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@ Find new polynomial invariants of matroids by taking Hilbert series

@ Study their combinatorial properties

This is a joint work with Luis Ferroni (KTH), Jacob Matherne (U of Bonn,
Max Planck Institute), and Matthew Stevens (U of Bonn)
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Geometric lattices

A geometric lattice is a ranked lattice which is

@ atomistic: x =\/,_ a

a<x

e semimodular: rk(x) + rk(y) > rk(x V y) + rk(x A y)
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Hyperplane arrangements

The poset of intersections of an arrangement A is a geometric lattice
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Matroids as posets

There is a correspondence between the class of geometric lattices and the
class of matroids.
M~ L(M)

L(M) is called the /lattice of flats of M.
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Characteristic polynomial

On the lattice £(M), we can compute the characteristic polynomial

xm(x) = x> —5x% 4 8x — 4
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Characteristic polynomial

On the lattice £(M), we can compute the characteristic polynomial

xm(x) = x> —5x% 4 8x — 4

Theorem (Orlik-Solomon)

If A is a complex arrangement, then M(A) = C¢\ yc4 H is a smooth
variety and

(—x)™Mxm(—x"") = Hilb(H*(M(A)))
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Characteristic polynomial

On the lattice £(M), we can compute the characteristic polynomial

xm(x) = x> —5x% 4+ 8x — 4

Theorem (Orlik-Solomon)

If A is a complex arrangement, then M(A) = C¢\ yc4 H is a smooth
variety and

(—x)™Mxm(—x"") = Hilb(H*(M(A)))

.

Theorem (Heron-Rota-Welsh, Adiprasito-Huh-Katz'18)

xMm(x) is log-concave for every M, i.e. WJ-2 > Wj_1Wji1.
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Find new polynomials by taking Hilbert series associated to matroids.
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The Chow ring

Definition (Feichtner-Yuzvinsky'04)

The Chow ring of M is defined as the quotient ring

CH(M) := Qlxr | F € £(M)\ {0, E}] / (4 J).

I = (xg, xF, | F1, F2 are incomparable) ,

J:<ZXF—ZXF|i,j€E>.

Fai F3j
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The augmented Chow ring

Definition (Braden-Huh-Matherne-Proudfoot-Wang'22)

The augmented Chow ring of M is defined as the quotient ring

CH(M) = Q[xr, yi|F € £L(M)\ {E} and i € E]/(I +J+K),

= (n-Twlice).
F3i
J = (xF,xF, | F1, F2 are incomparable) ,

K = (yixe|i & F).
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What makes this interesting?

Theorem (AHK'18, BHMPW'22)
(PD), (HL) and (HR) hold for every CH(M) and CH(M).
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What makes this interesting?

Theorem (AHK'18, BHMPW'22)

(PD), (HL) and (HR) hold for every CH(M) and CH(M).

Theorem (AHK'18)
(HR) = xm(x) is log-concave.

rkM—1 rk M
Hy(x) = ) dimg(CH/(M))x  Hu(x) =) dimg(CH/(M))x/.
j=0 j=0

Hp(x) and Hm(x) are called respectively the Chow polynomial and
augmented Chow polynomial.
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Some combinatorial properties

e (PD) ~ Hpy(x) and Hpm(x) are palindromic.
e (HL) ~ Hp(x) and Hm(x) are unimodal.
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Some combinatorial properties

(PD) ~ Hp(x) and Hp(x) are palindromic.

]
e (HL) ~ Hp(x) and Hm(x) are unimodal.

N

(x) =x>+7x+1

Hy
Hu(x) =x3 +12x3 + 12x + 1

x
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Some examples |

If M is a Boolean matroid on n elements then

Hu(x) = An(x),
Hy(x) = An(x).

These are the Eulerian and binomial Eulerian polynomials.

An(x) = Z X&) /Zn(x) =1 "’XZ (7) AJ(X)'
=1

oeG,
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If M is a Boolean matroid on n elements then

Hu(x) = An(x),
Hy(x) = An(x).

These are the Eulerian and binomial Eulerian polynomials.
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Theorem (Frobenius, Haglund-Zhang'20, Brandén-Jochemko'22)

The polynomials An(x) and An(x) are always real-rooted.
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Some examples |l

If M is a uniform matroid on n elements and rank n — 1;

H(x) = (),
Hm(x) = An(x).

These are the derangement and Eulerian polynomials.

do(x) = 37 xl) An(x) =1+ Z <”> di(x).

0€D, j=1
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Some examples |l

If M is a uniform matroid on n elements and rank n — 1;

H(x) = (),
Hm(x) = An(x).

These are the derangement and Eulerian polynomials.

do(x) = 37 xl) An(x) =1+ Z <”> di(x).

0€D, j=1

Theorem (Brenti'92, Canfield'94, Zhang'94)

The polynomial d,(x) is always real-rooted.
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Conjecture (Huh'20, Stevens'21, Ferroni-Schréter'22)

The polynomials Hy,(x) and Hy(x) are real-rooted.
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Conjecture (Huh'20, Stevens'21, Ferroni-Schroter'22)

The polynomials Hy,(x) and Hyu(x) are real-rooted.

Conjecture (Gedeon-Proudfoot-Young'17, Proudfoot-Xu-Young'18)

The Kazhdan—Lusztig polynomial Py(x) and Zu(x), the Hilbert series of
the intersection cohomology module TH(M) are real-rooted.
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The real deal with matroids

Conjecture (Huh'20, Stevens'21, Ferroni-Schroter'22)

The polynomials Hy,(x) and Hy(x) are real-rooted.

Conjecture (Gedeon-Proudfoot-Young'17, Proudfoot-Xu-Young'18)

The Kazhdan—Lusztig polynomial Py(x) and Zy(x), the Hilbert series of
the intersection cohomology module TH(M) are real-rooted.
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@ We have no fast, closed formula to compute them
@ It is computationally expensive to build the Chow rings.

Goal: Compute them on £(M) efficiently without actually passing through
the Chow rings!
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Combinatorial formulas

Theorem (FMSV'23)

Let M be a loopless matroid, then Hy,(x) and Hy(x) satisfy the following
o Ifrk(M) =0, then Hy(x) = 1.
o Ifrk(M) > 0, then deg Hy(x) = rk(M) — 1 and

XM (X) r
Hy(x)= > Mo Hur(x)  Hu()= > x™OHyr().
FeL(M) FeL(M)

F#0

.
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Combinatorial formulas

Theorem (FMSV'23)

Let M be a loopless matroid, then Hy,(x) and Hy(x) satisfy the following
o Ifrk(M) =0, then Hy(x) = 1.
o Ifrk(M) > 0, then deg Hy(x) = rk(M) — 1 and

XM (X) r
Hy(x)= > Mo Hur(x)  Hu()= > x™OHyr().
FeL(M) FeL(M)

F#0

.

@ In the incidence algebra: § =y« H H=(xH

e We actually provide a setting in which Hy;(x) and Hu(x) are
"non-singular” analogous of Py (x) and Zy(x).
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Some examples |l

If M is a uniform matroid on n elements and rank k

Theorem (FMSV'23)

k—1
Hy, ,(x) =Z(")dj )(L+x+ -+ xK1)
Jj=0 4
k—1
Hy,,(x) —1+xz<j> Y (L4 x4+ x1).
Jj=0

.
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Some examples |l

If M is a uniform matroid on n elements and rank k

Theorem (FMSV'23)

k=1, |
Hy, ,(x) = Z <J) di(x) (1 + x + - -+ x*=17)
T . |
HUk,n(X) =1+ XZ (_/)AJ(X) (]_ d sl o ool Xk—l—J)‘
j=0

Theorem (FMSV'23)

The polynomial Hy, ,(x) is always real-rooted.

Proof requires using a general result of Haglund and Zhang.
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Some more evidence

Theorem (FMSV'23)

If M is a sparse paving matroid with at most 40 elements, then Hy,(x) and
Hwm(x) are real-rooted.

100% of the matroids are sparse paving.
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~-polynomial

If f is palindromic of degree d

14
Fx) =D yix (x + 1)97%
i=0
14
YFx) =Y ix'.
i=0
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~-polynomial

If f is palindromic of degree d

14
Fx) =D yix (x + 1)97%
i=0

y(f,x) = Z’yixi.

i=0

If f € Z>o[x] is palindromic,
f is real-rooted = f is y-positive = f is unimodal.
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Theorem (FMSV'23)

Hy(x) and Hm(x) are y-positive for every M.
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Theorem (FMSV'23)
Hp(x) and Hu(x) are y-positive for every M.

@ Proof: induction linked to a semi-small decompositions of CH(M) and
CH(M) (BHMPW'22). Also observed by Wang.

@ Gives self-contained independent proof of the y-positivity of
derangement, Eulerian and binomial Eulerian polynomials.

e With a different induction we also show ~-positivity for the
intersection cohomology module TH(M).
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Thank you! ®
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