetilde{\Pi_n}^*$	
		augmented Bergman complex of M	$\widetilde{A}(M)$
$\widetilde{\mathcal{L}}(M)$	$\widetilde{\mathcal{G}}$	$\widetilde{\mathcal{N}}(\widetilde{\mathcal{L}}(M),\widetilde{\mathcal{G}})$	

Consequently, $\widetilde{A}(M)=D(\widetilde{\mathcal{L}}(M),\widetilde{\mathcal{G}})$ and hence has an FY-basis.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Thank you!

H.-C. Liao (UM)

22 / 23

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Since $X_{\Sigma_n} \cong$ regular semisimple $\operatorname{Hess}(S, h)$ with $h = (2, 3, \dots, n, n)$, answering Stembridge's question gives a "dream" solution to a special case of the Stanley-Stembridge conjecture.
- Erasing Marks Conjecture : Chow (2015), using GKM theory, conjectured that some classes in $H_T^*(X_{\Sigma_n})$ when descending to $H^*(X_{\Sigma_n})$ give such a basis.
- Cho, Hong, and Lee (2020) proved the conjecture. It will be interesting to see the relationship between our basis and theirs.