Hilbert-Poincare series of matroid Chow rings and intersection cohomology

Lorenzo Vecchi lorenzo.vecchi6@unibo.it
Alma Mater Studiorum - Università di Bologna

July 19th, 2023

Plan

(1) Find new polynomial invariants of matroids by taking Hilbert series
(2) Study their combinatorial properties

This is a joint work with Luis Ferroni (KTH), Jacob Matherne (U of Bonn, Max Planck Institute), and Matthew Stevens (U of Bonn)

Geometric lattices

A geometric lattice is a ranked lattice which is

- atomistic: $x=\bigvee_{a \leq x} a$
- semimodular: $\mathrm{rk}(x)+\operatorname{rk}(y) \geq \operatorname{rk}(x \vee y)+\operatorname{rk}(x \wedge y)$

Geometric lattices

A geometric lattice is a ranked lattice which is

- atomistic: $x=\bigvee_{a \leq x} a$
- semimodular: $\mathrm{rk}(x)+\operatorname{rk}(y) \geq \operatorname{rk}(x \vee y)+\operatorname{rk}(x \wedge y)$

Example

Hyperplane arrangements

The poset of intersections of an arrangement \mathcal{A} is a geometric lattice

Matroids as posets

There is a correspondence between the class of geometric lattices and the class of matroids.

$$
M \leadsto \mathcal{L}(M)
$$

$\mathcal{L}(M)$ is called the lattice of flats of M.

Characteristic polynomial

On the lattice $\mathcal{L}(M)$, we can compute the characteristic polynomial

$$
\chi_{M}(x)=x^{3}-5 x^{2}+8 x-4
$$

Characteristic polynomial

On the lattice $\mathcal{L}(M)$, we can compute the characteristic polynomial

$$
\chi_{M}(x)=x^{3}-5 x^{2}+8 x-4
$$

Theorem (Orlik-Solomon)

If \mathcal{A} is a complex arrangement, then $\mathcal{M}(\mathcal{A})=\mathbb{C}^{d} \backslash \bigcup_{H \in \mathcal{A}} H$ is a smooth variety and

$$
(-x)^{\mathrm{rk} \mathrm{M}^{\prime}} \chi_{M}\left(-x^{-1}\right)=\operatorname{Hilb}\left(\mathrm{H}^{*}(\mathcal{M}(\mathcal{A}))\right)
$$

Characteristic polynomial

On the lattice $\mathcal{L}(M)$, we can compute the characteristic polynomial

$$
\chi_{M}(x)=x^{3}-5 x^{2}+8 x-4
$$

Theorem (Orlik-Solomon)

If \mathcal{A} is a complex arrangement, then $\mathcal{M}(\mathcal{A})=\mathbb{C}^{d} \backslash \bigcup_{H \in \mathcal{A}} H$ is a smooth variety and

$$
(-x)^{\mathrm{rk} \mathrm{M}^{\prime}} \chi_{M}\left(-x^{-1}\right)=\operatorname{Hilb}\left(\mathrm{H}^{*}(\mathcal{M}(\mathcal{A}))\right)
$$

Theorem (Heron-Rota-Welsh, Adiprasito-Huh-Katz'18)
$\chi_{\mathrm{M}}(x)$ is log-concave for every M , i.e. $w_{j}^{2} \geq w_{j-1} w_{j+1}$.

Find new polynomials by taking Hilbert series associated to matroids.

The Chow ring

Definition (Feichtner-Yuzvinsky'04)

The Chow ring of M is defined as the quotient ring

$$
\begin{aligned}
\underline{\mathrm{CH}(\mathrm{M})}: & :=\mathbb{Q}\left[x_{F} \mid F \in \mathcal{L}(\mathrm{M}) \backslash\{\emptyset, E\}\right] /(I+J), \\
I & \left.=\left\langle x_{F_{1}} x_{F_{2}}\right| F_{1}, F_{2} \text { are incomparable }\right\rangle, \\
J & =\left\langle\sum_{F \ni i} x_{F}-\sum_{F \ni j} x_{F} \mid i, j \in E\right\rangle
\end{aligned}
$$

The augmented Chow ring

Definition (Braden-Huh-Matherne-Proudfoot-Wang'22)

The augmented Chow ring of M is defined as the quotient ring

$$
\begin{aligned}
& \mathrm{CH}(\mathrm{M})=\mathbb{Q}\left[x_{F}, y_{i} \mid F \in \mathcal{L}(\mathrm{M}) \backslash\{E\} \text { and } i \in E\right] /(I+J+K), \\
& I=\left\langle y_{i}-\sum_{F \not \supset i} x_{F} \mid i \in E\right\rangle, \\
& \left.J=\left\langle x_{F_{1}} x_{F_{2}}\right| F_{1}, F_{2} \text { are incomparable }\right\rangle, \\
& K=\left\langle y_{i} x_{F} \mid i \notin F\right\rangle .
\end{aligned}
$$

What makes this interesting?

Theorem (AHK'18, BHMPW'22)
$(P D),(H L)$ and $(H R)$ hold for every $\underline{C H}(M)$ and $\mathrm{CH}(\mathrm{M})$.

What makes this interesting?

```
Theorem (AHK'18, BHMPW'22)
\((P D),(H L)\) and \((H R)\) hold for every \(\underline{\mathrm{CH}}(\mathrm{M})\) and \(\mathrm{CH}(\mathrm{M})\).
```


Theorem (AHK'18)
 $(H R) \Rightarrow \chi_{\mathrm{M}}(x)$ is log-concave.

What makes this interesting?

Theorem (AHK'18, BHMPW'22)

$(P D),(H L)$ and $(H R)$ hold for every $\underline{\mathrm{CH}}(\mathrm{M})$ and $\mathrm{CH}(\mathrm{M})$.

Theorem (AHK'18)

$(H R) \Rightarrow \chi_{\mathrm{M}}(x)$ is log-concave.

$$
\underline{\mathrm{H}}_{\mathrm{M}}(x)=\sum_{j=0}^{\mathrm{rk} \mathrm{M}-1} \operatorname{dim}_{\mathbb{Q}}\left(\underline{\mathrm{CH}^{j}}(\mathrm{M})\right) x^{j} \quad \mathrm{H}_{\mathrm{M}}(x)=\sum_{j=0}^{\mathrm{rkM}} \operatorname{dim}_{\mathbb{Q}}\left(\mathrm{CH}^{j}(\mathrm{M})\right) x^{j} .
$$

$\underline{\mathrm{H}}_{\mathrm{M}}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are called respectively the Chow polynomial and augmented Chow polynomial.

Some combinatorial properties

- (PD) $\sim \underline{H}_{M}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are palindromic.
- $(\mathrm{HL}) \sim \underline{\mathrm{H}}_{\mathrm{M}}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are unimodal.

Some combinatorial properties

- (PD) $\sim \underline{H}_{M}(x)$ and $H_{M}(x)$ are palindromic.
- $(\mathrm{HL}) \sim \underline{\mathrm{H}}_{\mathrm{M}}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are unimodal.

$$
\begin{aligned}
& \underline{H}_{M}(x)=x^{2}+7 x+1 \\
& \mathrm{H}_{\mathrm{M}}(x)=x^{3}+12 x^{2}+12 x+1
\end{aligned}
$$

Some examples I

If M is a Boolean matroid on n elements then

$$
\begin{aligned}
& \underline{H}_{\mathrm{M}}(x)=A_{n}(x), \\
& \mathrm{H}_{\mathrm{M}}(x)=\widetilde{A}_{n}(x) .
\end{aligned}
$$

These are the Eulerian and binomial Eulerian polynomials.

$$
A_{n}(x)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{exc}(\sigma)} \quad \widetilde{A}_{n}(x)=1+x \sum_{j=1}^{n}\binom{n}{j} A_{j}(x)
$$

Some examples I

If M is a Boolean matroid on n elements then

$$
\begin{aligned}
& \underline{\mathrm{H}}_{\mathrm{M}}(x)=A_{n}(x), \\
& \mathrm{H}_{\mathrm{M}}(x)=\widetilde{A}_{n}(x) .
\end{aligned}
$$

These are the Eulerian and binomial Eulerian polynomials.

$$
A_{n}(x)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{exc}(\sigma)} \quad \widetilde{A}_{n}(x)=1+x \sum_{j=1}^{n}\binom{n}{j} A_{j}(x)
$$

Theorem (Frobenius, Haglund-Zhang'20, Brändén-Jochemko'22)

The polynomials $A_{n}(x)$ and $\widetilde{A}_{n}(x)$ are always real-rooted.

Some examples II

If M is a uniform matroid on n elements and rank $n-1$:

$$
\begin{aligned}
& \underline{\mathrm{H}}_{\mathrm{M}}(x)=\frac{1}{x} d_{n}(x) \\
& \mathrm{H}_{\mathrm{M}}(x)=A_{n}(x)
\end{aligned}
$$

These are the derangement and Eulerian polynomials.

$$
d_{n}(x)=\sum_{\sigma \in \mathfrak{D}_{n}} x^{\operatorname{exc}(\sigma)} \quad A_{n}(x)=1+\sum_{j=1}^{n}\binom{n}{j} d_{j}(x)
$$

Some examples II

If M is a uniform matroid on n elements and rank $n-1$:

$$
\begin{aligned}
& \underline{\mathrm{H}}_{\mathrm{M}}(x)=\frac{1}{x} d_{n}(x) \\
& \mathrm{H}_{\mathrm{M}}(x)=A_{n}(x)
\end{aligned}
$$

These are the derangement and Eulerian polynomials.

$$
d_{n}(x)=\sum_{\sigma \in \mathfrak{D}_{n}} x^{\operatorname{exc}(\sigma)} \quad A_{n}(x)=1+\sum_{j=1}^{n}\binom{n}{j} d_{j}(x)
$$

Theorem (Brenti'92, Canfield'94, Zhang'94)

The polynomial $d_{n}(x)$ is always real-rooted.

Conjecture (Huh'20, Stevens'21, Ferroni-Schröter'22)

The polynomials $\underline{\mathrm{H}}_{\mathrm{M}}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are real-rooted.

Conjecture (Huh'20, Stevens'21, Ferroni-Schröter'22)

The polynomials $\underline{\mathrm{H}}_{\mathrm{M}}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are real-rooted.

Conjecture (Gedeon-Proudfoot-Young'17, Proudfoot-Xu-Young'18)

The Kazhdan-Lusztig polynomial $P_{\mathrm{M}}(x)$ and $\mathrm{Z}_{\mathrm{M}}(x)$, the Hilbert series of the intersection cohomology module $\mathrm{IH}(\mathrm{M})$ are real-rooted.

The real deal with matroids

Conjecture (Huh'20, Stevens'21, Ferroni-Schröter'22)

The polynomials $\underline{H}_{M}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are real-rooted.

Conjecture (Gedeon-Proudfoot-Young'17, Proudfoot-Xu-Young'18)

The Kazhdan-Lusztig polynomial $P_{\mathrm{M}}(x)$ and $\mathrm{Z}_{\mathrm{M}}(x)$, the Hilbert series of the intersection cohomology module $\mathrm{IH}(\mathrm{M})$ are real-rooted.

Problems

- We have no fast, closed formula to compute them
- It is computationally expensive to build the Chow rings.

Goal: Compute them on $\mathcal{L}(M)$ efficiently without actually passing through the Chow rings!

Combinatorial formulas

Theorem (FMSV'23)

Let M be a loopless matroid, then $\underline{H}_{M}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ satisfy the following

- If $\operatorname{rk}(M)=0$, then $\underline{H}_{M}(x)=1$.
- If $\operatorname{rk}(M)>0$, then $\operatorname{deg} \underline{H}_{M}(x)=\operatorname{rk}(M)-1$ and

$$
\underline{\mathrm{H}}_{\mathrm{M}}(x)=\sum_{\substack{F \in \mathcal{L}(\mathrm{M}) \\ F \neq \emptyset}} \frac{\chi_{\left.\mathrm{M}\right|_{F}}(x)}{x-1} \underline{\mathrm{H}}_{\mathrm{M} / F}(x) \quad \mathrm{H}_{M}(x)=\sum_{F \in \mathcal{L}(\mathrm{M})} x^{\mathrm{rk}(F)} \underline{\mathrm{H}}_{\mathrm{M} / F}(x) .
$$

Combinatorial formulas

Theorem (FMSV'23)

Let M be a loopless matroid, then $\underline{H}_{M}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ satisfy the following

- If $\operatorname{rk}(M)=0$, then $\underline{\mathrm{H}}_{\mathrm{M}}(x)=1$.
- If $\operatorname{rk}(M)>0$, then $\operatorname{deg} \underline{H}_{M}(x)=\operatorname{rk}(M)-1$ and

$$
\underline{H}_{M}(x)=\sum_{\substack{F \in \mathcal{L}(M) \\ F \neq \emptyset}} \frac{\chi_{\left.M\right|_{F}(x)}}{x-1} \underline{H}_{M / F}(x) \quad \mathrm{H}_{M}(x)=\sum_{F \in \mathcal{L}(M)} x^{r \mathrm{kk}(F)} \underline{\mathrm{H}}_{M / F}(x) .
$$

- In the incidence algebra: $\delta=\bar{\chi} * \underline{\mathrm{H}} \quad \mathrm{H}=\widetilde{\zeta} * \underline{\mathrm{H}}$
- We actually provide a setting in which $\underline{H}_{M}(x)$ and $H_{M}(x)$ are "non-singular" analogous of $P_{M}(x)$ and $Z_{M}(x)$.

Some examples III

If M is a uniform matroid on n elements and rank k
Theorem (FMSV'23)

$$
\begin{aligned}
& \underline{H}_{U_{k, n}}(x)=\sum_{j=0}^{k-1}\binom{n}{j} d_{j}(x)\left(1+x+\cdots+x^{k-1-j}\right) \\
& \mathrm{H}_{U_{k, n}}(x)=1+x \sum_{j=0}^{k-1}\binom{n}{j} A_{j}(x)\left(1+x+\cdots+x^{k-1-j}\right)
\end{aligned}
$$

Some examples III

If M is a uniform matroid on n elements and rank k

Theorem (FMSV'23)

$$
\begin{aligned}
& \underline{H}_{U_{k, n}}(x)=\sum_{j=0}^{k-1}\binom{n}{j} d_{j}(x)\left(1+x+\cdots+x^{k-1-j}\right) \\
& \mathrm{H}_{U_{k, n}}(x)=1+x \sum_{j=0}^{k-1}\binom{n}{j} A_{j}(x)\left(1+x+\cdots+x^{k-1-j}\right)
\end{aligned}
$$

Theorem (FMSV'23)

The polynomial $\mathrm{H}_{\mathrm{U}_{k, n}}(x)$ is always real-rooted.
Proof requires using a general result of Haglund and Zhang.

Some more evidence

Theorem (FMSV'23)

If M is a sparse paving matroid with at most 40 elements, then $\underline{\mathrm{H}}_{\mathrm{M}}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are real-rooted.

Conjecture

100% of the matroids are sparse paving.

γ-polynomial

If f is palindromic of degree d

$$
\begin{gathered}
f(x)=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} x^{i}(x+1)^{d-2 i} \\
\gamma(f, x)=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} x^{i} .
\end{gathered}
$$

γ-polynomial

If f is palindromic of degree d

$$
\begin{gathered}
f(x)=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} x^{i}(x+1)^{d-2 i} \\
\gamma(f, x)=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} x^{i} .
\end{gathered}
$$

Theorem
If $f \in \mathbb{Z}_{\geq 0}[x]$ is palindromic, f is real-rooted $\Rightarrow f$ is γ-positive $\Rightarrow f$ is unimodal.

γ-positivity

Theorem (FMSV'23)

$\underline{H}_{M}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are γ-positive for every M .

γ-positivity

Theorem (FMSV'23)

$\underline{H}_{M}(x)$ and $\mathrm{H}_{\mathrm{M}}(x)$ are γ-positive for every M .

- Proof: induction linked to a semi-small decompositions of $\underline{\mathrm{CH}}(\mathrm{M})$ and $\mathrm{CH}(\mathrm{M})$ (BHMPW'22). Also observed by Wang.
- Gives self-contained independent proof of the γ-positivity of derangement, Eulerian and binomial Eulerian polynomials.
- With a different induction we also show γ-positivity for the intersection cohomology module $\mathrm{IH}(\mathrm{M})$.

Thank you! ©

