# Stembridge codes and Chow rings 

Hsin-Chieh Liao<br>University of Miami

FPSAC'23 at UC Davis
July 192023

## Eulerian story : Permutohedral variety

The Permutohedral variety $X_{\Sigma_{n}}$ is the toric variety associated to the normal fan $\Sigma_{n}$ of the permutohedron $\Pi_{n}$. Its Poincaré polynomial

$$
\sum_{j=0}^{n} \operatorname{dim} H^{2 j}\left(X_{\Sigma_{n}}\right) t^{j}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{exc}(\sigma)}
$$

is the Eulerian polynomial $A_{n}(t)$.

$\mathrm{H}^{*}\left(X_{\Sigma_{n}}\right)$ carries a representation of $\mathfrak{S}_{n}$ induced from $\mathfrak{S}_{n}$ acting on $\Sigma_{n}$.
Stanley (1989) calculated its Frobenius characteristic and showed that the rep. is a permutation representation.

## Stembridge Codes (1992)

A code is a sequence $\alpha$ over $\{0,1, \ldots, m\}$ with marks s.t. for each $j=1,2, \ldots, m$

- $j$ occurs at least twice in $\alpha$;
- a mark is assigned to the $i$ th occurrence of $j$ for a unique $i \geq 2$.


## Example:

$113202 \hat{2} \hat{3} 1 ̂ 2$
We denote a code as $(\alpha, f)$ where $f(j)=$ number of $j$ 's in front of the marked $j$ $113202312=(\alpha, f)$
where $\alpha=113202312$ and $f(1)=2, f(2)=1, f(3)=1$. The index of $(\alpha, f): \operatorname{ind}(\alpha, f):=\sum_{j=1}^{m} f(j)$

$$
\operatorname{ind}(11320 \hat{2} \hat{3} \hat{1} 2)=f(1)+f(2)+f(3)=4 .
$$

All codes of length 3

## Stembridge Codes (1992)

A code is a sequence $\alpha$ over $\{0,1, \ldots, m\}$ with marks s.t. for each $j=1,2, \ldots, m$

- $j$ occurs at least twice in $\alpha$;
- a mark is assigned to the $i$ th occurrence of $j$ for a unique $i \geq 2$.


## Example:

$$
11320 \hat{2} \hat{3} \hat{1} 2
$$

We denote a code as $(\alpha, f)$ where $f(j)=$ number of $j$ 's in front of the marked $j$. Example:

$$
11320 \hat{2} \hat{3} \hat{1} 2=(\alpha, f)
$$

where $\alpha=113202312$ and $f(1)=2, f(2)=1, f(3)=1$.
The index of $(\alpha, f): \operatorname{ind}(\alpha, f):=\sum_{j=1}^{m} f(j)$.
$\operatorname{ind}(113202 \hat{3} \hat{1} 2)=f(1)+f(2)+f(3)=4$.
All codes of length 3

## Stembridge Codes (1992)

A code is a sequence $\alpha$ over $\{0,1, \ldots, m\}$ with marks s.t. for each $j=1,2, \ldots, m$

- $j$ occurs at least twice in $\alpha$;
- a mark is assigned to the $i$ th occurrence of $j$ for a unique $i \geq 2$.


## Example:

## $113202 \hat{2} 3 \hat{1} 2$

We denote a code as $(\alpha, f)$ where $f(j)=$ number of $j$ 's in front of the marked $j$. Example:

$$
11320 \hat{2} \hat{3} \hat{1} 2=(\alpha, f)
$$

where $\alpha=113202312$ and $f(1)=2, f(2)=1, f(3)=1$.
The index of $(\alpha, f): \operatorname{ind}(\alpha, f):=\sum_{j=1}^{m} f(j)$.
Example:

$$
\operatorname{ind}(11320 \hat{2} \hat{3} \hat{1} 2)=f(1)+f(2)+f(3)=4
$$

All codes of length 3

| $m$ | 0 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(\alpha, f)$ | 000 | $01 \hat{1}$ | $10 \hat{1}$ | $1 \hat{1} 0$ | $1 \hat{1} 1$ | $11 \hat{1}$ |
| $\operatorname{ind}(\alpha, f)$ | 0 | 1 | 1 | 1 | 1 | 2 |

## $\mathfrak{S}_{n}$-action on codes

Let $\mathcal{C}_{n, j}$ be the set of codes of length $n$ with index $j$.
The $\mathfrak{S}_{n}$-action $\sigma \cdot\left(\alpha_{1} \alpha_{2}, \ldots \alpha_{n}, f\right):=\left(\alpha_{\sigma(1)} \alpha_{\sigma(2)} \ldots \alpha_{\sigma(n)}, f\right)$ for $\sigma \in \mathfrak{S}_{n}$ makes $V_{n, j}=\mathbb{C} \mathcal{C}_{n, j}$ a permutation representation of $\mathfrak{S}_{n}$.

Stembridge (1992) used Stanley's formula for $\operatorname{ch}\left(H^{*}\left(X_{\Sigma_{n}}\right)\right)$ to show that for all $0 \leq j \leq n-1$,

$$
V_{n, j} \cong \mathfrak{S}_{n} H^{2 j}\left(X_{\Sigma_{n}}, \mathbb{C}\right)
$$

He also asked: can we find a permutation basis for $H^{*}\left(X_{\Sigma_{n}}\right)$ that induced the representation?

In our work, we give an explicit permutation basis in terms of Chow rings. And it is clear how $\mathfrak{S}_{n}$ permutes the basis.

## Cohomology ring as Chow ring

## Theorem (Danilov 1978, Stembridge 1994)

Fix a lattice $\mathbb{Z}^{n}$ with standard basis $\left\{e_{i}\right\}_{i=1, \ldots, n}$ in a Euclidean $n$-space $E$. Let $P$ be a simple $n$-lattice polytope with normal fan $\Sigma(P)$ in $E$ and $P^{*}$ be its dual simplicial polytope whose set of vertices is $V\left(P^{*}\right)$. Denote by $K\left[\partial P^{*}\right]$ the Stanley-Reisner ring of $\partial P^{*}$ over a field $K$ of $\operatorname{char} K=0$. If a finite group $G$ acts on $\Sigma(P)$ simplicially and freely, then

$$
H^{*}\left(X_{\Sigma(P)}, K\right) \cong \frac{K\left[\partial P^{*}\right]}{\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle} \quad \text { as } G \text {-modules, }
$$

where

$$
\theta_{i}=\sum_{v \in V\left(P^{*}\right)}\left\langle v, e_{i}\right\rangle x_{v} \text { for } i=1, \ldots, n \text {. }
$$

- The RHS is known as the Chow ring $A\left(X_{\Sigma(P)}\right)$ of the toric variety $X_{\Sigma(P)}$.


## Feichtner-Yuzvinsky basis for $A\left(X_{\Sigma_{n}}\right)$

Feichtner, Yuzvinsky (2004) define the Chow ring $D(\mathcal{L}, \mathcal{G})$ of an atomic lattice $\mathcal{L}$ with respect to a certain type of subset $\mathcal{G}$ of $\mathcal{L}$ called a building set and find a basis.

When $\mathcal{L}=B_{n}$ Boolean lattice and $\mathcal{G}=B_{n}-\{\emptyset\}$, the ring $D(\mathcal{L}, \mathcal{G})$ is known as the Chow ring of the Boolean matroid and is the same as the Chow ring of $X_{\Sigma_{n}}$,

$$
D\left(B_{n}, B_{n}-\{\emptyset\}\right)=A\left(X_{\Sigma_{n}}\right)
$$

Then by Danilov-Stembridge theorem,

$$
D\left(B_{n}, B_{n}-\{\emptyset\}\right) \cong_{\mathfrak{S}_{n}} H^{*}\left(X_{\Sigma_{n}}, \mathbb{Q}\right)
$$

In this case, the Feichtner-Yuzvinsky basis is

e.g. $F Y\left(\mathrm{~B}_{3}\right)=\left\{1, x_{12}, x_{13}, x_{23}, x_{123}, x_{123}^{2}\right\}$

The natural $\mathcal{S}_{n}$-action on $B_{n}$ induces an action on $F Y\left(B_{n}\right)$

## Feichtner-Yuzvinsky basis for $A\left(X_{\Sigma_{n}}\right)$

Feichtner, Yuzvinsky (2004) define the Chow ring $D(\mathcal{L}, \mathcal{G})$ of an atomic lattice $\mathcal{L}$ with respect to a certain type of subset $\mathcal{G}$ of $\mathcal{L}$ called a building set and find a basis.

When $\mathcal{L}=B_{n}$ Boolean lattice and $\mathcal{G}=B_{n}-\{\emptyset\}$, the ring $D(\mathcal{L}, \mathcal{G})$ is known as the Chow ring of the Boolean matroid and is the same as the Chow ring of $X_{\Sigma_{n}}$,

$$
D\left(B_{n}, B_{n}-\{\emptyset\}\right)=A\left(X_{\Sigma_{n}}\right) .
$$

Then by Danilov-Stembridge theorem,

$$
D\left(B_{n}, B_{n}-\{\emptyset\}\right) \cong_{\mathfrak{S}_{n}} H^{*}\left(X_{\Sigma_{n}}, \mathbb{Q}\right) .
$$

In this case, the Feichtner-Yuzvinsky basis is

$$
F Y\left(\mathrm{~B}_{n}\right):=\left\{x_{F_{1}}^{a_{1}} x_{F_{2}}^{a_{2}} \ldots x_{F_{k}}^{a_{k}}: \begin{array}{c}
\emptyset=F_{0} \subsetneq F_{1} \subseteq F_{2} \subsetneq \ldots \subsetneq F_{k} \subseteq[n], \\
1 \leq a_{i} \leq\left|F_{i}\right|-\left|F_{i-1}\right|-1
\end{array}\right\} .
$$

e.g. $F Y\left(\mathrm{~B}_{3}\right)=\left\{1, x_{12}, x_{13}, x_{23}, x_{123}, x_{123}^{2}\right\}$.

The natural $\mathfrak{S}_{n}$-action on $B_{n}$ induces an action on $F Y\left(\mathrm{~B}_{n}\right)$.

## The $\mathfrak{S}_{n}$-equivariant bijection

We construct a map $\phi: F Y\left(\mathrm{~B}_{n}\right) \rightarrow\{$ codes of length $n\}$ that respects the $\mathfrak{S}_{n}$-action.

## Theorem (L.)

The map $\phi: F Y\left(B_{n}\right) \rightarrow\{$ codes of length $n\}$ is a bijection that respects the $\mathfrak{S}_{n}$-actions and takes the degree of the monomials to the index of its image.

## Example

The map $\phi$ sends $x_{13} x_{1235} x_{1234568}^{2} \in F Y\left(B_{8}\right)$ to a code as follows:

$$
1 \_\hat{1}-----\longrightarrow 12 \hat{1} \_\hat{2} \_--\rightarrow 12 \hat{1} 3 \hat{2} 3 \_\hat{3} \rightarrow 12 \hat{1} 3 \hat{2} 30 \hat{3} .
$$

The F-Y basis $F Y\left(B_{3}\right)$ and Stembridge codes of length 3 :

| 1 | $x_{12}$ | $x_{13}$ | $x_{23}$ | $x_{123}$ | $x_{123}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ |
| 000 | $1 \hat{1} 0$ | $10 \hat{1}$ | $01 \hat{1}$ | $1 \hat{1} 1$ | $11 \hat{1}$ |

## Binomial Eulerian story: Stellahedral variety

Binomial Eulerian polynomial $\widetilde{A}_{n}(t):=1+t \sum_{k=1}^{n}\binom{n}{k} A_{k}(t)$
Postnikov, Reiner, Williams (2008) :

$$
\widetilde{A}_{n}(t)=\sum_{j=0}^{n} \operatorname{dim} H^{2 j}\left(X_{\widetilde{\Sigma}_{n}}\right) t^{j}
$$

where $X_{\widetilde{\Sigma}_{n}}$ is the toric variety associated to the normal fan $\widetilde{\Sigma}_{n}$ of the stellohedron $\widetilde{\Pi}_{n}$.


Shareshian, Wachs (2020) :

- Introduced $\widetilde{Q}_{n}(\mathbf{x}, t):=h_{n}(\mathbf{x})+t \sum_{k=1}^{n} h_{n-k}(\mathbf{x}) Q_{k}(\mathbf{x}, t)$ where $Q_{k}(\mathbf{x}, t)$ is the graded Frobenius series of $H^{*}\left(X_{\Sigma_{n}}\right)$.
- They also showed that $\sum_{j=0}^{n} \operatorname{ch}\left(H^{2 j}\left(X_{\widetilde{\Sigma}_{n}}\right)\right) t^{j}=\widetilde{Q}_{n}(\mathbf{x}, t)$. $\Rightarrow H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)$ carries a permutation representation of $\mathfrak{S}_{n}$.


## Extended codes

We define an extended code to be a code $(\alpha, f)$ s.t.

- $\alpha$ is over $\{0,1, \ldots, m\} \cup\{\infty\}$ with $\infty$ 's working as 0 's in Stembridge codes,
- index $\operatorname{ind}(\alpha, f):=\sum_{j=1}^{m} f(j)$ as before, except that $\operatorname{ind}(\infty \ldots \infty):=-1$.
e.g. $\operatorname{ind}(102 \infty \hat{1} 32 \hat{2} \hat{3} 1)=f(1)+f(2)+f(3)=1+2+1=4$.

Let $\widetilde{\mathcal{C}}_{n, j}$ be the set of extended codes of length $n$ with index $j$

## Example

The extended codes of length 3 .
$\widetilde{\mathcal{C}_{3,-1}}=\{\infty \infty \infty\}, \widetilde{\mathcal{C}_{3,0}}=\{0 \infty \infty, \infty 0 \infty, \infty \infty 0, \infty 00,0 \infty 0,00 \infty, 000\}$, $\widetilde{\mathcal{C}}_{3,1}=\{1 \hat{1} \infty, 1 \infty \hat{1}, \infty 1 \hat{1}, 01 \hat{1}, 10 \hat{1}, 1 \hat{1} 0,1 \hat{1} 1\}, \widetilde{\mathcal{C}}_{3,2}=\{11 \hat{1}\}$.
$\square$

## Extended codes

We define an extended code to be a code $(\alpha, f)$ s.t.

- $\alpha$ is over $\{0,1, \ldots, m\} \cup\{\infty\}$ with $\infty$ 's working as 0 's in Stembridge codes,
- index $\operatorname{ind}(\alpha, f):=\sum_{j=1}^{m} f(j)$ as before, except that $\operatorname{ind}(\infty \ldots \infty):=-1$.
e.g. $\operatorname{ind}(102 \infty \hat{1} 32 \hat{2} \hat{3} 1)=f(1)+f(2)+f(3)=1+2+1=4$.

Let $\widetilde{\mathcal{C}}_{n, j}$ be the set of extended codes of length $n$ with index $j$

## Example

The extended codes of length 3 .
$\widetilde{\mathcal{C}_{3,-1}}=\{\infty \infty \infty\}, \widetilde{\mathcal{C}_{3,0}}=\{0 \infty \infty, \infty 0 \infty, \infty \infty 0, \infty 00,0 \infty 0,00 \infty, 000\}$, $\widetilde{\mathcal{C}}_{3,1}=\{1 \hat{1} \infty, 1 \infty \hat{1}, \infty 1 \hat{1}, 01 \hat{1}, 10 \hat{1}, 1 \hat{1} 0,1 \hat{1} 1\}, \widetilde{\mathcal{C}}_{3,2}=\{11 \hat{1}\}$.

An $\mathfrak{S}_{n}$-action as before makes $\widetilde{V}_{n, j}=\mathbb{C} \widetilde{\mathcal{C}}_{n, j}$ a permutation representation of $\mathfrak{S}_{n}$.

## Theorem (L. 2022)

For $n \geq 1$, we have $\sum_{j=0}^{n} \operatorname{ch}\left(\widetilde{V}_{n, j-1}\right) t^{j}=\widetilde{Q}_{n}(\mathbf{x}, t)$.

## Extended codes

We define an extended code to be a code $(\alpha, f)$ s.t.

- $\alpha$ is over $\{0,1, \ldots, m\} \cup\{\infty\}$ with $\infty$ 's working as 0 's in Stembridge codes,
- index $\operatorname{ind}(\alpha, f):=\sum_{j=1}^{m} f(j)$ as before, except that $\operatorname{ind}(\infty \ldots \infty):=-1$.
e.g. $\operatorname{ind}(102 \infty \hat{1} 32 \hat{2} \hat{3} 1)=f(1)+f(2)+f(3)=1+2+1=4$.

Let $\widetilde{\mathcal{C}}_{n, j}$ be the set of extended codes of length $n$ with index $j$

## Example

The extended codes of length 3 .
$\widetilde{\mathcal{C}_{3,-1}}=\{\infty \infty \infty\}, \widetilde{\mathcal{C}_{3,0}}=\{0 \infty \infty, \infty 0 \infty, \infty \infty 0, \infty 00,0 \infty 0,00 \infty, 000\}$,
$\widetilde{\mathcal{C}}_{3,1}=\{1 \hat{1} \infty, 1 \infty \hat{1}, \infty 1 \hat{1}, 01 \hat{1}, 10 \hat{1}, 1 \hat{1} 0,1 \hat{1} 1\}, \widetilde{\mathcal{C}}_{3,2}=\{11 \hat{1}\}$.
An $\mathfrak{S}_{n}$-action as before makes $\widetilde{V}_{n, j}=\mathbb{C} \widetilde{\mathcal{C}}_{n, j}$ a permutation representation of $\mathfrak{S}_{n}$.

## Theorem (L. 2022)

For $n \geq 1$, we have $\sum_{j=0}^{n} \operatorname{ch}\left(\widetilde{V}_{n, j-1}\right) t^{j}=\widetilde{Q}_{n}(\mathbf{x}, t)$.
Is there a permutation basis for $H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)$ that has similar combinatorial structure as extended codes?

## Basis for $H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)$

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the augmented Chow ring $\widetilde{A}(M)$ of a matroid $M$.

When $M$ is the Boolean matroid $\mathrm{B}_{n}$, the ring $\widetilde{A}\left(\mathrm{~B}_{n}\right)$ is the same as $A\left(X_{\widetilde{\Sigma}_{n}}\right)$. Hence by Danilov-Stembridge theorem,

$$
\widetilde{A}\left(\mathrm{~B}_{n}\right) \cong_{\mathfrak{S}_{n}} H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)
$$

## We find an analogue of the Feichtner-Yuzvinsky basis for $\widetilde{A}(M)$

- The basis for $\widetilde{A}\left(\mathrm{~B}_{n}\right)$ is



## Basis for $H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)$

Braden, Huh, Matherne, Proudfoot, Wang (2020) introduce the augmented Chow ring $\widetilde{A}(M)$ of a matroid $M$.

When $M$ is the Boolean matroid $\mathrm{B}_{n}$, the ring $\widetilde{A}\left(\mathrm{~B}_{n}\right)$ is the same as $A\left(X_{\widetilde{\Sigma}_{n}}\right)$. Hence by Danilov-Stembridge theorem,

$$
\widetilde{A}\left(\mathrm{~B}_{n}\right) \cong_{\mathfrak{S}_{n}} H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)
$$

We find an analogue of the Feichtner-Yuzvinsky basis for $\widetilde{A}(M)$.

- The basis for $\widetilde{A}\left(\mathrm{~B}_{n}\right)$ is

$$
\widetilde{F Y}\left(\mathrm{~B}_{n}\right)=\left\{x_{F_{1}}^{a_{1}} x_{F_{2}}^{a_{2}} \ldots x_{F_{k}}^{a_{k}}: \begin{array}{c}
\emptyset=F_{0} \subsetneq F_{1} \subseteq F_{2} \subsetneq \ldots \subsetneq F_{k} \subseteq[n] \\
F_{1}\left|, a_{i} \leq\left|F_{i}\right|-\left|F_{i-1}\right|-1 \text { for } i \geq 2\right.
\end{array}\right\} .
$$

e.g. $\widetilde{F Y}\left(\mathrm{~B}_{3}\right)=$
$\left\{1\left|x_{1}, x_{2}, x_{3}, x_{12}, x_{13}, x_{23}, x_{123}\right| x_{1} x_{123}, x_{2} x_{123}, x_{3} x_{123}, x_{12}^{2}, x_{13}^{2}, x_{23}^{2}, x_{123}^{2} \mid x_{123}^{3}\right\}$.
The same $\mathfrak{S}_{n}$-action works on $\widetilde{F Y}\left(\mathrm{~B}_{n}\right)$.

## The $\mathfrak{S}_{n}$-equivariant bijection

Let $\widetilde{\mathcal{C}_{n}}$ be the set of extended codes of length $n$. We construct a map $\widetilde{\phi}: \widetilde{F Y}\left(\mathrm{~B}_{n}\right) \rightarrow \widetilde{\mathcal{C}_{n}}$ that respects the $\mathfrak{S}_{n}$-action.

## Theorem (L. )

The $\operatorname{map} \widetilde{\phi}: \widetilde{F Y}\left(\mathrm{~B}_{n}\right) \rightarrow \widetilde{\mathcal{C}}_{n}$ is a bijection that respects the $\mathfrak{S}_{n}$-actions and takes the degree of the monomials to the index-1 of its image.

## Example

Let $u_{1}=x_{14}^{1} x_{1247} x_{1245679}^{2} \in \widetilde{F Y}\left(\mathrm{~B}_{9}\right)$, then $\widetilde{\phi}\left(u_{1}\right)$ is

$$
0 \_\_0 \_-\quad-\quad \rightarrow 01 \_0 \_ \text {_ } \hat{1} \_-\quad \rightarrow 01 \_022 \hat{1} \_\hat{2} \rightarrow 01 \infty 022 \hat{1} \infty \hat{2} \text {. }
$$

Let $u_{2}=x_{14}^{2} x_{1247} x_{1245679}^{2} \in \widetilde{F Y}\left(\mathrm{~B}_{9}\right)$, then $\widetilde{\phi}\left(u_{2}\right)$ is

$$
1 \_ \text {_ } 1 \_-\quad-\quad-\rightarrow 12 \_1 \_ \text {_ } \hat{2} \_-\rightarrow 12 \_133 \hat{2} \_\hat{3} \rightarrow 12 \infty 133 \hat{2} \infty \hat{3}
$$

- This also gives a bijective proof of the Shareshian-Wachs result that $\widetilde{Q}_{n}(\mathbf{x}, t)$ is the graded Frobenius series of $H^{*}\left(X_{\widetilde{\Sigma}_{n}}\right)$.


## Feichtner, Yuzvinsky's "package" related to stellohedron

In Feichtner and Yuzvnisky's theory of building set and Chow ring, the following comes like a package:

| Package |  |  |  |
| :---: | :--- | :---: | :---: |
| $\mathcal{L}$ | building set $\mathcal{G}$ | reduced nested set complex $\widetilde{\mathcal{N}}(\mathcal{L}, \mathcal{G})$ | $D(\mathcal{L}, \mathcal{G})$ |
| $B_{n}$ | $B_{n}-\{\emptyset\}$ | $\partial \Pi_{n}^{*}$ | $A\left(X_{\Sigma_{n}}\right)$ |
| $\mathcal{L}(M)$ | $\mathcal{L}(M)-\{\emptyset\}$ | Bergman complex of $M$ | $A(M)$ |

Braden, Huh, Matherne, Proudfoot, Wang, 2020

|  |  | augmented Bergman complex of $M$ | $\widetilde{A}(M)$ |
| :--- | :--- | :---: | :---: |
|  |  | aug. Berg. cpx of $\mathrm{B}_{n} \cong \partial \widetilde{\Pi}_{n}{ }^{*}$ | $\widetilde{A}\left(\mathrm{~B}_{n}\right)$ |

Postnikov, Reiner, Williams, 2008

$B_{n+1}$| graphical building |
| :--- | :--- | :--- |
| set of $n$-star graph |$\quad \tilde{\mathcal{N}}\left(B_{n+1}, \mathcal{B}\left(K_{1, n}\right)\right) \cong \partial \widetilde{\Pi}_{n}^{*}$

## Augmented Chow ring of a matroid

Let $M$ be a matroid on $[n]$ with lattice of flats $\mathcal{L}(M)$ and independence complex $\mathcal{I}(M)$. The augmented Chow ring of $M$ encodes information from both $\mathcal{L}(M)$ and $\mathcal{I}(M)$ and is defined as

$$
\begin{equation*}
\widetilde{A}(M):=\frac{\mathbb{Q}\left[\left\{x_{F}\right\}_{F \in \mathcal{L}(M) \backslash[n]} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right] /\left(I_{1}+I_{2}\right)}{\left\langle y_{i}-\sum_{F: i \notin F} x_{F}\right\rangle_{i=1,2, \ldots, n}} \tag{1}
\end{equation*}
$$

where $I_{1}=\left\langle x_{F} x_{G}: F, G\right.$ are incomparable in $\left.\mathcal{L}(M)\right\rangle, I_{2}=\left\langle y_{i} x_{F}: i \notin F\right\rangle$.

- The numerator of $(1)$ is the Stanley-Reisner ring of the augmented Bergman complex (fan) of $M$.


## Augmented Bergman fan of a matroid

Definition: Let $I \in \mathcal{I}(M)$ and $\mathcal{F}=\left(F_{1} \subsetneq \ldots \subsetneq F_{k}\right)$ be a chain in $\mathcal{L}(M)$.

- We say $I$ is compatible with $\mathcal{F}$, denoted by $I \leq \mathcal{F}$, if $I \subseteq F_{1}$. In particular, $I \leq \emptyset$ for any $I \in \mathcal{I}(M)$.
- For $S \subseteq[n]$, write $e_{S}:=\sum_{i \in S} e_{i}$.

The augmented Bergman fan $\Sigma_{M}$ of $M$ is a simplicial fan in $\mathbb{R}^{n}$ consisting of cones
$\sigma_{I<\mathcal{F}}$ indexed by compatible pairs $I<\mathcal{F}$, where $\mathcal{F}$ is a chain in $\mathcal{L}(M)-\{[n]\}$ and $\sigma_{I \leq \mathcal{F}}=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)$

The corresponding simplicial complex is called the allomented Rergman complex [Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan $\widetilde{\Sigma}_{\mathrm{B}_{n}}$ is the normal fan of $\widetilde{\Pi}_{n}$

## Augmented Bergman fan of a matroid

Definition: Let $I \in \mathcal{I}(M)$ and $\mathcal{F}=\left(F_{1} \subsetneq \ldots \subsetneq F_{k}\right)$ be a chain in $\mathcal{L}(M)$.

- We say $I$ is compatible with $\mathcal{F}$, denoted by $I \leq \mathcal{F}$, if $I \subseteq F_{1}$. In particular, $I \leq \emptyset$ for any $I \in \mathcal{I}(M)$.
- For $S \subseteq[n]$, write $e_{S}:=\sum_{i \in S} e_{i}$.

The augmented Bergman fan $\widetilde{\Sigma}_{M}$ of $M$ is a simplicial fan in $\mathbb{R}^{n}$ consisting of cones $\sigma_{I \leq \mathcal{F}}$ indexed by compatible pairs $I \leq \mathcal{F}$, where $\mathcal{F}$ is a chain in $\mathcal{L}(M)-\{[n]\}$ and

$$
\sigma_{I \leq \mathcal{F}}=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

The corresponding simplicial complex is called the augmented Bergman complex.
[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan $\Sigma_{\mathrm{B}_{n}}$ is the normal fan of $\widetilde{\Pi}_{n}$

## Augmented Bergman fan of a matroid

Definition: Let $I \in \mathcal{I}(M)$ and $\mathcal{F}=\left(F_{1} \subsetneq \ldots \subsetneq F_{k}\right)$ be a chain in $\mathcal{L}(M)$.

- We say $I$ is compatible with $\mathcal{F}$, denoted by $I \leq \mathcal{F}$, if $I \subseteq F_{1}$. In particular, $I \leq \emptyset$ for any $I \in \mathcal{I}(M)$.
- For $S \subseteq[n]$, write $e_{S}:=\sum_{i \in S} e_{i}$.

The augmented Bergman fan $\widetilde{\Sigma}_{M}$ of $M$ is a simplicial fan in $\mathbb{R}^{n}$ consisting of cones $\sigma_{I \leq \mathcal{F}}$ indexed by compatible pairs $I \leq \mathcal{F}$, where $\mathcal{F}$ is a chain in $\mathcal{L}(M)-\{[n]\}$ and

$$
\sigma_{I \leq \mathcal{F}}=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

The corresponding simplicial complex is called the augmented Bergman complex.
[Braden, Huh, Matherne, Proudfoot, Wang, 2020]: The augmented Bergman fan $\widetilde{\Sigma}_{\mathrm{B}_{n}}$ is the normal fan of $\widetilde{\Pi}_{n}$.

## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.

$$
\sigma^{\sigma_{\emptyset} \leq \emptyset}
$$

## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.

$$
\bigcirc \xrightarrow{\sigma_{\emptyset \leq \emptyset}} \sigma_{\{1\} \leq \emptyset}
$$

## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.

$$
\begin{aligned}
& \sigma_{\{2\} \leq \emptyset} \\
& \\
& \sigma_{\emptyset \leq \emptyset} \\
& \sigma_{\{1,2\} \leq \emptyset} \\
& \sigma_{\{1\} \leq \emptyset}
\end{aligned}
$$

## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron as a dual augmented Bergman complex

$$
\sigma_{I \leq \mathcal{F}}:=\mathbb{R}_{\geq 0}\left(\left\{e_{i}\right\}_{i \in I} \cup\left\{-e_{[n] \backslash F}\right\}_{F \in \mathcal{F}}\right)
$$

## Example

Boolean matroid $B_{2}, \mathcal{I}\left(B_{2}\right)=\{\emptyset, 1,2,12\}$. The augmented Bergman complex is $\partial \widetilde{\Pi}_{2}^{*}$.


## Stellohedron $\widetilde{\Pi}_{n}$ as a dual nested set complex

[Postnikov, Reiner, Williams, 2008]:
The $n$-star graph $K_{1, n}:=(V, E)$ with $V=[n] \cup\{*\}$ and $E=\{\{i, *\}: i \in[n]\}$. Consider the graphical building set

$$
\mathcal{B}\left(K_{1, n}\right):=\{I \subset V: \text { the induced subgraph on } I \text { is connected }\}
$$

then the reduced nested set complex $\widetilde{\mathcal{N}}\left(B_{n+1}, \mathcal{B}\left(K_{1, n}\right)\right)$ is combinatorially equivalent to $\partial \widetilde{\Pi}_{n}^{*}$.

## Example

$\mathcal{B}\left(K_{1,2}\right)$ consists of the following elements:


The corresponding reduced nested set complex is $\partial \widetilde{\Pi}_{2}{ }^{*}$.


## Connection between $\widetilde{\Sigma}_{B_{n}}$ and $\widetilde{\mathcal{N}}\left(B_{n+1}, \mathcal{B}\left(K_{1, n}\right)\right)$

## Proposition (L. 2022)

There is a poset isomorphism between the face lattice of the augmented Bergman fan $\widetilde{\Sigma}_{\mathbf{B}_{n}}$ and that of the reduced nested set complex $\widetilde{\mathcal{N}}\left(B_{n+1}, \mathcal{B}\left(K_{1, n}\right)\right)$.

## Example

$$
\tilde{\mathcal{N}}\left(\mathrm{B}_{n+1}, B_{K_{1, n}}\right) \longrightarrow\left\{\begin{array}{c}
\begin{array}{c}
I \in \mathcal{I}\left(\mathrm{~B}_{n}\right), \\
\sigma_{I \leq \mathcal{F}}
\end{array}: \mathcal{F} \text { is a flag of proper subsets of }[n], \\
I \subset \min (\mathcal{F})
\end{array}\right\}
$$



$$
\in \tilde{\mathcal{N}}\left(B_{7}, \mathcal{B}_{K_{1,6}}\right)
$$

$$
\longleftrightarrow\{1,3\} \leq\{\{1,3,6\} \subset\{1,3,5,6\} \subset\{1,3,4,5,6\}\}
$$

## Connection for general matroids

Let $M$ be a matroid with lattice of flats $\mathcal{L}(M)$ and independence complex $\mathcal{I}(M)$.
We construct a new poset $\widetilde{\mathcal{L}}(M)$ from $\mathcal{L}(M)$ and $\mathcal{I}(M)$ :

- As a set, $\widetilde{\mathcal{L}}(M)=\mathcal{L}(M) \uplus \mathcal{I}(M)$. Write $F \in \mathcal{L}(M)$ as $F_{*}$ in $\widetilde{\mathcal{L}}(M)$.
- For $I \in \mathcal{I}(M)$, define $I \lessdot \mathrm{cl}_{M}(I)_{*}$ where $\mathrm{cl}_{M}(I)$ is the closure of $I$ in $M$. The relations inside $\mathcal{L}(M), \mathcal{I}(M)$ stay the same.


## Example



Then the new poset is


## Connection for general matroids

Take $\widetilde{\mathcal{G}}=\{\{1\}, \ldots,\{n\}\} \cup\left\{F_{*}\right\}_{F \in \mathcal{L}(M)}$ as the building set in $\widetilde{\mathcal{L}}(M)$, then all faces of the reduced nested set complex are of the form

$$
\{\{i\}\}_{i \in I} \cup\left\{F_{*}\right\}_{F \in \mathcal{F}}
$$

for some compatible pair $I \leq \mathcal{F}$ where $I \in \mathcal{I}(M)$ and $\mathcal{F}$ is a chain of $\mathcal{L}(M)$.

## Theorem (L. ; Eur, Huh, Larson 2022)

(1) There is a poset isomorphism between the face lattices of $\widetilde{\mathcal{N}}(\widetilde{\mathcal{L}}(M), \widetilde{\mathcal{G}})$ and $\widetilde{\Sigma}_{M}$ :

$$
\{\{i\}\}_{i \in I} \cup\left\{F_{*}\right\}_{F \in \mathcal{F}} \longleftrightarrow \sigma_{I \leq \mathcal{F}}
$$

for compatible pair $I \leq \mathcal{F}$ where $I \in \mathcal{I}(M)$ and chain $\mathcal{F} \subset \mathcal{L}(M)-\{[n]\}$ of proper flats.
(2) $D(\widetilde{L}(M), \widetilde{\mathcal{G}})=\widetilde{A}(M)$.

This connection was also independently found by Chris Eur and later included in his recent preprint with Huh and Larson

## Analogue of the Feichtner-Yuzvinsky basis

We apply Feichtner-Yuzvinsky's basis to the chow ring $D(\widetilde{\mathcal{L}}(M), \widetilde{\mathcal{G}})$ and obtain:

## Corollary (L. 2022; Eur, Huh, Larson, 2022)

The augmented Chow ring $\widetilde{A}(M)$ of $M$ has the following basis

$$
\widetilde{F Y}(M):=\left\{x_{F_{1}}^{a_{1}} x_{F_{2}}^{a_{2}} \ldots x_{F_{k}}^{a_{k}}: \underset{1 \leq a_{1} \leq \operatorname{rk}\left(F_{1}\right), a_{i} \leq \operatorname{rk}\left(F_{i}\right)-\operatorname{rk}\left(F_{i}-1\right)-1 \text { for } i \geq 2}{\emptyset=F_{0} \subseteq F_{2} \subseteq F_{2} \subseteq \ldots F_{k}}\right\}
$$

## Summary

| $\mathcal{L}$ | building set $\mathcal{G}$ | reduced nested set complex $\widetilde{\mathcal{N}}(\mathcal{L}, \mathcal{G})$ | $D(\mathcal{L}, \mathcal{G})$ |
| :---: | :--- | :---: | :---: |
| $B_{n}$ | $B_{n}-\{\emptyset\}$ | $\partial \Pi_{n}^{*}$ | $A\left(X_{\Sigma_{n}}\right)$ |
| $\mathcal{L}(M)$ | $\mathcal{L}(M)-\{\emptyset\}$ | Bergman complex of $M$ | $A(M)$ |
|  |  | aug. Berg. cpx of $\mathrm{B}_{n} \cong \partial \widetilde{\Pi}_{n}{ }^{*}$ | $\widetilde{A}\left(\mathrm{~B}_{n}\right)$ |
| $B_{n+1}$ | graphical building <br> set of $n$-star graph | $\widetilde{\mathcal{N}}\left(B_{n+1}, \mathcal{B}\left(K_{1, n}\right)\right) \cong \partial \widetilde{\Pi}_{n}{ }^{*}$ |  |
|  |  | augmented Bergman complex of $M$ | $\widetilde{A}(M)$ |
| $\widetilde{\mathcal{L}}(M)$ | $\widetilde{\mathcal{G}}$ | $\widetilde{\mathcal{N}}(\widetilde{\mathcal{L}}(M), \widetilde{\mathcal{G}})$ |  |

Consequently, $\widetilde{A}(M)=D(\widetilde{\mathcal{L}}(M), \widetilde{\mathcal{G}})$ and hence has an FY-basis.

## The End

## Thank you!

## Related works

- Since $X_{\Sigma_{n}} \cong$ regular semisimple $\operatorname{Hess}(S, h)$ with $h=(2,3, \ldots, n, n)$, answering Stembridge's question gives a "dream" solution to a special case of the Stanley-Stembridge conjecture.
- Erasing Marks Conjecture : Chow (2015), using GKM theory, conjectured that some classes in $H_{T}^{*}\left(X_{\Sigma_{n}}\right)$ when descending to $H^{*}\left(X_{\Sigma_{n}}\right)$ give such a basis.
- Cho, Hong, and Lee (2020) proved the conjecture. It will be interesting to see the relationship between our basis and theirs.

